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Abstract

In V1 of cats and monkeys, activity of neurons evoked by stimuli within the receptive field can be modulated by stimuli in
the extra-receptive field (ERF). This modulating effect can be suppressive (S-ERF) or facilitatory (F-ERF) and plays different
roles in visual information processing. Little is known about the cellular bases underlying the different types of ERF
modulating effects. Here, we focus on the morphological differences between the S-ERF and F-ERF neurons. Single unit
activities were recorded from V1 of the cat. The ERF properties of each neuron were assessed by area-response functions
using sinusoidal grating stimuli. On completion of the functional tests, the cells were injected intracellularly with biocytin.
The labeled cells were reconstructed and morphologically characterized in terms of the ERF modulation effects. We show
that the vast majority of S-ERF neurons and F-ERF neurons are pyramidal cells and that the two types of cells clearly differ in
the size of the soma, in complexity of dendrite branching, in spine size and density, and in the range of innervations of the
axon collaterals. We propose that different pyramidal cell phenotypes reflect a high degree of specificity of neuronal
connections associated with different types of spatial modulation.
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Introduction

Each neuron in area V1 responds only to visual stimuli located

within a limited area of visual space, an area referred to as the

classical receptive field (CRF). The CRF of V1 neurons was

thought to play a role in coding information about simple visual

features, such as the orientation and spatial frequency of

luminance contrasts. Recent studies have shown that the extensive

field beyond the CRF of V1 cells – the extra-receptive field (ERF)

– though alone unresponsive to visual stimuli,can modulate the

response elicited by stimuli located inside the CRF [1–16]. This

modulatory effect can be suppressive (S-ERF) or facilitatory (F-

ERF), and its extent is about three to five times larger in diameter

than the CRF [3,4,17,18,19,20]. As this modulation is azlso

feature dependent, V1 cells signal not only the local features within

the CRF, but also convey information about the context of visual

features over an extensive area [1–9,21,22].

It was reported that the cells with F-ERF respond to

homogeneity or similarity of texture features, whereas the cells

with S-ERF respond to heterogeneity or differences in the visual

contexture [4–6,23]. The opponent effects of the two types of

ERFs combined together enable cortical neurons to encode

complex visual textures in the natural scene, and this has been

interpreted to be the neural substrate of figure-ground segregation

[7,24] as well as a variety of visual perceptions [2,10,25,26].

The aim of the present study was to characterize neurons in

terms of surround modulation, i.e., suppression or facilitation of

the ERF, and to correlate the different modulation effects with the

morphological features of the associated cells. Therefore, on

conclusion of functional tests, the functionally identified cells were

injected intracellularly with biocytin [27]. The labeled cells were

reconstructed and morphologically characterized. The axon and

dendritic morphology of the labeled cells were compared with

their functional properties in terms of their surround modulation

effect. Set against these observations, we tried to explain the

functional differentiation in surround modulation in terms of the

neuron’s morphological differences.

Results

Determination of CRF and ERF Properties
Sinusoidal grating patterns drifting at the optimal orientation

and spatiotemporal frequency were used to determine the center

of CRF and the properties of ERF for the neurons. We first

located the center of CRF by placing a narrow sine-wave grating

patch (40% contrast) at successive positions (in a random

sequence) along the axes perpendicular or parallel to the optimal

orientation of the cell and measuring the response to its drift. The

peak of the response profiles for both axes was defined as the

center of the CRF (Figure 1A and B). All the recorded cells had

CRFs centered within 10u of the visual axis. We then measured the

CRF diameter by performing an occlusion test [4,28], in which a

mask of circular blank patch, concentric with the CRF, was

gradually increased in size on a background drifting grating. The
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size of the mask at which the neuronal response decreased to the

spontaneous level was defined as the diameter of the CRF. The

results of occlusion test for two different cells are shown in

Figure 1C and D by the descending lines and the CRF sizes thus

measured are indicated by the arrows.

The ERF properties of neurons were assessed by measuring the

neuron’s response as a function of stimulus area [4,28]. Circular

drifting sinusoidal grating patches of different diameters were used as

the stimulus. The gratings were presented at the optimal orientation

and spatiotemporal frequency in a random sequence; each patch size

was presented for 5–10 cycles of the grating drift, and standard errors

were calculated for 3–10 repeats. Outside the grating patches, the

screen (40u630u) was kept at a mean luminance of 10 cd/m2. The

spatial summation curve thus obtained reflects the influence of the

surrounding area on the CRF responses. We identified two classes of

ERFs based on the shape of the spatial summation curve. The first

class was the suppressive ERF illustrated by the example shown in

Figure 1C. Maximum neuronal response was found for a stimulus

diameter corresponding to the size of the CRF (indicated by the

arrow in Figure 1C), and the response decreased with increasing

grating size beyond the CRF. The stimulus diameter by which the

response decreased to a minimum level indicates the size of the S-

ERF. The second class was the facilitatory ERF, which showed

continuously increasing neuronal response even as the stimulus size

increased beyond the CRF (arrow in Figure 1D). A plateau

(maximum) was reached at a diameter, which represents the size

of the F-ERF. For most of the striate cortical cells, the size of the ERF

varied between 3–5 fold the CRF size.

