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Mucosa protects the body against external pathogen invasion. However, pathogen
colonies on the mucosa can invade the mucosa when the immunosurveillance is
compromised, causing mucosal infection and subsequent diseases. Therefore, it is
necessary to timely and effectively monitor and control pathogenic microorganisms
through mucosal immunity. Candida albicans is the most prevalent fungi on the
mucosa. The C. albicans colonies proliferate and increase their virulence, causing
severe infectious diseases and even death, especially in immunocompromised patients.
The normal host mucosal immune defense inhibits pathogenic C. albicans through
stepwise processes, such as pathogen recognition, cytokine production, and immune
cell phagocytosis. Herein, the current advances in the interactions between C. albicans
and host mucosal immune defenses have been summarized to improve understanding
on the immune mechanisms against fungal infections.
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INTRODUCTION

The mucosa serves as the first line of defense against external stimuli, such as toxins, cytokines,
and pathogens (Awad et al., 2017). The mucosa is typically warm and humid, making it an ideal
environment for micro-organism colonization and survival, including bacteria, fungi, and viruses
(Hillman et al., 2017). Notably, the dynamic balance between the mucosa and microorganisms
is essential for the health of the host (Grice and Segre, 2011). Some conditional microbes can
transform from common ecological to the pathogenic state depending on the condition of the
body and immune function (Belkaid and Hand, 2014). The mucosal immunity monitors and
regulates microbe balance to inhibit and control the occurrence of infections (Hooper et al., 2012;
Belkaid and Hand, 2014).

Fungi, mainly Candida, can commensally colonize the mucosal surface (Williams and
Lewis, 2011; Kühbacher et al., 2017). Several Candida species colonize the mucosa, including
C. albicans, Candida glabrata, Candida tropicalis, Cryptococcus neoformans, Candida krusei,
etc. However, C. albicans is the most prevalent fungus (Pincus et al., 2007). As a conditional
pathogen, C. albicans acts as a symbiotic fungus when immunity is normal and transforms
into the pathogenic state when an immune disorder occurs. Besides, C. albicans can
create ideal survival and colonization conditions for other bacteria, with such coinfections
leading to more severe infectious diseases and drug resistance (Arvanitis and Mylonakis,
2015; Krüger et al., 2019). Blood infections caused by a combination of C. albicans
and Staphylococcus have a high mortality rate (Kong et al., 2016; Carolus et al., 2019).
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The detection rate of C. albicans in the oral cavity is
associated with pneumonia severity, especially ventilator-
associated pneumonia (VAP). Therefore, maintaining good
oral health can decrease the ICU pneumonia rate (Souza
et al., 2017). Polysaccharide secretion from C. albicans causes
the development of Streptococcus mutans biofilms in the
mouth, thus increasing dental caries (Khoury et al., 2020).
The biofilms combined with C. albicans and Streptococcus
gordonii have high resistance to antibacterial and antifungal
antibiotics (Montelongo-Jauregui et al., 2019). A study
showed that infections caused by Staphylococcus aureus
combined with C. albicans are highly resistant to antibiotics
(Peters and Noverr, 2013).

C. albicans exist in yeast form on the mucosal surface in its
symbiotic state and as a hypha in a pathogenic state. Therefore,
C. albicans hypha is the main pathogenic virulence factor that
invades the host, causing local mucosal infection (Williams and
Lewis, 2011). C. albicans mainly causes candidal leukoplakia,
redness, and swelling of the mucosa in the oral cavity (Patil
et al., 2015). C. albicans can also cause oral denture stomatitis if
the host wears dentures for a long time (Gleiznys et al., 2015).
C. albicans causes median rhomboid glossitis of the tongue if
the host has smoking habits (Bihari et al., 2014). Furthermore,
the gastrointestinal mucosa, has numerous C. albicans colonies,
which can be an important reserve pool for infection to spread
in the human body (Kaufman and Fairchild, 2004). It can also
cause candidemia through blood-borne diffusion in severe cases
(Iliev et al., 2012; Patricio et al., 2019). C. albicans can also form
a biofilm on the human mucosa surface, reducing drug and host
immune system efficacies (Nobile and Johnson, 2015).

The human mucosal immunity protects the body at the
initial stage through various monitoring and defense pathways,
including the initial recognition and response, activation of
appropriate immune defense responses, thus limiting fungal
infections. This article summarizes the current advances in
the interaction mechanisms between host mucosal immunity
and C. albicans to understand the immune response to fungal
infections better. This study also provides possible antifungal
targets against C. albicans infection.

