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Abstract 

Glucagon‑like peptide‑1 receptor agonists and dipeptidyl peptidase‑4 inhibitors are commonly used treatments for 
patients with type 2 diabetes mellitus (T2DM). Both anti‑diabetic treatments function by playing key modulatory 
roles in the incretin system. Though these drugs have been deemed effective in treating T2DM, the Food and Drug 
Administration (FDA) and some members of the scientific community have questioned the safety of these thera‑
peutics relative to important cardiovascular endpoints. As a result, since 2008, the FDA has required all new drugs for 
glycemic control in T2DM patients to demonstrate cardiovascular safety. The present review article strives to assess 
the safety and benefits of incretin‑based therapy, a new class of antidiabetic drug, on the health of patient cardiovas‑
cular systems. In the process, this review will also provide a physiological overview of the incretin system and how key 
components function in T2DM.
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Background
Type 2 diabetes mellitus (T2DM), a common metabolic 
disorder characterized by insulin resistance and inad-
equate insulin secretion by pancreatic β cells, has become 
a growing cause of morbidity and mortality worldwide. 
The mortality risk associated with T2DM is only sec-
ondary to an increase in an individual’s risk of acquiring 
other disease states that are both vascular and nonvas-
cular in origin [1]. Modifiable risk factors, such as diet 
and exercise, are important targets for intervention in 
the management of T2DM [2, 3]. However, for many 
patients, lifestyle modification alone is not adequate to 

prevent further disease progression and new disease 
onset. Several trials, such as the United Kingdom Pro-
spective Diabetes Study (UKPDS) and Action in Diabe-
tes and Vascular Disease: Preterax and Diamicron MR 
Controlled Evaluation (ADVANCE), have demonstrated 
that appropriate control of blood glucose is beneficial 
for the reduction of long-term cardiovascular complica-
tions [4, 5]. Although diabetes is widely accepted as one 
of the major risk factors for cardiovascular disease, the 
cardiovascular safety of antidiabetic drugs has been ques-
tioned due to the finding that intensive glycemic control 
by antidiabetic medications may result in an unexpected 
increase in cardiovascular death under certain circum-
stances [6]. Also, the adverse cardiovascular safety in 
clinical trials before 2008 was evaluated based on popula-
tions that were not necessarily at high risk of cardiovas-
cular disease and the follow-up duration was relatively 
short (usually less than 12 months). Therefore, the Food 
and Drug Administration (FDA) released a guidance 
requiring all new drugs for glycemic control in T2DM 
patients to demonstrate cardiovascular safety, a policy 
that was continued and further emphasized in the 2020 
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FDA Guidance for Diabetes Drug Development [7, 8]. 
Pharmacological treatment modalities such as glucagon-
like peptide-1 (GLP-1) receptor agonists and dipeptidyl 
peptidase-4 (DPP-4) inhibitors have become increasingly 
accepted as viable antidiabetic treatment options due to 
their safety and favorable cardiovascular profiles [9, 10]. 
There has been a rapid increase in information from 
large-scale clinical trials assessing the cardiovascular 
safety and efficacy of incretin-based therapies since 2008. 
Therefore, an updated critical review of the cardiovas-
cular actions of these therapies, especially information 
from recently completed trials is needed. The aim of this 
review was to summarize the recent updates from both 
clinical trials and preclinical experiments on the impact 
of GLP-1 receptor agonists (GLP-1RAs) and DPP-4 
inhibitors (DPP-4i) on cardiovascular outcomes.

Molecular bases of incretin system
Synthesis and distribution of GLP‑1
GLP-1, GLP-2, and glucose-dependent insulinotropic 
polypeptide (GIP) are the predominant gut-derived 
incretin hormones that lead to postprandial insulin 
secretion in a glucose-dependent fashion. GLP-1 was 
originally identified as a 37 amino acid (GLP-11–37) long 
peptide. However, subsequent studies identified that 
biologically active GLP-1 is cleaved to contain only 31 
amino acids (GLP-17–37). It is also known that there is 
an isoform of GLP-1, which is one amino acid shorter in 
both the full length (GLP-11–36) and its active form (GLP-
17–36). The biologically active forms of GLP-1 are rapidly 
degraded by DPP-4, resulting in the production of inac-
tive forms of GLP-1 (GLP-19–37 and GLP-19–36) [11].

GLP-1 is primarily produced by enteroendocrine 
L-cells that are dispersed throughout the small and large 
intestines. Yet, GLP-1 is mainly localized to the distal 
small bowel and colon and is released following nutrient 
intake [12, 13] and it has been shown that M1 and M2 
muscarinic receptors may also be involved in the regula-
tion of GLP-1 release [14].