To quantitatively estimate the ERF properties of the cortical

neurons, we defined a summation index (SI) by SI = (Rff -Rcrf)/(Rmax -

Rspt), where Rff represents the response amplitude under full field

stimulation (the grating at 5x CRF size stimulation), Rcrf represents the

response to CRF stimulation alone, Rmax is the maximum response of

the cell, and Rspt represents the spontaneous discharge rate. For

neurons with S-ERF, SI is ,0 and .21, forF-ERF neurons, SI is .0

and ,1. For clarity of morphological analysis, we used to label

principally the typical facilitatory and suppressive ERF neurons, i.e.,

the neurons with SI§0.2 or SIƒ 20.4.

Cellular morphology of F- ERF and S-ERF neurons
We have investigated a total of 44 V1 cells for which both

functional analyses and intracellular staining were successfully

Figure 1. Determination of CRF Size and ERF Properties. (A and B) Response profiles used to determine the CRF size and center location.
A narrow sine-wave grating patch was placed in a random sequence at successive positions along the axes perpendicular (inset in A) or parallel (inset
in B) to the optimal orientation of the cell, and response of the cell was measured at different stimulus positions to the drift of the grating patch. The
peak of the response profiles for both axes was defined as the center of the CRF. The response field above the spontaneous level (dashed line) is
defined as the length and width of CRF. Zero on the abscissa represents the location of the central area of retina. (Cell no. 27 in Table 1). (C) Occlusion
test and spatial summation test of a neuron with S-ERF (the same cell as in A, SI = 20.58). The descending line on the left shows the result of occlusion
test. The diameter of the mask at which the response decreased to the spontaneous level (dashed line) was defined as the size of CRF (arrow). The
other line shows the spatial summation test of the cell. Maximum response was found for a stimulus diameter corresponding to the size of the CRF.
The stimulus diameter by which the response decreased to a minimum level (4u diameter) indicates the size of the S-ERF. (D) Occlusion test and
spatial summation test of a neuron with F-ERF (Cell no. 11 in Table 1, SI = 0.33). The descending line shows the result of occlusion test, and the other
line shows spatial summation test for the cell. Response of the cell increased progressively with increasing stimulus size both within and beyond the
CRF (arrow). A plateau was reached at a diameter (about 5u) representing the size of the F-ERF. Error bars indicate SEM.
doi:10.1371/journal.pone.0015025.g001
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achieved. Of the sample, 22 were located in the superficial layers

(layers II/III) where 13 were identified as S-ERF neurons and 9 as

F-ERF neurons. Of the remaining 22 located in the deeper layers

(layers IV, V and VI), 12 were F-ERF neurons and 10 were S-ERF

neurons. Morphologically, 19 out of 21 of the F-ERF neurons and

19 of the 23 S-ERF neurons were pyramidal cells, only 2 out of 21

of the F-ERF neurons were spiny stellate cells and 4 out of 23 from

the S-ERF neurons were smooth interneurons. Table 1 summa-

rizes the layer distribution, CRF size, summation index,

morphological feature and the simple/complex categorization of

all these neurons. Classifying simple and complex cells is based on

the relative modulation in the responses to drifting sinusoidal

gratings (the ratio of the first harmonic to the mean firing rate,

after subtracting the average spontaneous rate) [29].

Comparison of dendritic morphologies between F-ERF
and S-ERF neurons

The dendritic and axon morphologies and the distribution by

layer of 15 injected cells (7 F-ERF, 8 S-ERF) are illustrated in

Figure 2. Numerals in this figure denote the cell numbers

equivalent to the cell numbers listed in Table 1. To aid

visualization, axons of F-ERF neuron are depicted in bright red

and their dendrites in dark red; axons of S-ERF neuron are

depicted in bright green and their dendrites in dark green.

Horizontal lines indicate the approximate cortical layers where the

cells were located. Although at first glance the dendritic

morphology of F-ERF and S-ERF neurons seemed to be not

significantly different, quantitative analysis of 10 pyramidal cells (5

F-ERF neurons and 5 S-ERF neurons) revealed that the F-ERF

neurons have an apparently more complex dendritic arborization

than the S-ERF neurons. The complexity of dendritic branching

of the two types of neurons was assessed using the Sholl analysis

[30]. In Figure 3A the number of dendrite segments was counted

by intersections crossing each 20-mm-radius ring progressively

more distal to the soma. When the entire (apical and basal)

dendritic tree was analyzed as a whole, there were apparently

more intersections (indicating more bifurcations on the dendrites)

in the F-ERF neurons than in S-ERF neurons for all radii between

20 mm and 260 mm (P,0.01 from 20 mm to 180 mm radii, and

P,0.05 for all radii between 180 mm and 260 mm). The peak

dendritic field complexity was located between 60 and 80 mm from

the cell body for S-ERF neurons, and 80 and 100 mm for F-ERF

neurons, beyond which the number of dendritic branches

decreased. Figure 3B shows a comparison of the total number of

Sholl intersections between the F-ERF and S-ERF cells. Number

of intersections was counted in 200 mm radius from the soma

along the dendritic tree. The mean number of intersections for the

five F-ERF neurons is 198.0+11.9 and that for the five S-ERF

neurons is 126.2+14.2. The difference is significant (P,0.05, t-

test).

Comparison of spine density and spine-head areas
In addition, we compared the spine density of dendrites

between the two types of neurons. In Figure 3C spine densities

Table 1. Summarization of layer distribution, morphology and functional properties of the sample of neurons.

