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Abstract: Nowadays, it is still a challenge for commercial nitrate sensors to meet the requirement
of high accuracy in a complex water. Based on deep-ultraviolet spectral analysis and a regression
algorithm, a different measuring method for obtaining the concentration of nitrate in seawater is
proposed in this paper. The system consists of a deuterium lamp, an optical fiber splitter module,
a reflection probe, temperature and salinity sensors, and a deep-ultraviolet spectrometer. The
regression model based on weighted average kernel partial least squares (WA-KPLS) algorithm
together with corrections for temperature and salinity (TSC) is established. After that, the seawater
samples from Western Pacific and Aoshan Bay in Qingdao, China with the addition of various nitrate
concentrations are studied to verify the reliability and accuracy of the method. The results show
that the TSC-WA-KPLS algorithm shows the best results when compared against the multiple linear
regression (MLR) and ISUS (in situ ultraviolet spectrophotometer) algorithms in the temperatures
range of 4–25 ◦C, with RMSEP of 0.67 µmol/L for Aoshan Bay seawater and 1.08 µmol/L for
Western Pacific seawater. The method proposed in this paper is suitable for measuring the nitrate
concentration in seawater with higher accuracy, which could find application in the development of
in-situ and real-time nitrate sensors.

Keywords: nitrate concentration; deep-UV optical sensor system; seawater monitoring; kernel partial
least squares

1. Introduction

With the development of the economy, agricultural fertilizers and various sewages
are continuously discharged to the coastal seawater [1,2] and have led to the abnormal
reproduction of algae and even red tide outbreaks. This abnormality does not only bring
serious consequences to nature and human beings, but also results in huge losses to the
local economy [3,4]. Eutrophication is one of the key factors that lead to red tide outbreaks,
while the nitrate concentration is one of the most important parameters to characterize
the eutrophication [5]. Therefore, developing nitrate sensors with high accuracy in a
complex water is of great significance for the exploration of the mechanisms behind red
tide outbreaks. However, it is still a challenge today for commercial in-situ nitrate sensors
to meet the demand.

Scientists began to study nitrate in seawater in the early 1920s using laboratory
chemical methods, which were time-consuming [6,7]. In the 1960s, researchers realized that
the ultraviolet absorbance of seawater could be used as an important indicator to evaluate
the quality of seawater [8]. Various technologies developed in the past decades can be
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classified into the following categories: field sampling plus laboratory testing technique,
field testing with wet chemical analysis technique and field testing with in situ deep
ultraviolet sensor analysis technology.

For the field sampling plus laboratory testing technique, the samples need to be
brought to the lab and measured by the methods based on various chemical reagents or by
analyzers, which include the spectrophotometry method [9–12], the liquid chromatography
method [13–15], the fluorescence method [16–18] and the isotope detection method [19].
These laboratory techniques are highly accurate, but the samples can easily be contaminated
in the process of collection and transportation.

To eliminate contamination during transportation, scientists in the 1960s developed
an instrument based on the wet chemical analysis method to monitor and analyze seawater.
By loading a pump on board, the seawater samples were pumped into the instrument for
detection [20]. This method enabled the samples to be tested in an airtight environment,
which laid the foundation for the automation and integration of the wet chemical ana-
lyzer [21]. Based on this, Ŕužička and Hansen first proposed the flow injection analysis
(FIA) method to avoid the effect of bubbles when pumping seawater on board [22]. This
approach has the advantage of being faster in measurement time comparing to prior arts,
and greatly promoted the development of automatic on-line monitoring instruments [23].
However, the temperature and pressure of the samples change during the process of pump-
ing, which may change physical properties of the seawater compositions. To solve this
problem, scientists then developed the underwater in-situ analysis instruments, which
can be applied to different measurement platforms [24,25]. In recent years, technology
based on microfluidic chip was developed rapidly in the water quality detection field. This
technology integrates the sample preparation, reaction, separation, detection, and other
basic operation units of biological and chemical processes into a micro-scale chip, and
automatically completes the whole process of analysis. This is suitable for the trace detec-
tion of nitrate in seawater, and is advantageous due to its low power consumption, high
sensitivity, and fast speed [26–29]. However, the working time of wet chemical analysis
depends on the stability and consumption rate of chemical reagents and it is hard to realize
long-term (more than three months) in-situ monitoring. With the consideration of its high
maintenance cost, its application for in-situ monitoring of marine environment is limited.

In recent years, the ultraviolet absorption spectroscopy-based technique was devel-
oped in measuring nitrate in seawater, with the advantages of no chemical reagents, no
pollution to environment, and ease of operation [30,31]. In 1998, Finch and his group
developed the first ultraviolet spectrometer system capable of in-situ measurements, with
the detection limit lower than 0.21 µM of nitrate in seawater [32]. After that, the SUV-6
in-situ nitrate sensor was established by optimizing the hardware and software of the
system. In 2002, Johnson and his colleagues developed an ISUS (in situ ultraviolet spec-
trophotometer) system that was commercialized by Sea-Bird Scientific [33]. Some research
institutions have also improved the nitrate in-situ sensor and conducted sea trial, which
contributed to the improvement of measurement accuracy [34–36]. Currently, more and
more in-situ nitrate monitoring instruments based on ultraviolet spectroscopy have been
used in rivers and seawater, such as TriOS OPUS multi-parameter analyzer and SUNA
sensor [37,38]. However, some research results showed that the actual measurement errors
of these commercial nitrate sensors are higher than the parameters given in their specifi-
cations, for example, the SUNA and SUNA V2 combined data produced a 0.66 mg-N/L
average absolute difference from 40 discrete samples collected from three deployment sites,
which resulted in inaccurate results [39].