Molecular structure of DPP‑4
DPP-4 has two domains and two subdomains: α/β 
hydrolase domain (Gln508-Pro766), β-propeller domain 
(Arg54-Asn497), receptor binding subdomain, and a core 
subdomain [15]. DPP-4 was first identified as CD26, and 
is a 110 kD protein that can be found on the cell surface as 
a monomer, homodimer, or homotetramer. The homodi-
mer form of DPP-4 is the main catalytically active form. 
The proteolytically active DPP-4 homodimer is found in 
two forms: a single-pass type II integral transmembrane 
protein and a soluble protein stripped of any membrane 
spanning regions or intracellular regions [16]. DPP-4 car-
ries out its exopeptidase activity by cleaving proteins or 

peptides after encountering a proline or alanine in the 
second position from the N-terminal end of the amino 
acid chain. Residues 630, 708, and 740 form the catalytic 
triad and are indispensable for its catalytic activity. Other 
functionally crucial residues are 294 and 340–343 within 
the cysteine-rich domain, which function as adenosine 
deaminase (ADA) binding domains [16]. Therefore, the 
functional domains responsible for currently discovered 
function of DPP-4 are all located in the extracellular por-
tion and the functions of intracellular domain of DPP-4 
remain elusive. The structures of DPP-4 and GLP-1 are 
illustrated in Fig. 1.

Function and regulation—incretin axis
GLP‑1 and its receptor
GLP-1 secretion, in response to nutrient intake, leads to 
the release of insulin through the GLP-1 receptor (GLP-
1R) and together with other incretin hormones accounts 
for 50–70% of total post-prandial insulin release [17].

The GLP-1R is a G-protein coupled receptor that has 
wide tissue expression, including in the brain, the wall 
of the portal vein near the hilus of the liver, and arteries 
and arterioles from various organs (kidney, heart, pan-
creas, and intestine) [18]. The expression of GLP-1 has 
been seen to spike following gastric bypass surgery and 
this increase in GLP-1 levels is thought to play a role in 
appetite suppression and is responsible for postsurgical 
weight loss and improvements in glucose metabolism 
[19]. Additionally, agonists of GLP-1R have been associ-
ated with reduced fasting very low-density lipoprotein 
(VLDL), which was shown to be weight-independent 
[20, 21]. A recent large-scale clinical trial has confirmed 
that tirzepatide, a dual GIP and GLP-1RAs, resulted in a 
weight loss of up to 20.9% in adults with body fat mass of 
30 or more after 72-week follow-up [22].

Outside of these functions, GLP receptors are also 
expressed in the human retina and are thought to be 
involved in the prevention of retinal neurodegeneration, 
an early event in diabetic retinopathy [23]. Additionally, 
both GLP-1 and GIP play a role in cardiovascular disease, 
as agonists of GLP-1 have been shown to reduce platelet 
activation, thus supporting a protective effect of GLP-1 
against microvascular thrombosis [24]. Furthermore, 
GLP-1 plays a protective role in cardiac microvasculature 
in diabetes by preventing apoptosis, oxidative stress, and 
microvascular dysfunction. GLP-1 is thought to mediate 
this through inhibiting Rho GTPase in the cyclic aden-
osine 3′,5′-monophosphate (cAMP)/protein kinase A 
(PKA) pathway [25]. Although the effects of GLP-1 are 
mostly consistent with an anti-atherogenic function, GIP 
may have opposing effects that may be viewed as pro-ath-
erogenic. For example, in short term infusion studies in 
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humans, GIP increases the level of osteopontin, which is 
considered to be a pro-atherogenic cytokine [26].

Despite the wide presence of GLP-1R throughout bod-
ily tissues, it is predominantly found in islet β-cells and 
postprandial insulin release from these cells is depend-
ent upon the ability of GLP-1 to interact with GLP-1R 
[27]. This process follows a known pathway in which 

the interaction between GLP-1 and its receptor, initi-
ates Gαs-protein coupling. This leads to the immediate 
release of cAMP and the eventual downstream release of 
calcium and β-arrestin. The downstream release of these 
three factors, in response to GLP-1R activation, leads to 
glucose-dependent insulin release. Studies in which GLP-
1R was deleted or knocked out in murine models resulted 

Fig. 1 Molecular basis of incretin axis: DPP‑4 proteins consist of a short intracellular domain (6 amino acids), a transmembrane domain, and a large 
extracellular domain. The extracellular domain is responsible for the enzymatic cleavage of the substrates and binding to its ligands including 
fibronectin and ADA. DPP‑4 inactivates GLP‑1 by removing N‑terminal dipeptide His7Ala8 from active form of GLP‑1, which results in the loss of its 
affinity to GLP‑1R. GLP‑1R is a G‑protein coupled receptor and its biding with active GLP‑1 activates PI3K and PKA pathway by increasing intracellular 
cAMP concentration. DPP‑4 dipeptidyl peptidase‑4, sDPP‑4 soluble DPP‑4, AA amino acid, ADA adenosine deaminase, GLP‑1 glucagon‑like 
peptide‑1, GLP‑1R glucagon‑like peptide‑1 receptor, cAMP cyclic adenosine monophosphate, PKA protein kinase A, PI3K phosphoinositide 3‑kinase
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in impaired glucose-dependent insulin release. Thus, 
GLP-1R is thought to be a key component of the incre-
tin effect—insulin secretion in response to oral glucose 
intake [27].