F-ERF neurons (n = 21) I-ERF neurons (n = 23)

Cell no. Morp Layer CRF SI S/C Cell no. Morp Layer CRF SI S/C

1 m II-III 2.0 0.28 S 22 m II–III 4.0 20.88 C

2 m II–III 4.0 0.48 C 23 m II–III 2.0 20.24 S

3 m II -III 5.0 0.38 C 24 m II–III 4.0 20.94 C

4 m II–III 4.0 0.27 C 25 m II–III 2.0 20.57 S

5 m II–III 2.0 0.25 S 26 m II–III 2.0 20.60 C

6 m II–III 2.5 0.67 S 27 m II–III 2.0 20.58 S

7 m II–III 2.5 0.39 C 28 m II–III 4.0 20.46 C

8 m II–III 3.0 0.47 C 29 m II–III 3.5 20.28 C

9 m II–III 4.0 0.28 C 30 m II–III 4.0 20.82 S

10 m IV 4.0 0.53 S 31 m II–III 4.0 20.77 C

11 m IV 2.0 0.33 S 32 m II–III 4.0 20.53 C

12 m IV 4.0 0.32 S 33 m IV 2.0 20.59 C

13 m IV 2.0 0.39 S 34 m IV 1.0 20.80 C

14 m IV 5.0 0.34 S 35 m V 2.0 20.62 S

15 m IV 4.0 0.48 S 36 m V 4.0 20.63 C

16 m IV 4.0 0.71 S 37 m V 2.0 20.55 C

17 m VI 4.0 0.23 C 38 m V 3.0 20.28 C

18 m VI 4.0 0.32 S 39 m V 2.0 20.56 S

19 m VI 5.0 0.50 S 40 m VI 2.0 20.71 C

20 w IV 2.0 0.35 S 41 � II–III 4.0 20.52 C

21 w IV 2.0 0.60 S 42 � II–III 2.0 20.50 S

43 � IV 1.0 20.85 C

44 � V 3.0 20.28 C

CRF: diameter of CRF; SI: value of summation index; S/C: simple vs complex cell. m pyramidal cell, w spiny stellates cell, � smooth dendritic neuron.
doi:10.1371/journal.pone.0015025.t001
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of the same sample of cells are plotted as a function of the distance

from the cell body. The results reveal that spine density varies as a

function of the distance from the cell body, reaching a peak at

,120–160 mm from the soma. It is clear that the dendrites of F-

ERF neurons have higher spine density than S-ERF neurons,

especially at the proximal segments of dendrites (20, 40, 60 mm

levels from cell body, t-test, P,0.01). Figure 3D shows a

comparison of mean spine density between the F-ERF and S-

Figure 2. Morphological features and laminar distribution of 15 injected neurons conformed to the common cortical template. The
data were collected from different animals. For better illustration, two colors (red and green) were used. For F-ERF neurons, axons are shown in bright
red and dendrites are shown in dark red. For S-ERF neurons, axons are shown in bright green, and dendrites are shown in dark green. Neurons with F-
ERF have widely distributed axon collaterals. Neurons with S-ERF have fewer dendrite branches, and their axon collaterals are close to the cell body.
Roman numerals on the left indicate the cortical layers, and Arabic numerals denote the cell numbers which are equivalent to the cell numbers in
Table 1. Scale bar: 300 mm (not adjusted for shrinkage).
doi:10.1371/journal.pone.0015025.g002

Figure 3. Plot of Sholl analyses of dendrite bifurcations and spine density of F-ERF and S-ERF neurons. A sample of 10 pyramidal cells (5
F-ERF neurons and 5 S-ERF neurons) were analyzed. In A and C, the dark curve represents the mean result from the F-ERF neurons, and the dashed
curve, the mean result for the S-ERF neurons. Error bars represent 6 SEM. (A) Dendrite Sholl analysis of the two types of neurons. Inset illustrates the
method of Sholl analysis, Bar = 20 mm. Number of Sholl intersections along the dendritic trees at all distances from the soma revealed statistically
significant differences between the F-ERF and S-ERF neurons (t-test, P,0.05). (B) Comparison of total number of Sholl intersections between the F-
ERF and S-ERF cells. Number of intersections was counted in 200 mm radius from the soma along the dendritic tree. The mean intersections for F-ERF
cell group (n = 5) is 198.0+11.9 and that for the S-ERF cell group (n = 5) is 126.2+14.2. The difference is significant (P,0.05, t-test). (C) Plots of spine
densities as a function of distance from the soma. Number of spines was calculated per 20 mm dendrite. The dendrites of F-ERF neurons have a higher
spine density than S-ERF neurons, especially at the proximal segments of dendrites (20, 40, 60 mm levels from cell body, t-test, P,0.01). (D)
Comparison of mean spine density between the F-ERF and S-ERF cells. Spine density (number of spines/10 mm dendrite) was averaged for the sample
of cells in 200 mm radius from the soma. The mean spine density for the F-ERF neuron group is 4.03+0.67 and that for the S-ERF neuron group is
3.33+0.37. The difference is not significant (P.0.05, t-test). All values were obtained after correction for shrinkage.
doi:10.1371/journal.pone.0015025.g003
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ERF cells. Here spine density (number of spines/10 mm dendrite)

was averaged in 200 mm radius from the soma. The mean value

for F-ERF neuron group is 4.03+0.67, and that for the S-ERF

neuron group is 3.33+0.37. The difference is not significant

(P.0.05, t-test).