To overcome the above challenges, we propose a deep-ultraviolet spectroscopy-based
nitrate measurement method with high accuracy. The nitrate concentration in the seawater
samples from Western Pacific and Aoshan Bay, Qingdao of China were measured and
predicted as a case study to verify the reliability and accuracy of the method. The measure-
ment system is composed of a deuterium lamp, a signal acquisition module, and a signal
processing module. By comparing the parameters from different models and prediction
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data, optimal algorithm for the system was selected. Such measurement is relatively simple
and quick, as no chemical manipulation is required. The results show that the method
proposed in this paper can improve the accuracy of the calculated concentrations when
applied to input data within the ranges of the training input data but can possibly lead to
runaway concentrations when applied to input data outside of the ranges of the training
input data. The approach is reliable and applicable for nitrate determination, which lays a
foundation for the development of marine environmental monitoring technology.

2. Materials and Methods
2.1. Main Elements in Seawater

The composition of seawater is complex and contains many chemical substances. The
main dissolved elements include Na+, Mg2+, Ca2+, K+, HPO4

2−, SO4
2−, Cl−, Br−, HCO3

−,
etc. Besides these dissolved elements, organic matter is also an important substance in
seawater. It mainly comes from two parts. One is produced by the ocean itself, including
metabolites, decomposition, and debris of marine organisms. The other is artificially intro-
duced from land sources, including organic substances and organic pollutants produced
by human life and production activities. Organic matter concentration in seawater also has
the absorbance in the UV wavelength range, with the main component of humate [40–43].
Therefore, the ultraviolet absorption characteristics of some main elements, including
sodium chloride, magnesium sulfate, sodium bicarbonate, sodium bromide, sodium ni-
trate, sodium humate, sodium dihydrogen phosphate, and sodium nitrite, have to be
measured and analyzed.

2.2. Optical Measurement
2.2.1. Measurement Principle

The model of ultraviolet spectrophotometry is established based on Lambert Beer’s
law. The absorbance Aλ of the sample at each wavelength λ is given by

Aλ = − log10

(
Iλ − ID

Iλ,0 − ID

)
, (1)

where Iλ is the light intensity of the sample measured by the detector at wavelength λ, Iλ,0
is the light intensity of deionized water measured by the detector at wavelength λ, and
ID is the dark current of the detector. The sample absorbance Aλ can be expressed as the
sum of the absorbance of each chemical element in sample according to the additivity of
absorbance, that is

Aλ = A1 + A2 + . . . + Aj + . . . + AM = b

(
∑

j
ελ,jCj

)
, (2)

where ελ,j is the molar absorptivity of jth element in seawater, b is the optical path, and Cj is
the concentration of the jth element. However, the seawater elements are complex, and the
absorption spectrum of each element ranges overlap, which cannot be effectively separated.
Therefore, based on the above principles, the kernel partial least squares algorithm is used
to establish the calculation model, which will be introduced in Section 2.3.2.

2.2.2. Description of the Measurement System

The measurement system is shown in Figure 1. The light emitted by the deuterium
lamp (DH-2000-DUV, Ocean optics, Orlando, FL, USA) is attenuated by the adjustable opti-
cal fiber attenuator (FVA-UV, Ocean optics, Orlando, FL, USA) and is further transmitted
into the optical fiber splitter (customized, Wyoptics Co., Ltd., Shanghai, China). Then the
signal is reflected by the reflection probe and returned to the fiber with the concentration
information from the sample. Finally, the data are collected and calculated by the data
processing module. Deionized water is in sample cell 1 and the measurement sample is in
sample cell 2. Temperature and salinity sensors are placed in sample cell 2. The temperature
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and salinity sensors are utilized to measure and transmit the data to the data processing
module. When measuring the data for establishing the calculation model, the temperature
control module is needed to control the temperature change of samples uniformly. The UV
spectrometer (QE Pro, Ocean Optics Inc., Orlando, FL, USA) is used here to collect the data.
The specifications of the light source and the spectrometer are shown in Table 1.
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Figure 1. Structure of the measurement system.

Table 1. Specifications of the system.

Component Parameter Description

Light source

Type Deuterium lamp (DH-2000-DUV)
Power consumption 585 µW

Lifetime 1000 h
Output wavelength 190 nm–400 nm

Output stability Less than 5 × 10−6 peak to peak (0.1–10.0 Hz)
Output drift Less than 0.01% per hour

UV spectrometer

Wavelength range 200 nm–385 nm
Optical resolution 0.4 nm

Entrance slit 10 µm
Grating GRATING_#H48

Dark noise 2.5 counts RMS
Signal to noise ratio 1000:1 (single acquisition)

Thermal stability 0.01 pixels/◦C

The choices of hardware components are shown as follows.