Regulation of incretin system
Current literature has shown that somatostatin can lower 
levels of GLP-1 released during the fasting state, suggest-
ing the existence of basal levels of GLP [28]. There is an 
approximately threefold increase in GLP from basal lev-
els, observed in response to oral intake of glucose [28]. To 
this end, GLP-1 is not produced in response to intrave-
nous glucose and instead, the amount of GLP-1 released 
is relative to the size of a meal and is correlated to the 
rate of gastric emptying [29]. It has also been shown that 
the response of GLP-1 to meals is unaffected by small 
intestinal resections which can interrupt intramural 
reflux pathways [30].

Following their release into the blood stream, incretin 
peptides are rapidly inactivated by enzymatic cleavage. 
DPP-4 is a key modulator of the incretin system, and 
functions to catalytically inactivate GLP-1 and GIP. Spe-
cifically, GLP-1 and GIP are cleaved into two biologically 
inactive forms, GLP-19–37 (or GLP-19–36) and  GIP3–42. 
Rapid inactivation of these incretin hormones by DPP-4 
leads to an insufficient release of insulin following oral 
glucose intake [31] and many of the physiological signs 
of T2DM, such as deteriorating glycemic control, are sec-
ondary to incretin inactivation by DPP-4. DPP-4 expres-
sion is positively correlated with glycated hemoglobin 
(HbA1c), adipocyte size, inflammation, and visceral adi-
pose tissue [17, 32].

Overall, regulation of DPP-4 remains nebulous. How-
ever, previous studies have found that DPP-4 can be reg-
ulated by inflammatory factors such as signal transducer 
and activator of transcription 1α (STAT1α), hepatocyte 
nuclear factor-1α (HNF-1α), interleukin-12 (IL-12), 
and tumor necrosis factor-α (TNF-α) [33–35]. Specifi-
cally, STAT1α is thought to play a role in transcriptional 
regulation as the promoter region of DPP-4 contains an 
interferon-gamma-activated sequence (GAS), which 
is an activated STAT1α binding site. STAT1α becomes 
active in response to retinoic acid and interferon α, β, 
and γ, leading to the binding of STAT1α to GAS in the 
DPP-4 promoter. This mechanism of promoter binding 
leads to increased DPP-4 transcription [33]. Similarly, 
T-helper cell 17 skewing condition (TGF-β, IL-23, IL-6, 
IL-1β, and IL-21) also results in increased DPP-4 expres-
sion [34]. Furthermore, IL-12 is thought to promote 
DPP-4 translation, whereas TNF-α is thought to decrease 
its expression [34, 35]. Our recent work demonstrated 
that oxidized low-density lipoprotein (LDL) upregulates 

DPP-4 expression on macrophages via activation of Toll-
like receptor 4 (TLR4)/TIR-domain-containing adapter-
inducing interferon-β (TRIF) and CD36 pathways [36]. 
Decreased DPP-4 or CD26 expression is also seen in 
cases where CD9 is deleted and in murine models of 
hyperoxygenation [35]. Related to relative oxygen con-
centration, DPP-4 is thought to be released [potentially 
mediated by matrix metalloproteases (MMPs)] in human 
smooth muscle cells under hypoxic conditions. To this 
end, HIF-1α and HNFs have been shown to target DPP-4 
expression [35]. Hypoxic conditions can also lead to a 
phenomenon known as DPP-4 shedding whereby trans-
membrane DPP-4 is cleaved from the membrane and 
released into the circulation in a soluble form. Hypoxia-
induced shedding is thought to occur due to an intricate 
interaction between various MMPs [37].

In summary, GLP-1 and its analogues appear to exert 
multiple important actions in brain, liver, muscle and fat in 
addition to its main action of stimulating insulin secretion. 
However, the rapid inactivation of GLP-1 by DPP-4 in vivo 
limits its application in clinic. By preserving GLP-1, DPP-4i 
enhances GLP-1-induced activities in these tissues (Fig. 2).

Effects on glycemic control
Blood glucose lowering effect of GLP‑1RAs
As previously noted, DPP-4 rapidly cleaves and inacti-
vates GLP-1, resulting in its very short half-life (2–3 min). 
While DPP-4 expression is significantly increased in 
patients with obesity and T2DM, the incretin effect is 
markedly impaired. Early studies revealed that GLP-1 
injections improved postprandial insulin release, low-
ered fasting glucose and HbA1c levels, and led to modest 
weight loss [38]. Exendin-4 (exenatide), a GLP-1 peptide 
encoded by lizard genes that is resistant to DPP-4-me-
diated catalytic degradation, received FDA approval in 
2005 and became the first GLP-1RA available for public 
use. Between 2005 and 2021, the following GLP-1 ago-
nists were also approved by the FDA for parenteral use: 
liraglutide, albiglutide, lixisenatide, dulaglutide, and 
semaglutide. Lixisenatide was also approved during that 
timeframe, for use in Europe [31]. The individual agents 
differ in their unique pharmacology such as half-life and 
degree of structural homology to GLP-1 [39]. As a class, 
however, these agents work similarly where they mimic 
the structure of GLP-1 in  vivo, and thus, can bind the 
GLP-1R, but are not subject to degradation by DPP-
4. This degradation by DPP-4 is evaded because most 
GLP-1 analogues contain an amino acid substitution at 
the N-terminal end. For example, exendin-based GLP-1 
analogues have an alanine to glutamic acid substitution 
in the second position [40].
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Overall, GLP-1RAs have been shown to be effective in 
managing T2DM and have helped patients reduce HbA1c 
by 2% over the course of 18 months to reach levels below 
7% [41]. Likewise, they can increase insulin secretion by 
improving beta-cell survival and suppressing glucagon 
secretion by improving alpha-cell health and glucose 
sensing ability. Additionally, GLP-1RAs were able to 
address the pathophysiology of T2DM through an indi-
rect mechanism also. Slowed gastric emptying, weight 
loss, and favorable results on lipid parameters have all 
been associated with GLP-1RAs use [40]. The overall 
mechanisms by which GLP-1RAs carry out their cardio-
metabolic effects are still unclear, however recent studies 
suggest that this process may be mediated by reduction 
of inflammation and epicardial adipose tissue [42, 43].