Furthermore, the shape and size of dendritic spines also differ

between F-ERF and S-ERF cells. A visual comparison between the

two types of spines is shown in Figure 4. The neuron in Figure 4A

was an F-ERF pyramidal cell and that in Figure 4B an S-ERF

pyramidal cell, both were labeled with avidin-HRP by the

intracellular injection of biocytin. The high-power photomicro-

graphs of a fraction of their basal dendrites (indicated by the

squares) illustrate that the predominant types of spines for F-ERF

cells (Figure 4C) have a thicker and shorter neck with a larger

head, in contrast, most of the spines for S-ERF neurons (Figure 4D)

are characterized by a thinner and longer neck expanding into a

small head. Similar differences can be seen in Figure 5 where an

injected F-ERF pyramidal cell (Figure 5A) and an S-ERF

pyramidal cell (Figure 5B), both were in layer II-III, were

identified with fluorescent dye (streptavidin Texas Red). To

quantitatively characterize the morphology of the spines, we made

measurements of the spine-head areas for 8 pyramidal cells (4 F-

ERF neurons, and 4 S-ERF neurons). For each neuron, ten

dendrite segments were examined and twenty spines were sampled

for each segment. The analysis of dendritic spines was limited to

the segments up to 200 mm from the soma. The spine-head areas

of a total of 1600 spine heads were measured and their distribution

at different distances from the soma is shown in Figure 6A, where

the red dots represent the distribution of spine-head areas of F-

ERF neurons, and the blue dots represent the distribution of spine-

head areas of S-ERF neurons. The red and blue lines represent,

respectively, the regression line of the data points of the F-ERF

neurons (r = 0.1239, P,0.001, n = 800) and that of the S-ERF

neurons (r = 0.1249, P,0.001, n = 800). No correlation was found

between spine head area and the distance from the soma. Lack of

correlation between spine-head volume and distance to soma was

Figure 4. Differences in dendrite spines between F-ERF and S-ERF pyramidal neurons identified with DAB. (A) Image of an F-ERF
neuron (SI = 0.23) in layer VI (number 17 in Table 1). (B) Image of an S-ERF neuron (SI = 20.62), which was an inverted pyramidal cell in layer V
(number 35 in Table 1). (C) High magnification of a fraction of basal dendrites of the neuron in A (indicated by the rectangle in A) showing that the
majority of spines for F-ERF neurons have a thicker and shorter neck with a larger head. (D) High magnification of dendrites of the neuron in B
(indicated by the rectangle in B) illustrating that the majority of spines for S-ERF neurons are characterized by a thinner and longer neck with a small
head. Roman numerals on the right in A and B indicate the cortical layers. Scale bar in A and B: 300 mm, and in C and D: 5 mm (not adjusted for
shrinkage).
doi:10.1371/journal.pone.0015025.g004

Morphological Bases of Spatial Summation of V1

PLoS ONE | www.plosone.org 5 November 2010 | Volume 5 | Issue 11 | e15025



Figure 5. Differences in dendrite spines between F-ERF and S-ERF pyramidal neurons identified with streptavidin-Texas Red.
(A) Image of an F-ERF neuron in layer II/III (SI = 0.25, cell No. 5 in Table 1). (B) Image of an S-ERF neuron in layer II/III (SI = 20.57, No. 25 in Table 1). The
magnified images in squares 1 and 2 illustrate the differences in spine morphology between the F-ERF (A) and the S-ERF neurons (B). Scale bar in A
and B:100 mm, and in insets: 5 mm.
doi:10.1371/journal.pone.0015025.g005

Figure 6. A comparison of spine head area between F-ERF and S-ERF pyramidal neurons. Eight pyramidal neurons (4 F-ERF neurons, 4 S-
ERF neurons) identified with DAB were analyzed and a total of 1600 spine heads were measured. (A) Distribution of spine-head areas of the F-ERF and
S-ERF neurons at different distance from the soma. Red dots represent the data from the F-ERF neurons, and blue dots, the data from S-ERF neurons.
Red line is the regression line of the data points of the F-ERF neurons (r = 0.1239, P,0.001), and blue line, the regression line of the data points of the
S-ERF neurons (r = 0.1249, P,0.001). No correlation was found between spine head area and distance to soma. (B) The cumulative curve of spine head
area. Red dots displayed the results for the F-ERF neurons and blue dots displayed the results from S-ERF neurons. The y-axis values represent
cumulative frequencies in % and the x-axis values, the area of spine heads. The vertical dotted line on the x-axis indicates that, for F-ERF neurons,
about 75% of the spines had heads .0.4 mm2 compared to S-ERF neurons which had about 75% of spine heads ,0.4 mm2 (not adjusted for
shrinkage).
doi:10.1371/journal.pone.0015025.g006
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also reported by Arellano et al [31]. Figure 6B shows the

distribution cumulative frequency of spine head area along the

dendrite arbors for the F-ERF neurons (red dots) and the S-ERF

neurons (blue dots). The y-axis values represent cumulative

frequencies in %, and the x-axis values, the area of spine heads.