RECOGNITION OF VARIOUS CELLULAR
COMPONENTS OF C. ALBICANS BY
HOST IMMUNITY

The C. albicans cell wall can be divided into two layers, the
outer and inner layers. The outer layer is mainly composed of
C-linked glycoproteins such as mannan (80–90%). The inner
layer contains chitin, β-1,3-glucan, and β-1,6-glucan (Shibata
et al., 2007; Lowman et al., 2014). The host cells can recognize the
components of the C. albicans cell wall through various pattern
recognition receptors (PRR) on their cell surface (Figure 1) (the
first step in activating human immunity). Many PRR families,
including Toll-like receptors (TLR), C-type lectin receptors
(CLR), NOD-like receptors (NLR), and RIG-1-like receptors
(RLR), are involved in the fungal recognition process (Jang et al.,
2015; Table 1).

Chitin
Chitin is located in the innermost layer of the C. albicans
cell wall. Chitin induces interleukin 10 (IL-10) production
in neutrophils and macrophages through a nucleotide-binding
oligomerization domain with protein 2 (NOD2)-dependent
pathway to inhibit host pro-inflammatory response during fungal
infection (Davidson et al., 2018; Patricia et al., 2019). I Besides,
TLR9 recognizes chitin, which induces several anti-inflammatory
cytokines, such as IL-10 (Wagener et al., 2014), that maintain a
balanced immune response (Salazar and Brown, 2018).

Mannan
Mannan and mannoprotein are key components of the Candida
spp. cell wall and are recognized by various CLRs, including
mannose receptor, Dectin-2, dendritic cell (DC) specific ICAM3
capture non-integrin (DC-SIGN), and MINCLE (Cambi et al.,
2008; van de Veerdonk et al., 2009; Yamasaki et al., 2009; Saijo
et al., 2010). The mannose receptor is found on the macrophage
surface and binds to the Candida N-mannan (Porcaro et al.,
2003; Netea et al., 2008), thus promoting cytokine production,
especially IL-17 (van de Veerdonk et al., 2009). Dectin-2 is
mainly expressed in DCs, macrophages, and neutrophils, and can
recognize Candida α-mannan. Dectin-2 also regulates T helper
cell 17 (Th 17) response, ROS production, and phagocytosis
(Wells et al., 2008; Saijo et al., 2010; Saijo and Iwakura, 2011;
Thompson et al., 2019). C-SIGN, expressed in DC cells and
macrophages, can recognize N-mannan in Candida spp. DC-
SIGN activation promotes Th cell activation and differentiation
by inducing cytokine production (Ramirez-Ortiz and Means,
2012; Goyal et al., 2018; Speakman et al., 2020). Mannan can
also be recognized by TLRs, such as TLR2, TLR4, and TLR6.
Furthermore, activation of downstream pathways promotes
the expression of pro-inflammatory cytokines during Candida
infection (Mogensen, 2009).

β-Glucan
β-glucans, including β-1,3- and β-1,6-glucans, are essential
antigen components in the C. albicans cell wall (Chaffin et al.,
1998). β-glucan is covered by the outermost mannoproteins in
the yeast phase, thus preventing C. albicans recognition by the
body immunity (Garcia-Rubio et al., 2019). The C. albicans
yeast and hyphae have structurally different β-glucans (Lowman
et al., 2014). The C. albicans in budding or hyphal forms expose
β-glucan during yeast phase to hyphal phase transition (Davis
et al., 2014), which the CLR mainly recognizes. Dectin-1 is the
most studied β-glucan receptor (Brown et al., 2002; Batbayar
et al., 2012). Dectin-1 is expressed primarily on monocytes and
macrophages and induces cytokine release and phagocytosis of
fungi (Goyal et al., 2018). Dectin-1 also promotes the recognition
response of TLR2 and TLR4 (Trinchieri and Sher, 2007; Oliveira-
Nascimento et al., 2012), which are associated with cell wall
mannan recognition. Dectin-1 signaling pathway can also inhibit
the overactivation of neutrophil extracellular traps (NETs) during
fungal infections, preventing uncontrolled tissue damage during
the immune response (Branzk et al., 2014). β-glucan can also be
recognized by complement receptor 3 (CR3), which is essential
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FIGURE 1 | Immune cells recognize different C. albicans PAMPs. C. albicans pathogen-associated molecular patterns (PAMPs) bind to different
pathogen-recognition receptors (PRRs) of the host cell to induce immunity via the fungal cell. The outer cell wall layer is mainly composed of C-linked glycoproteins,
such as mannan (80–90%). The inner cell wall contains highly immunogenic chitin, β-1,3-glucan, and β-1,6-glucan. Mannan can be recognized by the Dectin-2,
DC-SIGN, MINCLE, and TLR2/4/6. Besides, β-glucan and chitin can be recognized by Dectin-1, CR3, and NOD2, TLR4, respectively.