1. Light source

The light source is selected based on wavelength range, luminous stability, output
power, and source lifetime. Deuterium lamps generate continuously stable light output in
the deep ultraviolet region for a long time. Therefore, the DH-2000-DUV light source was
selected with an output wavelength range of 190–400 nm, a lifetime of 1000 h, and a light
output stability of less than 5 × 10−6 peak to peak (0.1–10.0 Hz).

2. UV fiber splitter module

The UV fiber splitter module is one of the core structures of the system. The use of
a reference optical path can not only reduce the system errors and detect fluctuations of
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the light source, but also simultaneously measure the light attenuation of deionized water,
which improves the accuracy of the measured absorbance. The structure and size of the
fiber splitter module shown in Figure 2 is made of quartz fiber with a core diameter of
400 µm. Port 4 is the input port of light source, port 3 and port 5 are the output ports of
signal, and port 1 and port 2 are connected with underwater reflection probes, which are
used to detect and return the signal from the sample and deionized water, respectively.
The reflection probe is made of stainless steel, with one end of a mirror and the other end
of a fiber port. The optical paths of the underwater reflection probes are set to 10 mm.

Sensors 2021, 21, x FOR PEER REVIEW 6 of 22 

 

 

 
Figure 2. Structure of the UV fiber splitter. 

3. Temperature control module 
To keep the temperature of the measured seawater sample stable, a customized small 

thermostat bath (Shanghai Pingyuan Scientific Instrument Co., Ltd., Shanghai, China) is 
used in the system. The temperature is controlled by the PID algorithm and auto tuning 
technology. In addition, the thermostat bath has an internal and external circulation sys-
tem to ensure the constant temperature. The temperature range can be controlled from −5 
°C to 100 °C with a precision of 0.05 °C. 

4. Spectrometer 
The spectrometer (QE Pro, Ocean Optics Inc., USA) is used with an optical resolution 

of 0.4 nm in the wavelength range from 200 nm to 385 nm. The QE Pro is a spectrometer 
with high sensitivity and low stray light, which is ideal for the absorbance application. It 
has good thermal stability, and functions of onboard spectral buffering, automatic inte-
gration, and multi-sampling, which could amplify weak signals and eliminate random 
noise.  

2.3. Model Establishment Method 
2.3.1. Temperature and Salinity Correction Algorithm 

As the absorbance of seawater varies with the temperature, it is necessary to establish 
temperature and salinity correction (TSC) algorithms for the calculation model. The ab-
sorbance of low nutrient seawater (LNS, created by filtering seawater from Western Pa-
cific using 0.45 µm filter membrane) samples are all normalized to psu (Practical Salinity 
Unit) = 35, which is 

m

dardS
mTW S
SAA tan

, ×= , (3) 

Figure 2. Structure of the UV fiber splitter.

3. Temperature control module

To keep the temperature of the measured seawater sample stable, a customized small
thermostat bath (Shanghai Pingyuan Scientific Instrument Co., Ltd., Shanghai, China) is
used in the system. The temperature is controlled by the PID algorithm and auto tuning
technology. In addition, the thermostat bath has an internal and external circulation system
to ensure the constant temperature. The temperature range can be controlled from −5 ◦C
to 100 ◦C with a precision of 0.05 ◦C.

4. Spectrometer

The spectrometer (QE Pro, Ocean Optics Inc., USA) is used with an optical resolution of
0.4 nm in the wavelength range from 200 nm to 385 nm. The QE Pro is a spectrometer with
high sensitivity and low stray light, which is ideal for the absorbance application. It has
good thermal stability, and functions of onboard spectral buffering, automatic integration,
and multi-sampling, which could amplify weak signals and eliminate random noise.

2.3. Model Establishment Method
2.3.1. Temperature and Salinity Correction Algorithm

As the absorbance of seawater varies with the temperature, it is necessary to establish
temperature and salinity correction (TSC) algorithms for the calculation model. The
absorbance of low nutrient seawater (LNS, created by filtering seawater from Western
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Pacific using 0.45 µm filter membrane) samples are all normalized to psu (Practical Salinity
Unit) = 35, which is

AW,T = Am ×
SS tan dard

Sm
, (3)

where Sm and Am are the measured salinity and absorbance of seawater samples respec-
tively, and Ss tan dard equals 35. Based on the measured data and polynomial regression
equation, the model of LNS can be established as

AW,T = p00 + p10 ×W + p01 × T + p20 ×W2 + p11 ×W × T + . . . , (4)

where W and T are the centralized wavelength and temperature, p00, p10, p01, p20, p11
are the regression parameters of the model. As the temperature dependence of LNS
absorbance is dominated by the bromide absorbance, its absorbance trend is consistent
with bromide [44], therefore the temperature influence is included in AW,T .