Blood glucose lowering effect of DPP‑4i
DPP-4i are oral anti-diabetic drugs that function by 
blocking incretin degradation caused by DPP-4, as 
outlined earlier in this review. Blocking the catalytic 
breakdown of GLP-1 and GIP, allows for postprandial 
insulin release [44]. Murine-based studies have shown 
that DPP-4 inhibition directly results in increased GLP-1 
secretion and improves both overall insulin section and 

glucose tolerance. To this end, DPP-4 knockout mice also 
showed similar findings, indicating that DPP-4 inhibition 
is an effective mechanism for treating T2DM [45].

The FDA approved sitagliptin, the first DPP-4i on the 
market, in 2006 and shortly after, numerous additional 
DPP-4i received market clearance. The FDA approved 
saxagliptin, linagliptin, and alogliptin, and the European 
Union and Japan approved vildagliptin, anagliptin, tenel-
igliptin, trelagliptin, and omarigliptin. Gemigliptin and 
evogliptin were soon approved in Korea, and gosogliptin 
was approved in Russia. These inhibitors differ based on 
which of the two DPP-4 structural classes they belong to 
(non-peptidomimetics or dipeptide structural mimics), 
their metabolism (liver vs. kidney routes), their excretion, 
their elimination half-life, their target selectivity, and 
their effective dosage [46].

Collective data from major clinical trials have shown 
that treatment with a DPP-4i improves glycemic control 
by increasing insulin secretion from islet cells, lowering 
levels of HbA1c, reducing adipocyte size, and suppress-
ing inflammation [47–51]. Unlike GLP-1RAs, DPP-4i 
have no effect on gastric emptying or weight loss. In 
addition to improved glycemic control, Nakamura et al. 
[52] showed that a 12-month treatment with sitagliptin 

Fig. 2 Incretin axis and incretin‑based therapies: GLP‑1 is produced by the enteroendocrine L‑cells in response to meal ingestion. The active form 
of GLP‑1 is rapidly inactivated by DPP‑4. GLP‑1 acts on pancreas, liver, gastrointestinal tract, adipose tissue, cardiovascular system, and brain to exert 
a variety of functions. The rapid inactivation by DPP‑4 in vivo limits the application of GLP‑1 in clinic. The development of DPP‑4 resistant analogues 
(GLP‑1RAs) and DPP‑4i overcame the instability shortcoming of GLP‑1 and became an important class of glycemic lowering drugs that are safe or 
beneficial to cardiovascular disease. GLP‑1RAs reduce multiple cardiovascular risks such as hypertension, hyperglycemia, dyslipidemia, overweight, 
and insulin resistance via various mechanisms. DPP‑4 dipeptidyl peptidase‑4, DPP‑4i DPP‑4 inhibitors, GLP‑1 glucagon‑like peptide‑1, ApoB48 
apolipoprotein B48, VLDL very low‑density lipoprotein, LDL low‑density lipoprotein
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significantly decreased systolic [( − 7.0 ± 18.9) mmHg] 
and diastolic [( − 5.1 ± 11.7) mmHg] blood pressure in 
patients with both T2DM and cardiovascular risk fac-
tors. A slight reduction in blood pressure has also been 
observed in SUSTAIN-6 and LEADER trials [53, 54]. 
However, this effect was not seen in other major car-
diovascular outcome trials (CVOTs) and their blood 
pressure lowering effect remains controversial, which 
will be further discussed below.