in the recognition, phagocytosis, and killing of C. albicans in
neutrophils (van Bruggen et al., 2009; Gazendam et al., 2014).

INTERACTION BETWEEN C. ALBICANS
AND HOST MUCOSAL IMMUNE CELLS

The oral mucosa structure is similar to that of the skin,
composed of the epithelium and lamina propria. The epithelium

TABLE 1 | Pattern recognition receptors that sense fungal-associated PAMPs.

Pathogen-recognition
receptors (PRRs)

Cell type
expressing

PRRs

Pathogen-associated
molecular patterns

(PAMPs)

CLRs DC-SIGN Macrophage
DCs

Mannans

Dectin1 Macrophage β-1,3-glucan

Dectin2 Macrophage
Neutrophil

DCs

α-mannans

MINCLE Monocyte
Neutrophil

α-mannosyl residues

Mannose
receptor

Macrophage N-mannan

TLRs TLR2 Monocyte O-mannan

TLR4 Monocyte O-mannan

TLR9 Monocyte
Macrophage

Unmethylated DNA

TLR3 Monocyte
Macrophage

Double-stranded RNA

NLRs NOD2 Monocyte Chitin

NLRP3 Monocyte β-1,3-glucans

Other receptors Galectin 3 Macrophage β-mannan

EphA2 Epithelial cells β-glucan

mainly consists of keratinocytes. The outermost epithelium layer
comprises several layers of closely arranged cells known as the
stratum corneum, which can be divided into orthokeratosis
and parakeratosis. C. albicans infection mainly causes epithelial
surface edema. Hyphae are found in the outer 1/3 of the
keratinized layer or epithelium and are vertically distributed
on the epithelial surface, with several neutrophil infiltrations.
Hyphae and infiltrated inflammatory cells form microabscesses.
Besides, there are several lymphocytes, plasma cells, neutrophils,
and other inflammatory cells in the connective tissue below the
epithelium. Many immune cells participate in the antifungal
process during C. albicans infections (Figure 2).

Epithelial Cells
Epithelial cells are essential in mucosal immunity against fungal
invasion. C. albicans hyphae invade the epithelial cells via the
active penetration and the induced endocytosis processes (Naglik
et al., 2011; Mayer et al., 2013). The two processes involve specific
pathogen-associated molecular patterns (PAMPs), expressed on
the fungal surface, and recognition by pattern recognition
receptors (PRRs) of host cells (Mogensen, 2009; Amarante-
Mendes et al., 2018). The PRR family members include Toll-like
receptors (TLRs), C-type lectin receptors (CLRs), and NOD-
like receptors (NLRs) (Netea et al., 2008; Brown, 2011; Gow
et al., 2011; Wheeler et al., 2017; Heung, 2020; Pellon et al.,
2020; Vendele et al., 2020). Several TLRs are found on the
mucosal epithelial cell surface, of which TLR4 directly affects
the mucosal defense against C. albicans infection (Weindl
et al., 2007; Naglik and Moyes, 2011). The epithelial ephyrin
type-A receptor 2 (EphA2) was recently identified as a non-
traditional PRR involved in C. albicans cell wall component
and β-glucan identification (Swidergall et al., 2018; Swidergall
et al., 2019; Olsen, 2020). This recognition is non-specific, and
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FIGURE 2 | Responses of host immune-related cells during C. albicans mucosa invasion. The fungus transforms from a commensal to a pathogenic state by first
breaking through the epithelial cells. Epithelial cells activate mitogen-activated protein kinase 1 (MAPK1)- and FOS-related pathways to mediate cytokine production
(CCL20, IL-1 α, IL-1 β, IL-8). These cytokines can recruit host immune cells. Epithelial cells also release β-defensins for anti-candida activities. The macrophages in
the tissue contribute to the antifungal effect through phagocytosis and secretion of cytokines (IL-1 α, IL-β, IL-8, G-CSF, GM-CSF, CCL20). Monocytes in the blood
are recruited. They migrate to the infected sites, differentiate into macrophages, and participates in anti-C. albicans process. Neutrophils respond to cytokines
secreted by macrophages and epithelial cells, and fungal antigenic substances Saps. Neutrophil activation induces the production of active antifungal substances to
kill the fungi. Neutrophil can also release neutrophil extracellular traps (NETs) and reactive oxygen species (ROS) to kill the C. albicans, which cannot be engulfed due
to the large hyphae. DC cells activate Th cells via antigen presentation. Th17 activation induces IL-17 and IL-22 production, which are involved in the recruitment and
activation of neutrophils. IL-17 and IL-22 can also activate epithelial cells and promote the release of -defensins. Activated Th1 cells can secrete IFN-γ, promoting
neutrophil and macrophage antifungal effects. NK cells also have a certain resistance to C. albicans hyphae.