The mean spine-head area for the S-ERF neurons (n = 4) was

0.37 mm2 (SD =+0.17 mm2) and that for the F-ERF neurons

(n = 4) was 0.57 mm2 (SD =+0.21 mm2). The vertical dotted line

on the x-axis indicates that, for F-ERF neurons about 75% of the

spines had heads .0.4 mm2 compared to S-ERF neurons which

had about 75% of the spine heads ,0.4 mm2.

The above comparison in dendrite morphology between F-ERF

and S-ERF cells was made for all cells in spite of their lamina

location. Considering the heterogeneity of cells in different layers,

in Figure 7 we compared the number of Sholl intersections and

spine density only for those cells whose cell bodies were located

within layer II/III and they were morphologically pyramidal cells.

The data were based on analyses from 4 F-ERF cells (No. 1, 2, 3, 7

of Table 1) and 5 S-ERF cells (No. 22, 23, 24, 30, 31 of Table 1).

Figure 7A illustrates the difference in total number of intersections

in the range of 10 Sholl circles (up to 200 mm from the soma), the

results show that the number of intersections for the F-ERF

neurons (mean 187.0,+11.9,SEM) is significantly more than that

of the S-ERF neurons (mean 103.2,+16.9, SEM). Figure 7B

compares spine density (number of spines/10 mm dendrite)

between the two types of cells, higher spine density was found

for the F-ERF cells (mean 4.53, +0.87, SEM) than for the S-ERF

cells (mean 3.66, +0.46, SEM), but the difference is not significant

(p.0.05).

Comparison of axonal morphology between F-ERF and S-
ERF neurons

The distinction in axon morphology between F-ERF and S-

ERF cells is also apparent. The axons of most F-ERF cells form a

plexus of long-range connections running parallel to the cortical

layers, and these collaterals may distribute widely in the same layer

in which the cell body is located and also in other cortical layers.

In Figure 2, for example, the axon collaterals of all the seven F-

ERF cells (No. 1–4, 10, 12, 17) distributed vertically across several

cortical layers and expanded horizontally over a wide range. The

longest span of an axon field in our sample was 2.5mm (cell No. 2).

In contrast, for all of the S-ERF cells illustrated in Figure 2, the

axon branches were close to the cell body and the collaterals were

more restricted, some were in the same cortical layer (No. 22,

24,30,31) and others extends slightly into the neighboring layers.

Figure 8 shows a comparison of the width of axon fields between

F-ERF (n = 9) and S-ERF cells (n = 10). Horizontal axon fields of

the F-ERF neurons varied between 693.0 mm and 2750.0 mm

(mean 1233.9+210.0 mm, SEM) and that of the S-ERF neurons

were between 213.4 mm and 649.0 mm (except one with a

968.0 mm field width) (mean437.0+71.8 mm, SEM). The differ-

ence is significant (P,0.01, t-test).

Difference in soma size between F-ERF and S-ERF
neurons

Although morphologically both the F-ERF and S-ERF neurons

were mostly pyramidal cells, a comparison of soma areas between

the two types of pyramidal cells shows a significant difference. The

results are shown in Figure 9. As fluorescent dye image shows less

tissue shrinkage than that treated by DAB during histological

Figure 7. Total intersections and mean spine density of F-ERF and S-ERF neurons in same cortical layer. Four F-ERF neurons and five S-
ERF neurons were analyzed, all were located in layer II/III. (A) Comparison in total number of intersections in 200 mm radius. The mean for the F-ERF
neuron group is 187.0,+11.85 and that for the S-ERF neuron group is 103.2+16.88. The difference is significant (P,0.05, t-test). (B) Comparison in
mean spine density in 200 mm radius. The mean density for the F-ERF neuron group is 4.53+0.87, and that for the S-ERF neuron group is 3.66+0.46.
The difference is not significant (P.0.05, t-test). Error bars represent SEM. All values are corrected for shrinkage.
doi:10.1371/journal.pone.0015025.g007

Figure 8. Histograms showing a comparison of horizontal
width of axon field between F-ERF and S-ERF cells. The
horizontal width of axon field (shown by thin lines in inset) is defined
as the maximal distance between the utmost tips of the filled axons in
horizontal focal planes. Height of the columns indicates the mean width
of axon field obtained from 9 F-ERF cells and 10 S-ERF cells. Error bar
indicates SEM. The difference is significant between the two types of
neurons (P,0.01, t-test). Horizontal bar = 100 mm. The values are
corrected for shrinkage.
doi:10.1371/journal.pone.0015025.g008
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processing, we compared the soma size separately in two groups of

data. The measurements shown in Figure 9A were obtained from

the DAB identified cells. The soma areas of the F-ERF pyramidal

neurons in all the layers ranged from 233.5 to 314.0 mm2 with a

mean of 263.4 mm2(SEM =+30.1 mm2, n = 5) and that of the S-

ERF pyramidal neurons ranged from 147.0 to 247.7 mm2 with a

mean of 196.0 mm2 (SEM =+38.4 mm2, n = 5) (P,0.05, t-test).

Similar differences were found in the group identified with

fluorescent dye (Figure 9B) where the mean area of the F-ERF

cells is 339.0 mm2 (ranged from 237.6 to 445.7 mm2,

SEM =+30.2 mm2, n = 6,), and that of the S-ERF cells is

224.7 mm2 (ranged from 123.5 to 327.2 mm2, SEM =+25.2 mm2

n = 7) (P,0.05, t-test). It is clear that, in both groups, the soma

area of F-ERF neurons is significantly larger than that of S-ERF

neurons.

