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ABSTRACT

We previously showed that disease-linked metabolic
genes are often under combinatorial regulation. Us-
ing the genome-wide ChIP-Seq binding profiles for
93 transcription factors in nine different cell lines,
we show that genes under high regulatory load are
significantly enriched for disease-association across
cell types. We find that transcription factor load cor-
relates with the enhancer load of the genes and
thereby allows the identification of genes under high
regulatory load by epigenomic mapping of active
enhancers. Identification of the high enhancer load
genes across 139 samples from 96 different cell
and tissue types reveals a consistent enrichment
for disease-associated genes in a cell type-selective
manner. The underlying genes are not limited to
super-enhancer genes and show several types of
disease-association evidence beyond genetic vari-
ation (such as biomarkers). Interestingly, the high
regulatory load genes are involved in more KEGG
pathways than expected by chance, exhibit increased
betweenness centrality in the interaction network of
liver disease genes, and carry longer 3′ UTRs with
more microRNA (miRNA) binding sites than genes
on average, suggesting a role as hubs integrating
signals within regulatory networks. In summary, epi-
genetic mapping of active enhancers presents a
promising and unbiased approach for identification
of novel disease genes in a cell type-selective man-
ner.

INTRODUCTION

Identification of disease-relevant genes and gene products
as biomarkers and drug targets is one of the key tasks of
biomedical research. Great progress has been made in diag-
nosing and treating various diseases over the past decades.
Still, a great majority of research is focused on a small mi-

nority of genes while over a third of genes remain unstud-
ied (1). Unbiased prioritization within these ignored genes
would be important to harvest the full potential of genomics
in understanding diseases.

Many databases to catalog disease-associated genes and
the nature of their association, such as the Comparative
Toxicogenomics Database (CTD) or the Online Mendelian
Inheritance in Man (OMIM), have been created (2,3). One
of the more comprehensive databases, DisGeNET (4,5),
draws from multiple sources as well as text-mining ap-
proaches to generate gene-disease networks where genes
are associated to diseases by various evidence ranging from
altered expression and genetic variation to existing thera-
peutic association. DisGeNET already links many of the
human genes to at least one disease, highlights the multi-
genetic background of most diseases and how many genes
can be associated to multiple diseases (4,5).

Interestingly, as much as 90% of the human disease-
associated genetic variants are located outside of the cod-
ing sequences of protein coding genes, suggesting that they
affect the regulation of these genes instead (6,7). The active
regulatory regions of the genome can be identified in a cell
type-specific manner through chromatin immunoprecipita-
tion coupled with deep sequencing (ChIP-Seq) analysis of
selected covalent histone modifications such as histone H3
lysine 27 acetylation (H3K27ac; marking active enhancers)
and histone H3 lysine 4 trimethylation (H3K4me3; mark-
ing open transcription start sites), among others. Indeed, by
taking advantage of such epigenomic data produced by the
Roadmap Epigenomics Mapping Consortium, Farh et al.
(8) recently showed that up to 60% of human autoimmune
variants are located within active enhancers of immune
cells. In particular, the genetic variants seem to coincide
with so called super-enhancers or stretch-enhancers, large
enhancer regions often associated with key genes and mas-
ter regulators of cellular identity (9–11). These enhancers
function as hotspots with binding sites for multiple tran-
scription factors (TFs) (12) and, within the enhancers, sin-
gle nucleotide polymorphisms (SNPs) often disrupt these
binding sites as shown, for example, for type 2 diabetes vari-
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ants within islet enhancers (13). However, it remains unclear
whether the genes controlled by multiple enhancers and TFs
are associated to disease also beyond the genetic variation
in their regulatory regions, as could be assumed from their
role as regulators of cellular identity.

We have previously shown that metabolic genes regulated
by multiple TFs in human umbilical vein endothelial cells
(HUVEC) are enriched for genes associated to endothe-
lial relevant diseases in DisGeNET (14). Here we set out
to test whether this increased disease-association of genes
under high regulatory load (HRL) is a general observation
that holds across cell types and genes, and independent of
the type of disease-association evidence. Analysis of ChIP-
Seq data for 93 TFs across 9 ENCODE cell lines confirms
an enrichment for disease-association among the highest
regulated genes in all cell types. We find that the TF load
of the genes correlates with their enhancer load in the re-
spective cell types and thereby allows the identification of
genes under high regulatory load by epigenomic mapping
of active enhancers using H3K27ac. Consistently, genes as-
sociated with most enhancers are also most enriched for
disease-association in all 9 cell lines. To elucidate the power
of this approach and to analyze the cell type selectivity of
the disease-associations, we perform disease-association en-
richment analysis for high enhancer load genes from 139
ChIP-Seq samples of H3K27ac corresponding to 96 differ-
ent cell types and tissues, with many diseases showing high
level of cell type selectivity. Finally, we show that genes un-
der high enhancer load are involved in more Kyoto Ency-
clopaedia of Genes and Genomes (KEGG) pathways and
exhibit higher betweenness centrality in a liver disease gene
network than other genes on average, suggesting a central
role in integrating multiple signals in biological networks.
Consistently, the genes under high regulatory load at the
transcriptional level have longer 3′ untranslated regions (3′
UTRs) and contain more microRNA (miRNA) binding
sites than other genes, suggesting that they could be under
higher regulatory load also at the post-transcriptional level.