CVOTs
In response to FDA guidelines requiring the assess-
ment of anti-diabetic therapeutics in relation to car-
diovascular risk, several CVOTs have been performed. 
These outcome trials aimed to determine cardiovas-
cular safety and thus most of them were designed to 
show non-inferiority of the drug against placebo. To 
rule out inferiority, the FDA required CVOTs to show 
an upper boundary risk ratio of 1.3 (post approval), 
utilizing a two-sided 95% confidence interval (CI), for 
major adverse cardiovascular events (MACE) [55]. In 
this section, we reviewed all major CVOTs with pub-
lished results by searching the MEDLINE and EMBASE 
databases using the following terms: 1) glucagon-like 
peptide-1 agonists OR GLP-1RAs; 2) glucagon like 
peptide OR GLP-1; 3) exenatide OR lixisenatide OR 
liraglutide OR semaglutide OR albiglutide OR dula-
glutide OR efpeglenatide; 4) randomized controlled 
trial; 5) cardiovascular outcome OR cardiovascular 
safety OR cardiovascular events; 6) DPP4 OR DPP-4 
OR DPP-IV; 7) dipeptidyl peptidase-4; and 8) aloglip-
tin OR saxagliptin OR sitagliptin OR linagliptin OR 
vildagliptin. The search strategy [(1 OR 2 OR 3) AND 
4 AND 5] was used for CVOTs with GLP-1RAs and 
[(6 OR 7 OR 8) AND 4 AND 5] was used for CVOTs 
with DPP-4i. Trials with less than 4000 patient-years 
of exposure to the drug were excluded according to the 
updated FDA Guidance for Diabetes Drug Develop-
ment released in 2020 [8]. The following CVOTs, rela-
tive to DPP-4i and GLP-1RAs, have been identified and 
included in this review: EXAMINE, SAVOR-TIMI53, 
TECOS, CARMELINA, CAROLINA, ELIXA, SUS-
TAIN 6, EXSCEL, HARMONY, LEADER, PIONEER 6, 
REWIND, and AMPLITUDE-O [47–49, 53, 54, 56–63]. 
All trials revealed cardiovascular safety by establishing 
non-inferiority. Interestingly, the superiority analyses 
showed heterogeneous results among these trials. One 
important reason for this phenomenon may be the 
heterogeneity in subject disease conditions, follow-up 
durations, and kinetics of drugs. In the following sec-
tions, we will review these CVOTs on incretin-based 
therapies in detail.

Effects on classic cardiovascular risk factors
CVOTs on GLP‑1RAs
Data from the major CVOTs ELIXA, SUSTAIN-6, EXS-
CEL, HARMONY, PIONEER 6, LEADER, REWIND, and 
AMPLITUDE-O [53, 54, 56, 59–63] support the overall 
safety of GLP-1RAs relative to major cardiovascular out-
comes. Specifically, the ELIXA (lixisenatide) trial stud-
ied patients with T2DM who had recent acute coronary 
syndrome and found that the addition of lixisenatide to 
conventional therapy did not result in a significant dif-
ference in cardiovascular endpoints relative to placebo 
(Table 1) [56]. SUSTAIN-6 (semaglutide) [53], PIONEER 
6 (semaglutide) [61], and LEADER (liraglutide) [54] 
looked at similar patient populations (over 50  years old 
with established cardiovascular disease) and found that 
GLP-1RAs produce a cardiovascular protective func-
tion relative to primary endpoints (Table  1). Both SUS-
TAIN-6 and LEADER showed a statistically significant 
decrease in MACE [53, 54]. Although PIONEER 6 only 
showed an insignificant reduction of MACE, subcategory 
analysis demonstrated significant improvement in all-
cause mortality [1.4% vs. 2.8%, hazard ratio (HR) = 0.51, 
95% CI 0.31–0.84] and cardiovascular mortality (0.9% 
vs. 1.9%, HR = 0.49, 95% CI 0.27–0.92) [61]. The HAR-
MONY trial studied T2DM patients, 40 years and older, 
with established cardiovascular disease and reported that 
albiglutide reduced the primary composite outcome. The 
incidence rates of the primary composite outcome were 
4.6 and 5.9 events per 100 person-years for albiglutide 
vs. placebo respectively (HR = 0.78, 95% CI 0.68–0.90, 
P < 0.0001 for non-inferiority; P = 0.0006 for superiority) 
[60]. Furthermore, Ferdinand et al. [64] found that dula-
glutide, a long-lasting form of GLP-1RA administrated 
once weekly, is also safe and does not increase the risk 
of major cardiovascular events in patients with T2DM. 
The recently completed large-scale REWIND trial ran-
domized 9901 patients with T2DM to either placebo or 
dulaglutide. Unlike its predecessors, the REWIND trial 
was not aimed at uncovering cardiovascular safety of 
GLP-1RAs. Rather, it focused on specifically determin-
ing the cardiovascular superiority of dulaglutide relative 
to cardiovascular endpoints. During a median follow-up 
of 5.4 (IQR 5.1–5.9) years, patients with a 1.5  mg/week 
subcutaneous injection of dulaglutide showed a lower 
incidence rate of the primary composite outcome includ-
ing non-fatal myocardial infarction, non-fatal stroke, 
or death from cardiovascular causes (HR = 0.88, 95% 
CI 0.79–0.99, P = 0.026) [62]. Additionally, compared 
to glimepiride, a commonly used sulfonylurea, exena-
tide was able to significantly reduce cardiovascular risk 
factors such as body mass index, blood pressure, and 
high-density lipoprotein (HDL). These results suggest 
that GLP-1RAs may be preferred to sulfonylureas as an 
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add-on therapy [65]. Efpeglenatide, an exendin 4-based 
molecule, also showed a significant reduction in major 
adverse cardiovascular events (7.0% vs. 9.2%, HR = 0.73, 
95%CI 0.58–0.92, P < 0.001 for non-inferiority; P = 0.007 
for superiority) in T2DM patients with a history of cardi-
ovascular disease or current kidney disease in a recently 
completed trial (AMPLITUDE-O) [63]. This result sug-
gested that the long-acting form, unlike the short-acting 
forms (lixisenatide and exenatide), of exendin-4-based 
GLP-1RAs improved cardiovascular outcomes. This also 
supports the finding that the cardiovascular benefits 
are not restricted to those agents structurally similar to 
human GLP-1 but are more likely a class effect that is 
seen in all GLP-1RAs. As a class, GLP-1RAs were also 
seen to reduce all-cause mortality by 11% compared to 
placebo [54]. Specific to cardiovascular-related death, 
ELIXA and SUSTAIN-6 trials showed similar perfor-
mance relative to the placebo [HR = 0.98 (95% CI 0.78–
1.22) and HR = 0.98 (95% CI 0.65–1.48), respectively]. 
Conversely, the use of liraglutide in the LEADER trial led 
to a 22% reduction in cardiovascular deaths [53, 54, 56].