Discussion

Evidence has been provided in a number of studies that the

extensive region beyond the CRF, although alone unresponsive to

visual stimuli,can exert robust suppressive or facilitative effects on

the response to the stimuli in the CRF [4,7,9,21,32–34]. These

two types of spatial summation have been assumed to play

different roles in visual information processing. Facilitatory

surround effects were assumed to involve in contour integration

[34,35] and in detection of broad field homogeneous textures [6];

suppressive surround effects were supposed to contribute to

heterogeneity detection of local visual features, such as local

discontinuity in orientation [5,36], in spatial frequency, in color,

speed and direction of movement [37], in relative spatial phase

[38], and in relative moving speed [10], and viewed as the basis for

perceptual ‘pop-out’ and illusory contours [21,23,34,39,40].

Despite the intensive researches, the existence of facilitative

surround effect has remained a matter of controversy. Some

authors regard the length summation area as part of the receptive

field center and conclude that there are no facilitatory inputs from

the surround [3,41]. Others have demonstrated that facilitatory

effects can be elicited by presenting discrete stimuli over regions

beyond the length summation area [34]. Recent studies emphasize

the dynamic nature of the center-surround interactions based on

the results that the length summation areas of cortical neuron

receptive fields are not fixed, but vary as a function of stimulus

contrast [35,42,43]. Thus, it is not clear yet whether the neurons

showing suppressive surround effect are morphologically different

from those showing facilitatory surround effect. The aim of the

present study was to answer the question and to establish

morphological bases for the facilitatory/suppressive classification

of surround modulation. In this study, we selected exclusively the

cortical neurons that showed robust facilitative surround effect

(SI§0.2) or suppressive surround effect (SIƒ20.4) under a

medium contrast level (contrast = 0.4). We have investigated a

total of 44 V1 cells for which both area-summation properties and

intracellular staining were obtained. From the sample, about

90.5% (19/21) of the F-ERF neurons and 82.6% (19/23) of the S-

ERF neurons had the morphology identifying them as pyramidal

cells, only 2 out of 21 F-ERF cells and 4 out of 23 S-ERF cells were

non-pyramidal cells. As pyramidal cells are heterogeneous in

relation to soma size, axon distribution, spine size and density

[44,45], we compared the measurements of these morphological

characteristics between the pyramidal cells exhibiting different

ERF modulation (F-ERF, I-ERF). The main findings were: (1) the

soma area of F-ERF pyramidal neurons are significantly larger

than those of S-ERF pyramidal neurons (Figure 9), (2) F-ERF

pyramidal neurons have more complex dendritic arborization and

a higher spine density than S-ERF neurons (Figure 3 and Figure 7),

(3) statistically,the heads of dendrite spines are larger in the F-ERF

cells than S-ERF cells (Figures 4–6), (4) axons of most F-ERF cells

form a plexus of long-range connections expanded horizontally

over a wide range (mean 1233.9+210.0 mm, SEM) and these may

distribute vertically across several cortical layers, in contrast to the

situation with regard to the axon collaterals of S-ERF cells which

are restricted within a shorter range (mean437.0+71.8 mm, SEM)

and distributed mainly within the same cortical layer (Figure 2 and

Figure 8). These morphological differences in structure of

dendrites and axons are important for the sampling and

integrating characteristics of the two types of spatial summation

properties.

The differences in spine density and size of spine heads between

F-ERF and S-ERF cells are functionally important. Dendritic

spines are known to be the recipient of most excitatory synapses to

pyramidal cells [46–49], so that the number of dendritic spines

provides a good estimate of the number of excitatory synapses that

different types of pyramidal cells receive. Recent studies have

reported that the spine head volume is correlated with the number

Figure 9. Comparisons of soma area values between F-ERF and S-ERF neurons. (A) Comparison based on DAB-identified neuron. The mean
somatic area for the F-ERF neuron group (n = 5) is 263.4+30.1 mm2 and that for the S-ERF neuron group (n = 5) is 196.0+38.4 mm2. The values are
corrected for shrinkage. (B) Comparison based on fluorescent dye (streptavidin-Texas Red.) identified neurons. The mean somatic area for the F-ERF
neuron group (n = 6) is 339.0+30.2 mm2 and that for the S-ERF neuron group (n = 7) is 224.7+25.2 mm2. The difference in soma area between the
two types of neurons is significant (P,0.05, t-test) both in (A) and (B). Error bars represent SEM.
doi:10.1371/journal.pone.0015025.g009
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of postsynaptic receptors [31,49–53], and the number of pre-

synaptic docked vesicles [49,51,52]. Therefore, the higher spine

density and larger head volume of F-ERF neurons may correlate

with more efficient excitatory synaptic transmission than that of S-

ERF neurons.

Axons of cortical pyramidal neurons, which make long-range

horizontal connections, are known to be the underlying mecha-

nism for spatial integration of inputs from the extra-receptive field

[55–57]. Earlier studies reported that the axon collaterals of some

pyramidal cells extend horizontally for a long distance and form

discrete, stripe-like clusters in the neighboring columns that share

similar orientation preferences [57–63]. The present experiments

demonstrated that only neurons with F-ERF properties possess

such long-range horizontal connections, which explains the fact

that the most effective stimuli for eliciting surround facilitation are

broad field gratings presented at the cell’s preferred orientation.