both C. albicans hyphae and yeast can be identified. Besides
C. albicans, other fungal species can induce EphA2 activation.
However, EphA2 activation via C. albicans is the most researched
(Dambuza and Brown, 2018). A study showed that fungi invasion
(oral candidiasis) was significantly high in the EphA2−/−
knockout mice with normal immune function than WT mice
(Swidergall et al., 2018). Upon detecting abnormal morphology
and proliferation of C. albicans, the epithelial cells activate the
internal mitogen-activated protein kinase 1 (MAPK1) and FOS
pathway (Moyes et al., 2010; Moyes et al., 2011). The activated
epithelial cells release various pro-inflammatory cytokines and

immune cell chemokines to recruit more immune cells to
reach the infected area, thus improving immune response. The
released cytokines include interleukin-1 α (IL-1 α), interleukin-
1 β (IL-1 β), interleukin-8 (IL-8), and chemokine (C-C motif)
ligand 20 (CCL20) (Moyes and Naglik, 2011; Swidergall et al.,
2018). Epithelial cells can also produce antifungal β-defensins
through response activation to IL-22 produced by Th17 cells,
inhibiting C. albicans invasion (Eyerich et al., 2011; Sparber and
LeibundGut-Landmann, 2019; Gaffen and Moutsopoulos, 2020).
The latest research shows that IL-22 and IL-17 have a synergistic
effect against C. albicans. Therefore, IL-22 signaling activation is
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essential in the oral basal epithelial layer and can cooperate with
IL-17 signaling in the oral mucosa (Aggor et al., 2020).

Macrophages
The macrophages are the key effector cells in the antifungal
mucosal defense (Hirayama et al., 2017) and kill C. albicans
mainly via phagocytosis (Uwamahoro et al., 2014). The effector
cells have phagosomes containing enzymes that can produce
reactive oxygen species (ROS) and reactive nitrogen species
(RNS) (Nüsse, 2011; Uribe-Querol and Rosales, 2017). C. albicans
are phagocytized into macrophages, where they are constricted in
the phagosomes and killed via ROS (Uwamahoro et al., 2014).
Macrophages produce chemokines and inflammatory factors,
which recruit and activate other immune cells to the infection
sites. A study showed that proliferation and lethality of C. albicans
are significantly higher in macrophages-deficient mice than in
normal mice (Qian et al., 1994; Wheeler et al., 2017). Meanwhile,
blood monocytes move to the infected site, differentiating
into inflammatory macrophages for the anti-infection process
(Serbina et al., 2008). The CX3C-chemokine receptor 1 (CX3CR1)
on the macrophage surface is essential in the resistance process
to candidiasis (Lee et al., 2018). These results show the role of
macrophages in mucosal fungal infection defense.