To ensure the accuracy of the nitrate modeling data, it is necessary to first obtain
the absorbance caused by temperature. Therefore, the molar absorptivity of sea salt is
introduced and can be calculated as [37]

EW,Tm =
EW,Tcal × AW,Tm

AW,Tcal

, (5)

where EW,Tcal and AW,Tcal are the molar absorptivity and normalized absorbance of calibra-
tion LNS samples, respectively, AW,Tcal is the absorbance of measurement seawater samples
calculated by the established LNS model. In this way, the sea salt absorbance ASS caused
by temperature change can be calculated as

ASS = EW,Tm × S, (6)

where S represents the salinity of seawater. Therefore, by subtracting the temperature
dependent data from the measured data, the absorbance of nitrate and other temperature
independent components can be obtained as

A′ = AMeas − ASS, (7)

where AMeas is the absorbance of the measurement of seawater. Chromophoric dissolved
organic matter (CDOM) in seawater exhibits a broadband absorption between 150 nm
and 400 nm. Therefore, the estimation of the spectral behavior of CDOM needs to be
subtracted from AMeas as CDOM is also a strong UV absorber. Three approaches have been
tested to estimate the absorption of CDOM including linear functions [37,45], quadratic
functions [33], and exponential functions [46]. However, the use of an exponential function
was found to be problematic because the results obtained by the algorithm may be divergent
if the fitting parameters are not close to the proper values. To simplify the model, the linear
function for CDOM is established by the spectra data from 240 nm to 260 nm. Then the
nitrate absorbance can be calculated as

A′′ = A′ − (e + f λ), (8)

where e and f are the regression parameters for CDOM. Finally, based on the regression
algorithm, the nitrate concentration calculation model can be applied.

2.3.2. Weighted Average Kernel Partial Least Squares Algorithm

The kernel partial least squares (KPLS) algorithm integrates the advantages of princi-
pal component analysis (PCA), canonical correlation analysis (CCA), and linear regression
analysis. It meets the conditions of K(xi, xj) =

〈
ϕ(xi), ϕ(xj)

〉
, xi, xj ∈ RN . ϕ represents the

nonlinear mapping, xi and xj are the data in data space RN . KPLS algorithm cannot only
deal with nonlinear relationships between variables, but also make full use of the spatial
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distribution information of samples to establish the model, which greatly improves the
regression and prediction accuracy.

However, in the process of modeling, over-extraction of training set information will
cause over-fitting. This makes the calculation model perform well on training set but
has a large error on the testing set [47]. In order to solve this problem, Zhang and his
colleagues proposed a multiple regression method based on a weighted average algorithm,
with the results obtained relatively robust to over-fitting [48]. Based on this, an optimized
weighted average kernel partial least squares (WA-KPLS) algorithm is proposed and
established in this research, which is shown in Figure 3. Through the establishment
and accuracy calculation of each sub model, the weight parameters will be obtained to
effectively overcome the over-fitting problem and get more accurate prediction results.
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Suppose that we have the independent variable matrix X with a size of n× p and
dependent variable Y with size n× m, where n is the sample number, p and m are the
dimensions of independent variable and dependent variable. Random sampling method is
used here to randomly select η% samples of the training set for establishing the sub model
with KPLS algorithm, which can be performed as follows [49]:

1. Randomly initialize u;
2. t = ϕϕTu = Ku, t

‖t‖ → t, Kij = K(xi, xj)

3. c = YTt
4. u = Yc, u

‖u‖ → u

5. Repeat (2) to (4) steps until convergence;
6. Calculate residual matrices of X and Y, (I − ttT)K(I − ttT)→ K, Y− ttTY → Y ;

where u and t are the principal components. Repeat the above steps until the result
meets the requirement, and the regression coefficient of the model can be calculated as

β = ϕTU(TTKU)
−1

TTY. (9)

Therefore, the calculation model is established, and the regression data can be ex-
pressed as

Ŷ = ϕβ = ϕϕTU(TTKU)
−1

TTY = KU(TTKU)
−1

TTY. (10)

Based on the sub model, the prediction result for the training set is given by

Ŷt = ϕtβ = KtU(TTKU)
−1

TTY, (11)

where Kt = (I− 1
n It IT

n )K(I− 1
n It IT

n ), It is the vector whose elements are all 1 and dimension
is the number of training set samples n, and In is the vector whose elements are all 1 with
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dimension of n× 1. D sub-models in total are established based on the training set. The
results from each of these sub-models deviate differently from the reference concentrations.
A weighted average of the sub-model results now forms the final result, with the weights
being the inverse of the root mean square errors of the prediction (RMSEP). The RMSEP of
jth sub model can be expressed as

RMSEPj =

√
1
n∑n

i=1 (yi − yj
i,p)

2
, (12)

where yi and yj
i,p are the reference concentration and predicted concentration of training

set samples by jth sub-model. The smaller the RMSEPj is, the better performance the
sub-model has, and the larger the weight should be. Therefore, the jth sub model weight
wj can be defined as

wj =

1
RMSEPj

∑D
k=1

1
RMSEPk

, (13)

The final predicted value Yp can be expressed as

YP = ∑D
k=1 wkYkp, (14)

where Ykp is the predicted value of the kth sub-model. In the process of modeling, each
sub-model is considered as a basic learner. The proposed method is designed to adjust the
proportion of different sub-model results in the final result by measuring the accuracy of
each learner, so as to overcome the problem of over fitting [50].