On the contrary, the neurons showing S-ERF properties mostly

possess short-range axon connections that prefer surround stimuli

presented at the orthogonal orientations, and iso-orientation

stimuli over center and surround produce suppression of neuron

responses.

In conclusion, the above results demonstrate that although the

vast majorities of both F-ERF neurons and S-ERF neurons are

pyramidal cells, the F-ERF and S-ERF cells differ substantially in

their soma sizes, complexity of dendritic branching, spine size and

density and the extent of the cortical spread of their axons.

Materials and Methods

Ethics Statement
This study was carried out in strict accordance with the

recommendations in the Guide for the Care and Use of

Laboratory Animals of the National Institutes of Health. The

protocol was specifically approved by the Committee on the Ethics

of Animal Experiments of the Shanghai Institutes for Biological

Sciences, Chinese Academy of Sciences (Permit Number: ER-

SIBS-621001C). All surgery was performed under general

anesthesia combined with local application of Lidocaine (for

details see ‘‘animal preparation’’), and all efforts were made to

minimize suffering.

Animal preparation
Acute experiments were performed on 21 adult cats. Detailed

descriptions of procedures for animal surgery, anesthesia, and

recording technique are available in [64]. Briefly, cats were

anesthetized prior to surgery with ketamine hydrochloride

(30 mg/kg i.m.), and then trachea and femoral vein were

cannulated. After the operation, the animal was placed in a

stereotaxic frame for craniotomy and subsequent visual experi-

ments. Lidocaine was applied to all wound margins and pressure

points. A craniotomy (2 mm diameter) was performed at the

recording site in the striate cortex. During recording, anesthesia and

paralysis were maintained with urethane (20 mg/kg/hr) and

gallamine triethiodide (10 mg/kg/hr), respectively, and physiolog-

ical stability with glucose (200 mg/kg/hr) in Ringer’s solution

(3 ml/kg/hr). End-expiratory CO2 was kept at 4% and core body

temperature at 38uC. Electroencephalogram and ECG were

monitored continuously. Anaesthesia was considered to be sufficient

when the EEG reflected a permanent sleep-like state and the heart

rate remained stable at an appropriate frequency. The nictitating

membranes were retracted and pupils dilated with topic application

of 5% neosynephrine and 1% atropine. Artificial pupils with a

3 mm diameter were used. Contact lenses and additional corrective

lenses were applied to focus the retina onto a screen.

Enzyme treatment and electrode preparation of the dura
To render the dura permeable to a patch electrode whilst

maintaining its integrity, the exposed dura was treated with

purified collagenase [65] by applying the enzyme (50 mg/ml) with

a small piece of filter paper placed on the dura for 20–30 mins.

Then the filter paper was removed and the area of application

rinsed with physiological saline. The glass pipettes (Sutter

Instrument Company, BF150-86-10) were pulled on a P-97

(Sutter Instrument Company, USA) microelectrode puller (tip

diameter about 1 mm, resistance about 10 MV) and were filled

with a solution buffered to pH 7.4 containing (in mM) KCl 90,

NaCl 10, potassium EGTA 5 and HEPES buffer 10. For

subsequent intracellular staining of a neuron, the solution also

contained 1% biocytin. The micropipette was connected to the

input of an intracellular recording amplifier (World Precision

Instruments, USA). A hydraulic, pulse-motor driving unit (PP5-1,

Narishige, Japan) was used to advance or retract the electrode.

Prior to penetrating the dura, the hole in the skull was filled with

4% agar dissolved in saline, to attenuate cortical pulsations.

Successful penetration of the electrode through the dura was

confirmed by monitoring the change in tip resistance during an

applied pulse of electrical current (100 ms, 0.1 nA, interval

500 ms), compared to the original resistance tested in the agar.

To prevent the electrode tip from becoming blocked, a positive

pressure of 20 kPa was applied while advancing the electrode.

When the electrode tip touched the surface of the dura, both the

tip resistance and the baseline noise would increase 2–3 times

compared to the reference value. This increase in the tip resistance

persisted until the electrode pierced the dura. A final decline in tip

resistance (to the reference value tested in the agar) and the

baseline noise level, coupled with the appearance of neuronal

discharges, indicated the tip’s successful entry into the cortical

tissue. At this point, the positive pressure applied to the electrode

was reduced to 3–5 kPa.

Visual Stimuli
A personal computer (Intel-P4 CPU, 2.0 GHz, Memory 1G)

with a graphics card (NVIDIA GeForce 6200) was used to

generate visual stimuli on the monitor (frame rate, 100 Hz). The

screen was 40630 cm. This visual stimulator could generate

multiple patches of sinusoidal grating stimuli. Under computer

control, the grating orientation, spatial and temporal frequency,

and movement direction were matched to the preferred

parameters of the cell under study and real-time analyses of the

responses were performed. The monitor was placed 57 cm from

the eyes. The contrast of the gratings was 40% and mean

luminance, 10 cd/m2. All measurements were made during

stimulation of the neuron’s dominant eye with the other eye

occluded. All cells recorded were obtained from the area of the

cortex representing the central 10u (radius) of the visual field.