Neutrophils
Neutrophils are essential in Candida mucosal infection defense.
Neutrophils respond to chemokines released by the activated
epithelial cells and macrophages, such as IL-1 α, IL-β, IL-
8, G -CSF, GM-CSF, CCL20, and β defensin, then moves to
the fungal infected tissues (Netea et al., 2008; Moyes et al.,
2016; Patin et al., 2019; Pellon et al., 2020). Neutrophils can
also directly respond to the C. albicans virulence factors, such
as the secretory aspartyl proteinases (Saps) (Gabrielli et al.,
2016; Singh et al., 2020). Neutrophils are essential in antifungal
mucosal immunity. Neutropenia greatly increases the risk of
invasive fungal infections (Kullberg et al., 1990; Horn et al.,
2009; Hirayama et al., 2020). Neutrophils are the only host cell
that can successfully inhibit C. albicans transformation from the
yeast phase to the hyphae phase (Brown, 2011; Lionakis, 2014).
A mouse neutropenia model revealed severe fungal infections
(Kullberg et al., 1990). Several PRRs on neutrophil surface,
including TLR2, TLR4, TLR9, Dectin-1, Dectin-2, Dectin-3,
DC-SIGN, and MINCLE, can recognize C. albicans antigenic
components (Taylor et al., 2007; Cheng et al., 2012; Zhu
et al., 2013; Dühring et al., 2015) thus complete neutrophil
activation (Cheng et al., 2012; Kenny et al., 2017; Li et al.,
2020). The activated MyD88, inflammatory complex, and SYK
can mediate the downstream MAPK and NF-κB signaling
pathways in neutrophils, leading to the expression of cytokines
and antifungal factors, such as elastase, lactoferrin, β-defensin,
lysozyme, gelatinase, and cathepsin G (Amulic et al., 2012;
Liew and Kubes, 2019). Neutrophil elastase and cathepsin B
also have antifungal activity (McCormick et al., 2010; Shopova
et al., 2020). Besides, the phagocytosis and the unique role of
neutrophil extracellular traps (NETs) are activated in neutrophils
(Cheng et al., 2012; Menegazzi et al., 2012; Kenny et al.,
2017). The neutrophils also phagocytize C. albicans through

the PRRs on the cell surface. For instance, the neutrophils
kill C. albicans through an oxidative cell reaction (Aratani
et al., 2002; Endo et al., 2017) after C. albicans recognition via
Dectin-1 (Netea et al., 2015). Besides C. albicans, Dectin-1 also
recognizes β-glucans in the cell wall of many fungal species.
The neutrophil cells kill non-phagocytized-C. albicans hyphae
via NETs (Urban et al., 2006; Menegazzi et al., 2012; Halverson
et al., 2015). NETs, formed by several DNA-containing fibril
structures, can combine the pathogens and induce the production
of antimicrobial substances, such as myeloperoxidase (MPO),
lactoferrin, azurocidin, and cathelicidin, for antifungal activity
(Urban et al., 2009; McCormick et al., 2010; Papayannopoulos,
2018). Calprotectin is an essential NET (Urban et al., 2009).
Protease 3 can hydrolyze cathelicidin to antimicrobial peptide
LL-37 (CAMP) (Kościuczuk et al., 2012), which has several
antimicrobial effects. CAMP promotes the destruction of the
fungal cell membrane by directly binding to the fungus (Zhang
et al., 2010; Kahlenberg and Kaplan, 2013), inhibit biofilm
formation and fungal adhesion (Tsai et al., 2011), enhancing the
production of chemotaxis and ROS, and inhibiting neutrophil
apoptosis (Nagaoka et al., 2006; Alalwani et al., 2010). Although
both the yeast and hyphal forms of C. albicans trigger NETs,
neutrophils respond faster to hyphae. Besides killing fungi
directly, NETs can slow the hyphae growth, possibly by limiting
micronutrients, such as zinc (Urban et al., 2009).

Natural Killer (NK) Cells
Natural killer cells are essential in innate immunity against
fungal invasion (Schmidt et al., 2018). Existing studies mainly
focus on the role of NK cells in systemic Candida infection,
and none has reported its functions in mucosal infections.
Studies have shown systemic candidiasis mouse models without
NK cells have increased sensitivity to the Candida spp. and
Aspergillus spp. (Whitney et al., 2014; Drummond and Lionakis,
2019). A Similarly, in severe combined immunodeficiency disease
(SCID) mice with lymphocyte deficiency, NK cell depletion
increases sensitivity to systemic candidiasis (Quintin et al., 2014).
NK cells promote immune activation of epithelial cells and
phagocytic cells, limiting invasion and spread of Candida from
the mucosal surface to the deeper layers. Although NK cells
cannot inhibit the Candida hyphae growth, they significantly
affect perforin-dependent antifungal activity (Voigt et al., 2014;
Abel et al., 2018). NK cells also have similar roles in Candida
mucosal infections. However, more evidence is needed to confirm
the roles of NK cells in mucosal fungal infection.