Except for ELIXA and EXSCEL [56, 59], all other major 
CVOTs point towards cardiovascular benefits of GLP-
1RAs [53, 54, 61, 63, 66–68]. Recent meta-analyses of the 
major CVOTs for GLP-1RAs have also demonstrated an 
overall protective effect of GLP-1RAs on cardiovascular 
events [69, 70]. Evidently, the differences amongst the 
results point towards in-class heterogeneity. It is note-
worthy that the study populations were highly specific in 
these trials (refer to inclusion and exclusion criteria sec-
tions of Table 1) and most trials recruited patients with 
established cardiovascular disease or having high risk of 
cardiovascular disease. Therefore, the heterogeneities 
in cardiovascular medication, baseline characteristics, 
study population, and study design should be taken into 
consideration when comparing the results among these 
trials. Particularly, the background anti-diabetic agents, 
lipid-lowering drugs, antiaggregants, and antihyperten-
sives may affect cardiovascular events. In addition to the 
different study populations and study design in these tri-
als, one potential reason for this heterogeneity in cardio-
vascular benefit is the structural differences among the 
GLP-1RAs used in these trials. Lixisenatide and exena-
tide used in ELIXA and EXSCEL trials are short-acting 
GLP-1RAs that are structurally similar to exendin-4, 
a peptide found in the saliva of the Gila monster Helo-
derma suspectum. The GLP-1RAs used in the other trials, 
including liraglutide, semaglutide, dulaglutide, and albi-
glutide, are all analogous to human GLP-1. It has recently 
been reported that human GLP-1 analogues were more 
effective in reducing the occurrence of major adverse 
cardiovascular events, myocardial infarctions, and hospi-
talizations due to cardiovascular causes when compared 

to exendin-based GLP-1RAs [71]. It should also be noted 
that ELIXA and REWIND were the only two trials where 
average baseline HbA1c level was lower than 8%. In addi-
tion, the follow-up duration of ELIXA was also relatively 
short (2.1  years), especially when compared with the 
follow-up duration of 5.4 years in the REWIND trial [60, 
62].

GLP-1RAs have been shown to reduce blood pressure, 
although the exact mechanism is unknown. It is believed 
that GLP-1RAs induce vasodilation through action of the 
proximal tubular cells and stimulating urinary sodium 
excretion [68, 72]. GLP-1 injections were also shown to 
improve myocardial tolerance to stress induced ischemia 
at peak activity and 30  min post-activity [73]. Gaspari 
et  al. [74] used an apoliprotein-E deficient  (ApoE−/−) 
mouse model to show the beneficial effects of liraglutide 
as they relate to atherosclerotic vascular disease. The ben-
eficial effects observed in those patients with early onset, 
low atherosclerotic burden include an improvement 
in plaque stability score in the brachiocephalic artery, 
attenuation of lipid deposits in the aorta, and reduction 
of weight gain. For high burden atherosclerosis, there was 
an observed attenuation of endothelial dysfunction in the 
liraglutide treatment group. GLP-1RAs, specifically lira-
glutide, have also been evaluated for their effects on car-
diovascular biomarkers. The specific biomarkers focused 
on were adiponectin, leptin, IL-6, TNF-α, plasminogen 
activator inhibitor-1 (PAI-1), brain natriuretic peptide 
(BNP), and high-sensitivity C-reactive protein (hs-CRP). 
Increased levels of PAI-1 and BNP were found post-14-
week treatment with liraglutide [66].

CVOTs on DPP‑4i
Data from TECOS, EXAMINE, SAVOR-TIMI53, CAR-
MELINA, and CAROLINA showed that DPP-4i are non-
inferior to the placebo or glimepiride relative to primary 
cardiovascular endpoints [17, 48, 49, 57, 58]. Unlike 
GLP-1RAs, none of the DPP-4i tested displayed superior-
ity over the placebo in relation to the primary endpoint 
and the detailed results of these three trials are described 
in Table 2. It is important to note that these clinical tri-
als were designed as non-inferiority studies. Thus, sup-
porting the cardiovascular safety of these drugs and 
not necessarily their observed benefits. To make firmer 
conclusions, additional clinical trials designed around 
revealing cardiovascular benefits should be conducted. 
Despite the superior cardiorenal benefits of sodium/glu-
cose cotransporter-2 inhibitors (SGLT-2i) and GLP-1RAs 
[75, 76], DPP-4i remained a common choice among these 
three classes of anti-diabetic agents, with more patients 
using DPP-4i than the other two [77]. In-class differ-
ences were noticed especially related to heart failure (HF) 
and are discussed later in this manuscript. Among these 
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major CVOTs, the CAROLINA study compared the car-
diovascular safety of linagliptin with that of glimepiride. 
Relative to glimepiride (sulfonylurea), DPP-4i were not 
associated with any increase in cardiovascular risk for 
patients with T2DM [58]. Although no improvement 
of cardiovascular outcomes was observed, linagliptin 
showed a better management of blood glucose with a 
higher rate of maintaining HbA1c below 7.0% (16.0% vs. 
10.2%, HR = 1.68, 95% CI 1.44–1.96) and a lower inci-
dence of hypoglycemic adverse events (10.6% vs. 37.7%, 
HR = 0.23, 95% CI 0.21–0.26) [58].