2.4. Measurement Method

(1) A number of different artificial samples were created as follows to test the system
sensitivity to different ions and to nitrate in seawater. To a basis of deionized water
sodium chloride (0.55 mol/L), magnesium sulfate (28 mmol/L), sodium bicarbonate
(2.3 mmol/L), sodium bromide (0.8 mmol/L), sodium nitrate (30 µmol/L), sodium
humate (5 µmol/L), sodium dihydrogen phosphate (2.26 µmol/L), and sodium ni-
trite (0.22 µmol/L) were added [51]. The seawater from Western Pacific and Aoshan
Bay, Qingdao of China were filtered using a 0.45 µm filter membrane. AutoAna-
lyzer 3 (SEAL, Germany) is used to measure the background nitrate concentration
in Western Pacific and Aoshan Bay seawater. The background nitrate concentra-
tion in Western Pacific seawater is lower than 0.1 µmol/L. The background nitrate
concentration in Aoshan Bay seawater is 1.59 µmol/L. Different concentrations of
nitrate (0–100 µmol/L) in seawater were created with a basis of LNS and Aoshan
Bay seawater. The LNS sample, Western Pacific seawater samples, and Aoshan Bay
seawater samples were frozen at −20 ◦C in clean high-density polyethylene bottles.
These seawater samples with different nitrate concentrations were finished measuring
within 5 days.

(2) Based on the designed system, the absorbance of the different solutions and of sea-
water samples was measured at different temperatures (4–25 ◦C at 1 ◦C intervals)
to establish the temperature dependency of the measurements. All measurements
were done after the temperature had stabilized. The results from these measurements
were used to select the optimal wavelength range and establish the temperature and
salinity correction model by the measurement data.

(3) The LNS samples, Western Pacific seawater samples, and Aoshan Bay seawater
samples with addition of nitrate concentrations were measured by the system. The
nitrate calculation models based on different regression algorithms were established.

(4) The nitrate concentrations in Western Pacific seawater samples and Aoshan Bay sea-
water samples were calculated and analyzed by using different regression algorithms.
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3. Results
3.1. Influence of Ions and Temperature

The main components in seawater were measured and analyzed to determine the
main interfering substances and optimal modeling wavelength range, and the results are
shown in Figure 4. It can be seen that in the range between 200 nm and 240 nm, bromide
ions and chloride ions are the main factors that have a great influence on the seawater
absorbance data, while the absorbance of bicarbonate, sulfate, and other particles are small.
As the absorbance of chloride ion is high for wavelength lower than 208 nm, which could
submerge the absorbance signal of nitrate, and no obvious absorbance for wavelength
longer than 240 nm, spectral data from 208 nm to 240 nm are selected for data modeling
and calculation in order to reduce the influence of system noise and absorbance of other
components on the calculation model.
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Figure 4. Absorbance of pure solutions. (a) NaCl, NaBr, and NaNO3; (b) MgSO4, NaHCO3, sodium humate, NaH2PO4,
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The temperature dependence of pure components and LNS is illustrated in Figure 5.
It can be seen that LNS and bromide absorbances increase at higher temperature, and the
temperature slope of LNS data is almost similar to the slope generated by NaBr solutions
with the same bromide concentrations, whereas the absorbance of other pure components,
including nitrate, do not show a temperature dependence. The LNS absorbance model
with temperature influence is shown in Figure 6, where x-axis represents the normalized
wavelength, y-axis represents the normalized temperature, z-axis represents the absorption
of LNS, and the color scale represents different absorbance. The R2 is 0.9971, RMSE is of
0.02, and the sum of squares due to error (SSE) is of 1.508 of the LNS model.

3.2. A Nitrate Calculation Model Based on the WA-KPLS Algorithm with Temperature and
Salinity Correction

A training set with 614 samples was prepared with different nitrate concentrations
(0–100 µmol/L) to establish the model. The temperatures ranged from 4 ◦C to 25 ◦C.
After collecting the measurement data, WA-KPLS algorithm with temperature and salinity
correction (TSC-WA-KPLS) is carried out to establish the calculation model. The optimal
number of principal components for the TSC-WA-KPLS method can be assessed by the
determination coefficient R2 and the RMSEP. The equations are:

R2 = 1−
∑n

i=1 (yi − yi,p)
2

∑n
i=1 (yi − ŷ)2 , (15)

RMSEP =

√
1
n∑n

i=1 (yi − yi,p)
2, (16)
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where yi and yi,p are the reference and predicted concentrations of the samples, respectively.
ŷ is the mean value of reference concentration and n is the sample number. The smaller
RMSEP is, the higher the accuracy is. When R2 is larger than 0.9995, it is considered that
the model has reached the requirement and then the number of principal components can
be determined. The results of R2 and RMSEP are shown in Figure 7. It can be seen from the
figure that when the number of principal component reaches 12, RMSEP of the model is
less than 1 µmol/L and R2 is 0.9995, which means that the established model meets our
requirement. Therefore, in this study, the number of TSC-WA-KPLS principal components
is selected as 12.
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3.3. Prediction Results for Aoshan Bay Seawater and Western Pacific Seawater