Dendritic Cells (DCs)
The host can produce IFNβ through SYK- and IFN-regulatory
factor 5 (IRF5)-dependent pathway, which has an anti-
candidiasis effect. Dendritic cells (DCs) are essential during this
process (Biondo et al., 2011; del Fresno et al., 2013; Hoepel et al.,
2019). DCs mainly recognize antigenic substances in the internal
environment and present to T cells (Steinman, 2012). Although
DCs are not as effective at Candida phagocytosis as macrophages,
their antigen presentation role in activating Th cells is crucial
(Ramirez-Ortiz and Means, 2012; Richardson and Moyes, 2015).
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T Cells
Many specific T cells are involved in inhibiting Candida
infections (Verma et al., 2014). Studies have shown that Candida-
specific T cells can produce IL-17 and IFN-γ against Candida
infections (Zielinski et al., 2012; Conti et al., 2016; Verma
et al., 2017; McDermott and Klein, 2018). Both Th1 and
Th17 are essential in Candida infection defense (Conti and
Gaffen, 2015; Speakman et al., 2020). Furthermore, Th1 cell
response and IFN-γ production are essential during neutrophil
and macrophage inhibiting processes against fungal invasion
(Netea et al., 2015; Dewi et al., 2017). IL-18 induces Th1
cell activation (Netea et al., 2003; Nakanishi, 2018). A study
showed that mice without IFN-γ and IL-18 are more prone
to candidiasis. However, IFN-γ or IL-18 treatment reverses the
susceptibility (Stuyt et al., 2004). Th17 cells are also essential
in the resistance process to C. albicans (Hernández-Santos and
Gaffen, 2012). Th17 cells produce IL-17 and IL-22, which are
involved in the recruitment and activation of neutrophils (Liang
et al., 2006). Th17 cells can also activate epithelial cells, which
produce β defensins (Eyerich et al., 2011). Recently, studies
have proved that Th17 cell response is essential in human
anti-mucosal fungal infections (Hernández-Santos and Gaffen,
2012; Mengesha and Conti, 2017). A study showed that mice
without IL-17 receptor or downstream signaling elements are
more sensitive to oropharyngeal candidiasis (Conti et al., 2016).
Several immune cells, including γδ-T cells, NK cells, type 3 innate
lymphoid cells (ILC3), and TCRβ+ “natural” Th17 cells (nTh17),
produce IL-17 (Conti and Gaffen, 2015).

Functions of Th17/IL-17
The stabilization, degradation, and translation of mRNA are
regulated by IL-17, orchestrated by a suite of RNA binding
proteins, including Act1. This property of IL-17 explains how
it can synergize with a wide range of inflammatory signals.
Besides, most of the relevant RNA binding proteins were first
identified in studies of IL-17–dependent oral candidiasis (Li
et al., 2019). IL-17 can regulate different immune relevant factors,
including neutrophil-activating CXC chemokines and G-CSF,
antimicrobial β-defensins proteins, cytokines (IL-6 and GM-
CSF), and transcription factors (IκBξ , C/EBPβ, and C/EBPδ)
(Li et al., 2019). Consistently, IL-17/Th 17 drives potentially
damaging inflammation (Stockinger and Omenetti, 2017). Th17
responses are significant in the protection against C. albicans
(Li et al., 2018). Besides providing protective immunity, Th17
cells contribute to immune pathology. C. albicans-specific T cell
responses broadly modulate human anti-fungal Th17 immunity
by propagating Th17 cells cross-reactive to other fungal species,
such as Aspergillus fumigatus. This could accentuate acute allergic
bronchopulmonary aspergillosis (Bacher et al., 2019). However,
IL-17 also drives tissue repair. Barrier tissue repair tends to be
the dominant response in the gut (Hueber et al., 2012; Stockinger
and Omenetti, 2017). The degree to which IL-17 drives tissue
repair in the oral mucosa is poorly understood (Li et al., 2019).
Disease-associated fungi trigger IL-6– and IL-23–dependent
accumulation of Th17 cells on the oral mucosa. Disease-causing
Th17 cells drive tissue damage through excessive neutrophil

recruitment and related immunopathology (Dutzan et al., 2017).
Meanwhile, C. albicans hyphae secrete the peptide candidalysin,
which damages oral epithelial cells and triggers the secretion of
IL-1 and IL-36. These signals activate innate IL-17–producing
cells. IL-17 binds to its receptor on oral epithelial cells and
induces the release of antimicrobial effectors, including CXC
chemokines and G-CSF. These effectors promote a neutrophil
response and direct fungicidal activity (Huppler et al., 2014;
Trautwein-Weidner et al., 2015; Conti et al., 2016). Based
on the double-edged functions of Th17 cells, which besides
protecting barrier tissues, contribute to immunopathology, the
importance of Th17/IL-17 in controlling antifungal response
remains controversial (Gaffen and Moutsopoulos, 2020).