Outside of those major clinical trials, a nationwide ret-
rospective study in Taiwan, China, evaluated the effects 
of DPP-4i in elderly patients with T2DM relative to car-
diovascular outcomes. Specifically, Shih et  al. [67] stud-
ied a cohort of over 400,000 T2DM patients above the 
age of 65 and found that DPP-4i were associated with a 
21% decrease in the risk of MACEs (including myocar-
dial infarction and ischemic stroke) with a 46% overall 
decrease in risk of all-cause mortality. Furthermore, in 
this same cohort, there were no significant differences in 
the rates of hospitalization for HF between the treatment 
and placebo groups. These findings were also found con-
sistent across comorbidity subgroups [67].

DPP-4i have been associated with a reduction in ath-
erosclerosis and inflammation in several studies utilizing 
animal models [78–80]. The effect of sitagliptin on coro-
nary atherosclerosis was studied utilizing intravascular 
ultrasound (IVUS). A non-significant reduction in coro-
nary plaque volume, decrease in liquid plaque volume, 
and a decrease in non-HDL cholesterol was observed in 
the sitagliptin group [81]. Additionally, de Boer et al. [51] 
found that linagliptin decreases aortic pulse wave veloc-
ity (PWV), a surrogate marker for arterial stiffness and 
early atherosclerosis, by an average of 0.91 m/s.

Mechanisms underlying cardiovascular effects of incretin 
therapy
In addition to glycemic effects, GLP-1RAs also favorably 
modulate multiple cardiovascular risk factors via act-
ing on a variety of organ systems. By signaling through 
GLP-1R expressed in the reward and satiety areas of 
central nervous system, GLP-1RAs reduce caloric intake 
and result in 1–4 kg weight loss on average over several 
months. The long-term weight loss effect of GLP-1RAs 
has also been validated in a recent large-scale clini-
cal trial, which reported a weight loss up to 20.9% after 
72-week treatment of tirzepatide [22]. Sustained treat-
ment with semaglutide leads to a reduction of blood 
pressure by 1.8 to 4.6  mm Hg compared with other 
glucose-lowering agents or placebo [82, 83]. Modest 
reductions in LDL-cholesterol, total cholesterol, and 
triglycerides are also observed in patients receiving 

GLP-1RAs when compared with other antidiabetic 
agents [84].

GLP-1 and its analogues have been shown to possess 
direct effects on improving cardiomyocyte viability, car-
diac function, and vasodilation. DPP-4i and GLP-1RAs 
are able to enhance vasodilation by increasing nitric 
oxide production, promote myocyte glucose uptake, and 
increase coronary flow, thus providing cardioprotective 
effects during the acute phase of ischemic heart diseases 
[85–88]. Therefore, direct protection of cardiovascular 
system and favorable effects on multiple cardiovascular 
risk factors (hyperglycemia, blood pressure, dyslipidemia, 
body weight) observed in patients receiving GLP-1RAs 
may provide an explanation for the cardiovascular ben-
efits of GLP-1RAs (Fig. 2).

HF
The prevalence of HF has become an increasing con-
cern for patients with T2DM. Large CVOTs and other 
smaller studies have shown an association between the 
use of GLP-1RAs and DPP-4i on the relative rates of HF 
hospitalization.

Effects of GLP‑1RAs on HF
On the whole, meta-analyses have shown that GLP-1RAs 
reduced the risk of developing HF (HR = 0.62, 95% CI 
0.31–1.02) [89]. Individual agents within this class did 
show some variability, however. For example, liraglutide 
was associated with a non-significant increased risk of 
HF relative to placebo [odds ratio (OR) = 4.85, 95% CI 
0.75–31.36] [89].

For patients with established HF and a reduced left ven-
tricular ejection fraction (LVEF), the LIVE and FIGHT 
trials studied the effect of 2-year liraglutide use [90, 91]. 
Both studies reported almost no change in LVEF between 
the placebo and treatment groups (Table  3). Addition-
ally, data was collected from ELIXA, LEADER, EXS-
CEL, SUSTAIN-6, HARMONY, PIONEER 6, REWIND, 
and AMPLITUDE-O [53, 54, 56, 59–63]. All supported 
a non-significant difference in rates of hospitalization for 
HF relative to the placebo (Table 1).