In order to verify the reliability and accuracy of the established models, 110 Aoshan
Bay seawater and 94 Western Pacific seawater samples with nitrate concentrations ranging
from 0 µmol/L to 100 µmol/L were measured with the system. Meanwhile, the prediction
results are also compared with MLR and ISUS algorithms, and the results are shown in
Figures 8 and 9, where (a,b) represent the residual results of TSC-WA-KPLS and TSC-MLR
algorithms, (d,e) represent the frequency count results of TSC-WA-KPLS and TSC-MLR
algorithms, (g) represents the linear correction with the reference concentrations for ISUS
algorithm, (c,f) represent the residual and the frequency count results of ISUS algorithm
after linear correction. Sample 1 to sample 60 in Figure 8 are the Aoshan Bay seawater
samples with nitrate concentrations from 1 µmol/L to 10 µmol/L, and the rest are the
Aoshan Bay seawater samples with nitrate concentrations from 10 µmol/L to 100 µmol/L.
Sample 1 to sample 52 in Figure 9 are the Western Pacific seawater samples with nitrate
concentrations from 1 µmol/L to 10 µmol/L, and the rest are the Western Pacific seawater
samples with nitrate concentrations from 10 µmol/L to 100 µmol/L. It can be seen from
Figure 8a–c that the samples with high nitrate concentrations (samples 61 to 100) have a
larger prediction error than those with low nitrate concentrations (samples 1 to 60). From
Figure 8d–f we can see that the residuals of TSC-WA-KPLS and TSC-MLR algorithm are
obviously more concentrated in the range between −2 µmol/L and 2 µmol/L than those
of ISUS algorithm. Similar results are found for the Western Pacific seawater samples in
Figure 9a–f, except that the residuals of TSC-WA-KPLS and ISUS algorithm are obviously
more concentrated in the range between −2 µmol/L and 2 µmol/L than those of TSC-
MLR algorithm.

Table 2 shows the prediction results based on different algorithms, including the
existing algorithms of MLR and ISUS. For the samples with high nitrate concentrations
(10 µmol/L–100 µmol/L), TSC-WA-KPLS has the smallest relative error range. For the
Aoshan Bay seawater, TSC-WA-KPLS has the smallest error range (±2 µmol/L) and
smallest RMSEP (0.67 µmol/L) among three algorithms. For the Western Pacific seawater,
the error ranges of TSC-WA-KPLS and ISUS are smaller than those of TSC-MLR, which
are both between ±3.3 µmol/L. However, the R2 of the TSC-WA-KPLS is larger, which
indicates that the calculation model established by TSC-WA-KPLS has better prediction
performance. Therefore, TSC-WA-KPLS has the best prediction performance with R2 of
0.9996 and 0.9987 for the Aoshan Bay seawater and Western Pacific seawater, respectively.
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Table 2. Prediction results of different algorithms.

Sample Algorithm Model RMSEP (µmol/L) Error Range (µmol/L) R2

Aoshan Bay seawater
TSC-WA-KPLS 0.67 [−1.86, 1.53] 0.9996

TSC-MLR 1.10 [−3.06, 2.72] 0.9989
ISUS 1.75 [−4.47, 5.16] 0.9971

Western Pacific seawater
TSC-WA-KPLS 1.08 [−3.00, 3.17] 0.9987

TSC-MLR 1.72 [−4.01, 3.58] 0.9967
ISUS 1.36 [−3.22, 2.81] 0.9980

4. Discussion

A different method for measuring nitrate concentration in seawater based on deep-
ultraviolet spectral sensor is proposed and studied in this paper. When using ultraviolet
spectrometer to determine the nitrate concentration in seawater interference by other
substances in the seawater, such as bromide, chloride, organic matter, nitrite, sulfate,
bicarbonate, etc. [52], occurs. If all these substances were considered as interference factors,
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the calculation of nitrate would be very complex. On the premise of keeping the accuracy
of nitrate measurement, the absorbance characteristics of several compositions in seawater
in the deep-UV range were measured in the wavelength range of 208 nm–240 nm in this
study, which could minimize the impact of background noise and improve the nitrate
calculation model [37].

In order to subtract the temperature influence from the measured absorbance data
for a more accurate nitrate calculation model, the relationship between different ions and
temperature was measured and analyzed in this study. The results showed that the bro-
mide absorbance is dependent on temperature, with the same trend as that of LNS, which
was consistent with the results in previous literature [52,53]. This phenomenon is due to
the fact that the absorbance of bromide in deep UV was generated by charge transfer to
the solvent complex, and the interaction between bromide and solvent would produce
strong temperature dependence, resulting in the bromide absorbance increase with the
temperature increase [53]. However, as the absorbance of nitrate was caused by the π→π*
transition within the molecule, there was no obvious temperature dependence [54]. This
result also verified that the changes in sea salt absorbance with temperature were primarily
due to the change of bromide absorbance. Laboratory studies by several research groups
also showed a strong dependence between seawater absorbance and temperature [37,55],
as the seawater absorbance was mainly determined by the ultraviolet absorbance of bro-
mide [8,44]. Since bromide is stable with salinity, the bromide concentration is reported
as a salinity [56]. Therefore, by subtracting the absorbance of the sea salt caused by the
temperature change, the influence of bromide can be removed [37,45]. Furthermore, the
simple linear fitting model is used here to decrease the absorbance effect of CDOM and
particles offset. However, this is the rough estimation of the behavior of CDOM in the UV
range as the CDOM concentration may vary with time and space [57].