C. ALBICANS ESCAPE MECHANISMS

C. albicans has several mechanisms for escaping host immune
detection and elimination. For instance, hyphae elongation
hinders phagocytic activity or damage phagocytic cells,
triggering stress response pathways in fungi and interfering
with phagosome maturation.

Phagocytosis Evasion by Changing Cell
Size and Shape
Various phagocytic cells have a conventional cell size, limiting
the size of the microorganisms they can engulf. For instance,
C. albicans has a diameter of between 5 and 10 µm in the yeast
phase and over 20 µm in the hyphal phase (Bar-Yosef et al.,
2017; Mukaremera et al., 2017), indicating that phagocytosis
cannot occur in the latter stage. Conversely, the fungus can
perforate the phagocytic cells due to its increased growth rate,
thus killing the phagocytic cell (Lewis et al., 2012). Although
the RAB protein regulates phagosome maturation in phagocytic
cells, C. albicans cell wall morphogenesis can prevent phagosome
death by interfering with the RAB protein role of phagosome
maturation (Alvarez-Dominguez et al., 2008; Kopeckova et al.,
2020). Studies have shown that RAB14 localizes to C. albicans
phagosomes after phagocytosis. RAB14 localization is associated
with the morphology of the fungal cells in the phagosome and the
size of the hyphae. Loss of RAB14 function delays phagolysosome
maturation, increasing C. albicans escaping rate and macrophage
killing rate (Okai et al., 2015).

Prevention of Identification and Killing by
Changing C. albicans Cell Wall Structure
The host enzyme effect and free radical activation trigger
fungi cell wall stress sensors. The sensors activate the Mkc1
pathway, leading to Rlm1-dependent activation of chitin which
can strengthen cell wall biosynthesis and repair cell wall damages
(Fuchs and Mylonakis, 2009; Román et al., 2015). C. albicans
cell wall composition also affects the function of phagosome-
associated RAB protein (Lewis et al., 2012). For instance, mannan
loss increases the phagosome function and reduces the ability of
fungi to escape the host immune. Mannan has a protective effect
on β-glucan, which prevents the exposure and identification of
fungal antigens in phagocytic cells (Snarr et al., 2017).
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Prevention of Immune Killing by
Activating C. albicans Stress Response
Pathways
The intracellular phagosomes mainly kill the fungal cells after
C. albicans endocytosis in phagocytic cells. Phagosomes contain
several antimicrobial agents, such as hydrolases and oxidants,
which can kill and degrade C. albicans cells (Flannagan et al.,
2009). Studies have shown that NADPH oxidase activity is
associated with fungal oxidative damage, limiting Candida cell
growth (Brothers et al., 2013; Alves et al., 2020). However,
C. albicans responds to these stresses mainly through the stress
pathways, including mitogen-activated protein kinase (MAPK)
Hog1 (Enjalbert et al., 2006), AP1-like transcription factor Cap1,
and heat shock transcription factor Hsf1 (da Silva Dantas et al.,
2010). ROS and RNS activate the expressions of the transcription
factors Cap1 and Cta4, inducing catalase, glutathione, and
thioredoxin protective effects. However, removal of nitrous and
oxidizing substances in immune cells induces protective effects of
flavin hemoglobin Yhb1, thioredoxin, glutathione cycle enzymes
glutathione reductase (Glr1), and S-nitrosoglutathione reductase
(Fdh3) (Tillmann et al., 2015).

Host Cell Death Induction
C. albicans induces macrophage lysis, especially in the hyphal
forms (Schäfer et al., 2014; Okai et al., 2015). C. albicans
mutants without ergosterol cannot induce macrophage lysis,
indicating that specific components of the fungal cell membrane
are also necessary for macrophage lysis induction (O’Meara
et al., 2015, 2018). Meanwhile, this lysis function is not
associated with hyphae formation. Some mutants which can
also form the hyphae, such as the ECE1 mutant, do not lyse
macrophages (Kasper et al., 2018). The ECE1 gene encodes
Candidalysin, a major C. albicans virulence factor, which
damages cells by destroying the host cell membrane. The
ECE1 null mutant also forms hyphae but cannot destroy cells
(Moyes et al., 2016). Moreover, ALG1 and ALG11 mutants
can also induce macrophage lysis without hyphae formation
(O’Meara et al., 2015).