However, Arturi et  al. [92] studied a similar patient 
population and found improved LVEF after a 52-week 
treatment with liraglutide, and Chen et  al. [93] found 
that in patients who had HF and a preserved LVEF, a 
notable increase in LVEF with a 1-week treatment of 
liraglutide. The patients studied by Chen et  al. had an 
additional history of STEMI + percutaneous coronary 
intervention (PCI) or non-STEMI. Similar to this, in a 
meta-analysis study including 6 randomized controlled 
trials, Huang et  al. [94] found that patients who were 
treated with GLP-1RAs after a heart attack related 
PCI, showed improved LVEF and reduced infarct size. 
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Though these findings were heterogeneous, there was 
no added benefit of liraglutide and its use therefore in 
clinical practice for this given population is not sup-
ported [95]. Lastly, it is important to look at how other 
anti-diabetic therapies affect HF to select an appropri-
ate drug regimen for patients with excessive risk fac-
tors or established HF. The EMPA-REG OUTCOMES 
trial showed that empagliflozin, a SGLT-2i, markedly 
reduced the risk for HF hospitalization relative to the 
placebo (HR = 0.65, 95% CI 0.50–0.85, P = 0.002) [96]. 
Though both liraglutide and empagliflozin reduce 
blood pressure, a risk factor to HF, the difference in 
HF hospitalization cannot be accounted for even when 
blood pressure is pre-controlled, and Scheen et al. [89] 
have postulated that this discrepancy in outcomes may 
be rooted in the diuretic function of SGLT-2i.

Effects of DPP‑4i on HF
DPP-4 has been shown to directly increase factors that 
are predominant in HF. For example, DPP-4 cleaves BNP 
(1–32) into BNP (3–32), which is regularly detected in 
the plasma of patients with congestive HF [97].

Lourenço et al. [98, 99] sought to uncover an association 
between DPP-4 levels and the risk of mortality in patients 
who had HF with a reduced ejection fraction. There was 
an observed U-shape association between serum DPP-4 
and mortality in patients with chronic systolic HF, and 
Lourenço et al. [98, 99] advised that DPP-4i will only be 
beneficial in instances where serum DPP-4 is extremely 
upregulated, 625  ng/ml or higher. Clinically, these find-
ings should be considered when treating patients with 
DPP-4i, especially in those patients with HF.

Results from EXAMINE, SAVOR-TIMI53, and TECOS 
also shed some light on HF. EXAMINE showed a slight, 
but non-significant decrease in HF related hospitali-
zation, while SAVOR-TIMI53 showed an increase in 
HF hospitalization with DPP-4i use. The TECOS trial 
showed no difference between the placebo and a sitaglip-
tin group (Table 2) [47–49]. Pooled data from these three 
trials showed that rates of HF hospitalization were not 
significantly different between DPP-4i and placebo, sug-
gesting that the effect may not be a class effect [100, 101]. 
Another meta-analysis including 43 trials (n = 68,775) 
and 12 observational studies (n = 1,777,358) concluded 
that the relative effect of DPP-4i as a class on HF in 
T2DM patients is uncertain. Recently completed CAR-
MELINA and CAROLINA trials also suggested that lina-
gliptin did not increase HF hospitalization compared to 
placebo or glimepiride [57, 58]. However, DPP-4i should 
be used with caution in T2DM patients with existing HF 
or risk factors [102].

Conclusions
The development of incretin-based treatments has 
helped improve the quality of life and the manage-
ment of symptoms for patients inflicted with T2DM. 
Both GLP-1RAs and DPP-4i have proven to be effec-
tive in restoring overall glycemic control, lowering 
HbA1c and lipid levels, amongst other benefits. Car-
diovascular safety of antidiabetic medications has 
received increasing attention since 2008 and here we 
summarize the recent updates from both clinical tri-
als and preclinical experiments on the cardiovascular 
outcomes of this class of glucose-lowering drugs. Ran-
domized controlled trials before the issue of CVOTs by 
the FDA in 2008 mainly focused on the efficacy of the 
blood glucose-lowering effects and a broad spectrum of 
adverse effects, with limited numbers of cardiovascular 
adverse events and relatively short follow-up duration. 
Thus, these trials are not thoroughly discussed in this 
review. Although some in-class heterogeneity has been 
observed, these CVOTs have shown that DPP-4i and 
GLP-RAs are safe relative to major cardiovascular out-
comes. In addition, LEADER, SUSTAIN-6, HARMONY, 
PIONEER 6, REWIND, and AMPLITUDE-O found 
that GLP-1RAs had cardioprotective effects independ-
ent of their ability to lower blood glucose levels. The 
picture remains incomplete, however, when assessing 
the mechanism by which this is achieved and if these 
cardiovascular effects can be generalized for the entire 
class of drugs. With regards to specific outcomes such 
as HF, there has been heterogeneity in the results with 
both GLP-1RAs and DPP-4i. There have also been vary-
ing outcomes within classes depending on the etiology 
of the patient’s HF. Therefore, more clinical trials utiliz-
ing a large generalizable T2DM patient population with 
less influence from baseline characteristics and longer 
follow-up durations are needed to help guide clinical 
decision-making and reduce the burden of T2DM while 
also promoting cardiovascular health.
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