Intracellular injection
The electrode pipette was advanced slowly into the cortex to

search for visually responsive cells while maintaining a positive

pressure (3–5 kPa). When the large action potentials changed from

being bipolar to unipolar, the positive pressure was reduced to

1.0–2.0 kPa, and the resistance was continuously monitored with

current pulses (0.1 nA, 10 ms, 1 pulse/s). Close contact with a

neuron is recognized by an increase in the resistance of the

electrode. At this point, the positive pressure was released and a

small negative pressure was applied (1.0–2.0 kPa). This often

results in gradual penetration of the cell interior, as is indicated by

a slow increase in membrane potential. When the membrane

potential became stable, at a value lying between –40 and –
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60 mV, the negative pressure was released, in order to avoid

sucking in the intracellular contents. On average, the state suitable

for intracellular recording was usually maintained for more than

1 hour, which was ended by intracellular injection of biocytin [27]

to investigate the morphological characteristics of the recorded

cell. The injection was performed by passing negative current

pulses, 1.0 nA in a 100 ms on/200 ms off cycle, for a period about

10 min. During current injection, the normal responsiveness of the

cell was continuously monitored using a visual stimulus. Then the

electrode was withdrawn slowly from the cell interior and the

responsiveness of the cell was checked again extracellularly. For

the next penetration, a new electrode was used and the recording

site was placed at least 1 mm away from the previous penetration.

One experiment normally lasted 3 days; and two to three cells

could be intracellularly labeled and identified after completion the

experiment.

Histological procedures
At the end of the experiment, the animal was deeply

anaesthetized and perfused through the heart, first with 0.9%

saline and then with 4% paraformaldehyde in phosphate buffer

(PB), pH 7.4. Tissue blocks containing the injected cells were

removed and post-fixed overnight at 4uC in the same fixative

solution and stored in 0.1 M PB. The tissue was serially sectioned

in the coronal plane on a vibratome at a thickness of 80 mm. The

sections were thoroughly washed in PBS followed by Tris-buffered

saline (TBS), and were pretreated for 6 h in a 0.5% solution of

Triton X 100 in PBS. Injected cells were identified by incubating

the tissue overnight in the avidin-biotin HRP complex at 4uC in

dilution 1:2500 in PBS. The enzyme reaction was revealed with

diaminobenzidine (DAB, 0.06%) and H2O2 (0.003%) in 0.01M

PBS (40uC) for 15 min. The sections were thoroughly rinsed and

mounted on gelatin-coated slides. The layer localization of the

injected cells was determined with Nissel-staining method. Only

neurons that had no obvious truncation of their dendritic and

axonal profiles were used for quantitative morphology analysis.

Quantitative analysis of cell morphology
The outline of neurons revealed with DAB was drawn by a

camera lucida attached to NIKON E600FN microscope with a

606 oil objective (1.4 NA). For some neurons, three-dimensional

reconstructions were made using the Neurolucida software

(Microbrightfield, Inc, USA). For further quantitative analysis,

the following morphological parameters were measured: (1)

number of bifurcations of dendrites branching determined by

Sholl analysis [30], (2) areas of the cell body, (3) spine density

(number of spines/10 mm) of dendrites, (4) the maximal horizontal

field span of the axons. For measuring the maximal span of the

axons, two-dimensional projections of the axon trees were traced

on a digitizing tablet and axon terminals were registered from 10–

32 adjoining sections. Alignment of neighboring sections was

carried out with the help of corresponding cut ends of labelled

axonal processes in the estimated axon projection field of the

labeled cells.

Images of the neurons shown by DAB were also examined

under the confocal microscope (LSM510, Zeiss, Germany) with an

Aprochromat 606 oil objective setting at 102461024 pixel

resolution. Each image was a z-series projection of several images

that averaged two to three times and taken at 0.5–1 mm depth

intervals. Area of spine head were measured automatically using

image analyzing software (LSM510, Zeiss, Germany). The spine

head measurements were limited to the thin and mushroom-

shaped spines, as the head of stubby spines was difficult to

distinguish from the dendrite shaft. For each neuron, ten dendrite

segments were examined and twenty spines were sampled for each

segment. A total of 1600 spines in 80 dendrite segments (60 to

80 mm) were sampled. Scaling spines started from the embranch-

ment point, and measured one by one along the dendrite tree.

Some injected cells were identified with fluorescent dye

(streptavidin-Texas Red, Vector labotatories, USA, 1:1000) in a

0.3% solution of Triton X 100 in 0.01 M PBS at 4uC overnight.

The labeled neurons were examined with the same confocal

microscope and reconstructed using the affiliated image analysis

software. The somatic area of fluorescent identified neurons was

measured with EeuroExplorer software (Microbrightfield, Inc,

USA) by drawing the outline of the cell body with Neurolucida

software. The statistical significance of the experimental data was

tested using a Student’s t-test.

Correction for shrinkage
To estimate the shrinkage during histological procedure, we

measured the sizes of the sections before and after the histologic

procedures at the horizontal (x/y) plane under microscopic

observation. The shrinkage thus calculated was 10.461.6%

(SEM, n = 15). The shrinkage along the z-axis was estimated by

comparing the thickness of sections as they come off the

microtome and after histological processing with Neurolucida.

The averaged shrinkage thus measured was 47.861.2% (SEM,

n = 15). The greater shrinkage in the z-plane is probably due to the

fact that the deformation was mostly restricted to the z-axis while

vibratome sections were dried on glass slide [66].
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