By analyzing the absorbance characteristics of various components at different tem-
peratures, the TSC algorithm based on low nutrient seawater was established within the
temperature range of 4–25 ◦C. Through the application of TSC algorithm and regression
algorithms in deep-UV spectral analysis, different nitrate prediction models were estab-
lished. The calculation results of Aoshan Bay seawater and Western Pacific seawater were
compared and analyzed by different models based on TSC-WA-KPLS was established.
Moreover, TSC-MLR and ISUS algorithm are also applied on the seawater data to make the
comparison with the proposed algorithms. The experimental results showed that:

For the Aoshan Bay seawater and Western Pacific seawater samples, the model based
on TSC-WA-KPLS has the best prediction performance, with the largest coefficient R2 and
lowest RMSEP. The algorithms based on TSC-WA-KPLS can predict the samples well, and
the residuals of low nitrate concentration samples are smaller than those of high nitrate
concentration samples. Furthermore, the prediction ability of TSC-WA-KPLS algorithm
is better than that of TSC-MLR algorithm, which shows that the compensation effect and
generalization ability of TSC-WA-KPLS algorithm are better. MLR algorithm is simple, but
the calculation performance will not be as good as nonlinear multiple regression model
for the data with nonlinear relation. Since we only measure the seawater samples in the
laboratory, the influence of depth has not been involved. The temperature and salinity
dependency of the TSC-WA-KPLS residuals are calculated and the results are shown in
Figure 10, where Figure 10a,b are the results of Aoshan Bay seawater, Figure 10c,d are the
results of Western Pacific seawater. It can be seen from Figure 10a,c that the residuals of the
samples do not show any temperature dependency. The salinity ranges of the Aoshan Bay
seawater samples and Western Pacific seawater samples are very small in Figure 10b,d, and
the residuals at the same temperature also has no obvious salinity dependency. Therefore,
the TSC-WA-KPLS algorithm is more suitable for practical measurement.
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(d) salinity dependency of Western Pacific seawater samples.

The measurement errors for Aoshan Bay seawater and Western Pacific seawater might
come from several reasons. Firstly, the sample aging issue may be introduced due to lab
analysis of the seawater samples, which was performed on different days. Secondly, the
presented method is based on the system using deuterium lamp with broadband light,
which does not comply with the monochromatic light incident requirement of Lambert
Beer’s law. In this case, the broadband light may excite other components in seawater to
produce optical signals that might result in measurement error. Deep ultraviolet LEDs
could be considered as the light source in the future because near mono-chromaticity can
be provided. Thirdly, bending of the optical fiber in the operation process might cause
variation of absorbance, which will introduce measurement error. Therefore, all optical
fibers are tried to keep straight and fixed in order to avoid this error.

To analyze the ability of TSC-WA-KPLS to handle data that are not in the training range,
we set the training seawater samples with concentration range of 4 µmol/L–80 µmol/L,
6 µmol/L–80 µmol/L, 8 µmol/L–80 µmol/L, and 10 µmol/L–80 µmol/L, respectively,
and predict the seawater samples with nitrate concentration outside of the known range.
The measurement results are shown in Figure 11, where a and b illustrate the results for
the prediction samples with nitrate concentration of 0 µmol/L–3 µmol/L and 90 µmol/L–
100 µmol/L when the training seawater samples are with concentration range between
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4 µmol/L and 80 µmol/L. For the samples with low nitrate concentration from 0 µmol/L
to 3 µmol/L, the number of the samples with error range within ±2 µmol/L accounted for
100%. For the samples with high nitrate concentration from 80 µmol/L to 100 µmol/L, the
number of the samples with error range within ±2 µmol/L accounted for 0%. Figure 11c,d
shows the results for the prediction samples with nitrate concentration of 0 µmol/L–
5 µmol/L and 90 µmol/L–100 µmol/L when the training seawater samples are with
concentration range between 6 µmol/L and 80 µmol/L. For the samples with low nitrate
concentration from 0 µmol/L to 5 µmol/L, the number of the samples with error range
within ±2 µmol/L accounted for 92.70%. For the samples with high nitrate concentration
from 90 µmol/L to 100 µmol/L, the number of the samples with error range within
±2 µmol/L accounted for 0%. Figure 11e,f shows the results for the prediction samples
with nitrate concentration of 0 µmol/L–7 µmol/L and 90 µmol/L–100 µmol/L when the
training seawater samples are with concentration range between 8 µmol/L and 80 µmol/L.
For the samples with low nitrate concentration from 0 µmol/L to 7 µmol/L, the number of
the samples with error range within ±2 µmol/L accounted for 88.48%. For the samples
with high nitrate concentration from 90 µmol/L to 100 µmol/L, the number of the samples
with error range within ±2 µmol/L accounted for 0%. Figure 11g,h shows the results for
the prediction samples with nitrate concentration of 0 µmol/L–9 µmol/L and 90 µmol/L–
100 µmol/L when the training seawater samples are with concentration range between
10 µmol/L and 80 µmol/L. For the samples with low nitrate concentration from 0 µmol/L
to 9 µmol/L, the number of the samples with error range within ±2 µmol/L accounted for
28.01%. For the samples with high nitrate concentration from 90 µmol/L to 100 µmol/L,
the number of the samples with error range within ±2 µmol/L still accounted for 0%.
Therefore, the prediction sample, with concentration less than 8 µmol/L out of the training
range, could get relatively accurate result when the measurement accuracy is evaluated
by residuals. When the concentration of the prediction sample is more than 10 µmol/L
out of the training range, the prediction accuracy of the model will be reduced, and the
prediction result cannot be trusted.
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Figure 11. Prediction results for seawater samples with nitrate concentration outside of the known range. (a) Prediction
samples with nitrate concentration of 0 µmol/L–3 µmol/L with training samples with concentration of 4 µmol/L–80 µmol/L;
(b) prediction samples with nitrate concentration of 90 µmol/L–100 µmol/L with training samples with concentration
of 4 µmol/L–80 µmol/L; (c) prediction samples with nitrate concentration of 0 µmol/L–5 µmol/L with training samples
with concentration of 6 µmol/L–80 µmol/L; (d) prediction samples with nitrate concentration of 90 µmol/L–100 µmol/L
with training samples with concentration of 6 µmol/L–80 µmol/L; (e) prediction samples with nitrate concentration
of 0 µmol/L–7 µmol/L with training samples with concentration of 8 µmol/L–80 µmol/L; (f) prediction samples with
nitrate concentration of 90 µmol/L–100 µmol/L with training samples with concentration of 8 µmol/L–80 µmol/L;
(g) prediction samples with nitrate concentration of 0 µmol/L–9 µmol/L with training samples with concentration of
10 µmol/L–80 µmol/L; (h) prediction samples with nitrate concentration of 90 µmol/L–100 µmol/L with training samples
with concentration of 10 µmol/L–80 µmol/L.
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In the algorithm of ISUS, the calculation model is established with the wavelength
range from 217 nm and 240 nm. The measurement resolution is approximately 1 nm [37].
In this study, a UV spectrometer with higher resolution (0.4 nm) is used in the measurement
system, and the wavelength range of the calculation model with TSC algorithm is from 208
nm to 240 nm. With the higher resolution and wider wavelength range, more measurement
points can be achieved. However, the data may be more susceptible to noise with smaller
pixels and thus cause measurement error. The absorbance of the LNS (ALNS) was measured
by the system and calculated by the Equation (4). After that, ALNS was compared with the
oligotrophic seawater (in oligotrophic regions of Pacific Ocean) absorbance fitted by ISUS
algorithm in reference [37]. The fitting function of the oligotrophic seawater absorbance by
ISUS algorithm is expressed as:

AOS = (A + B× T)× exp((C + D× T)×W), (17)

where T is the sample temperature in degC, W is the wavelength minus 210 nm. The
resultant regression parameters A, B, C, and D are 1.1500276, 0.02840, −0.3101349, and
0.001222, respectively. The result is shown in Figure 12, where the horizontal-axis represents
the wavelength and the vertical-axis represents the absorbance difference (subtracting ISUS
oligotrophic seawater absorbance from the measured Western Pacific seawater absorbance).
As the wavelengths collected by the spectrometer in this system is not completely consistent
with those of ISUS, the nearest wavelengths are selected for calculation. It can be seen in
Figure 12 that the Western Pacific seawater absorbance measured by this system is smaller
than the oligotrophic seawater absorbance measured by ISUS system. The absorbance
models of the Pacific seawater calculated by the presented system and the ISUS system
are not exactly the same. When using the measurement data of the system to calculate the
nitrate concentration by the ISUS algorithm, there are still large errors with the reference
concentrations. Therefore, these results need to be linear corrected again to the final nitrate
concentration value (shown in Figures 8g and 9g).
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seawater in reference [37]. ALNS can be calculated by Equation (4) and AOS can be calculated by
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Though previous methods allow to get quite good accuracy of nitrate in seawa-
ter [37,52], the results demonstrated in this study with a different algorithm could measure
nitrate concentration in Aoshan Bay seawater and Western Pacific seawater with higher
accuracy. KPLS is an important method in multiple regression analysis, which can ac-
curately calculate the correlation between various factors and the degree of regression
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fitting. Therefore, based on KPLS algorithm, the spectral data (independent variables) can
be mapped into a high-dimensional feature space by the kernel function, then the PLS
regression model is established to calculate the results. Compared with existing methods
(including ISUS algorithm and MLR algorithm), the proposed method can more accurately
predict the nitrate concentration in a specific region. However, the TSC-WA-KPLS algo-
rithm does not have the ability of self-learning. When the sample concentration is more
than 10 µmol/L out of the training range, the proposed method cannot get accurate results,
as the results shown in Figure 11. The error of the proposed TSC-WA-KPLS algorithm
is ±3.2 µmol/L for the Western Pacific seawater and ±2 µmol/L for the Aoshan Bay
seawater. Organic matter and turbidity in seawater are also the influence factors in nitrate
measurement. Organic matter can be divided into dissolved organic matter and particulate
organic matter. In this paper, all the seawater samples were filtered using 0.45 µm filter
membrane (mentioned in Section 2.4), so the influence of turbidity and particulate organic
matter on nitrate measurement can be removed. However, for the in-situ measurement, this
method needs to be improved as turbidity correction algorithm is not included. Therefore,
turbidity correction algorithm will be studied for the actual unfiltered seawater in our
future research.
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