OTHERS

Impact of Microbiome on the Outcome
of Fungal Infection
The human microbiota consists of bacteria, archaea, viruses,
and fungi that build a highly complex network of interactions
between each other and the host. C. albicans, as a commensal
and opportunistic pathogen on the mucosa, often interact
with other microbiota and work together to host immunity.
C. albicans-specific Th17 cells can cross-react with A. fumigatus
and contribute to pulmonary inflammatory diseases (Bacher
et al., 2019). C. albicans and Staphylococcus aureus have
a synergistic effect in mucosal infections (Li et al., 2018),
with the former playing a leading role. Invasion and Th17
induction by C. albicans and S. aureus damage intestinal
epithelial cells and release Th17-inducing cytokines (Moyes
et al., 2016; Verma et al., 2017). However, some microbes

resist C. albicans colonization. Commensal anaerobic bacteria,
specifically clostridial Firmicutes (clusters IV and XIVa) and
Bacteroidetes, are critical for maintaining C. albicans colonization
resistance in mice (Fan et al., 2015). Hypoxia-inducible factor-
1 α (HIF-1 α), a transcription factor important for activating
innate immune effectors, and the antimicrobial peptide LL-
37 (CRAMP in mice) are key determinants of this resistance
effect (Fan et al., 2015). Understanding how other microbes and
fungi interact to influence host health and immune modulation
can lead to the development of therapeutic strategies aimed at
preventing infection.

Fungal Pathogens Modify/Interact With
Epithelial and Immune Cells
The host immune attack modifies itself in various ways to
destroy fungal pathogens. Immune cells secreted proteins such
as complement bind to fungal wall components, such as β-
1,6-glucan, resulting in enhanced phagocytosis (Rubin-Bejerano
et al., 2007). In C. albicans, mannan protects β-glucan, preventing
its exposure and identification. Host-derived immune cells
release lytic enzymes to destroy the integrity and architecture of
the fungal cell wall (Wheeler et al., 2008; Wagener et al., 2014).
For different forms of fungi, host immune cells have devised
specific response strategies to chemotactic signals released by
hyphae (Jouault et al., 1998) while neutrophils migrate more
rapidly toward yeast cells (Rudkin et al., 2013). This often
leads to an increase in macrophage death (Rudkin et al., 2013).
Besides, host phagocytes can exist with C. albicans without killing
them or being killed by fungal lytic mechanisms (Bain et al.,
2012). In mouse macrophages, actin and phosphoinositides are
dynamically recruited to fully formed phagosomes containing
C. albicans to prevent fungal escape (Heinsbroek et al., 2009).
Although this mechanism can benefit host immune cells in
avoiding lysis and death, it allows the fungus to spread to
uninfected areas (Casadevall, 2010). Epithelial cells reply to
C. albicans and candidalysin by activating epidermal growth
factor receptor (EGFR) (Moyes et al., 2014). Inhibition of EGFR
strongly suppresses candidalysin-induced MAPK signaling (c-
Fos/MKP1) and GM-CSF and G-CSF release (Ho et al., 2019;
Naglik et al., 2019). This impairs neutrophil recruitment (Liles
et al., 1997; Gaviria et al., 1999) and amplifies C. albicans
infections (Ho et al., 2019).

OUTLOOK

The microbial composition of the human mucosa is diverse
and structurally complex. As the first line of defense for human
immunity, the mucosa interacts with the microorganisms on
its surface to keep the host healthy. However, C. albicans
is the most prevalent fungus on the mucosa surface and
causes numerous fungal diseases. The incidence of C. albicans
infections has gradually increased due to the high occurrence of
systemic diseases, such as tumors, Acquired Immune Deficiency
Syndrome (AIDS), liver and kidney disorders, the widespread
development of interventional therapy, organ transplantation,
and the abuse of various antibiotics. The interaction between
mucosal immunity and C. albicans involves many interconnected
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mechanisms, which can provide new drug candidate targets
against C. albicans infection. The host immune regulation
mechanism provides a basis for developing compounds that
can activate specific host defenses, thus maximizing the killing
of C. albicans and minimizing the damage to normal host
cells. Furthermore, the self-protection mechanisms of C. albicans
against the host immunity provide further information on how to
effectively block the immune escape of C. albicans.
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