Taken together, these results paint a picture of high reg-
ulatory load genes as central nodes in biological networks,
that are more likely to be associated with human disease,
and identifies epigenomic analysis of active enhancers as a
tool for cell type-selective prioritization of previously un-
studied genes.

MATERIALS AND METHODS

Disease-associated genes

Gene-disease association data were retrieved from
the DisGeNET Database (GRIB/IMIM/UPF In-
tegrative Biomedical Informatics Group, Barcelona
http://www.disgenet.org/ version 2.1, 5th of May 2014).
DisGeNET provides gene-disease associations from several
public data sources and literature text-mining, with a score
ranking associations based on the supporting evidence. A
minimum association score of 0.08 was used to select gene-
disease associations supported by multiple data sources and
to exclude associations that are based solely on text-mining
results, resulting in 7428 disease-associated genes, of which
6167 were contained in our background set of 19 238
protein coding genes (Supplementary File 1). Alternatively,

a minimum association score of 0.2 characterizes cu-
rated disease-associated genes (7110 genes, of which 5853
were in the background set) (gene-disease associations
from UNIPROT, ClinVar and CTD human data set, see
http://www.disgenet.org/web/DisGeNET/menu/dbinfo).
Additionally, as a separate set of high confidence dis-
ease genes we used the OMIM database (downloaded
from ftp://ftp.omim.org/OMIM/, as of June 2015) (4557
genes of which 3483 were in the background set). For
gene set enrichment testing we selected only diseases
with at least 15 associated genes, to avoid significant
results only due to a very small set size, resulting in 340
diseases (Supplementary File 1) (15). Details about the
gene-disease-association types defined in the DisGeNET
for each disease are also found in the Supplementary
File 1, and they include ‘altered expression’, ‘biomarker’,
‘genetic variation’, ‘post-translational modification’ and
‘therapeutic’. To test whether ‘genetic variation’ was pre-
dominantly accounting for disease-association enrichment,
we defined the group ‘not genetic variation’ by pooling all
disease-associated genes with association evidence other
than ‘genetic variation’.

Background set of protein coding genes and their ‘regulatory
domain’

We focused on protein coding genes in the analy-
sis. The NCBI Entrez Gene annotations for ‘pro-
tein coding’ genes (Homo sapiens.gene info file, ftp:
//ftp.ncbi.nih.gov/gene/DATA/GENE INFO/Mammalia/,
downloaded on the 13th of May 2014) were used to derive
a set of genes serving as ‘background’ for gene set en-
richment testing. Their TSS was extracted by intersecting
with the RefSeq genes file taken from the UCSC Table
Browser (16) (http://genome.ucsc.edu/cgi-bin/hgTables,
RefSeq genes, assembly: February 2009 (GRCh37/hg19),
on the 13th of May 2014), resulting in 19 238 protein
coding genes. In order to associate ChIP-seq peaks to
the 19 238 genes, we used the Genomic Regions En-
richment of Annotations Tool (GREAT) (17) to derive
a ‘regulatory domain’ for each gene, using the script
‘createRegulatoryDomains’ and the rule ‘BasalPlusEx-
tension’ with default settings (source code from http:
//bejerano.stanford.edu/help/display/GREAT/Download,
May 2014). Chromosome sizes of the human genome
assembly hg19 were obtained using the script ‘fetchChrom-
Sizes’ from the UCSC BigWig and BigBed tools (18).
Supplementary File 1 contains details on the 19 238 protein
coding genes used for analysis, including their regulatory
domains derived by the GREAT tool as start and end
coordinates.

Data sources and processing

Public ChIP-seq data produced by the ENCODE
project (19), the BLUEPRINT Epigenome project
(20) and the NIH Epigenomic Roadmap project (21)
were downloaded from the ENCODE Data Coordina-
tion Center (http://genomebrowser.wustl.edu/encode/)
on May 2014, the BLUEPRINT consortium website
(http://www.blueprint-epigenome.eu) on July 2014, and

http://www.disgenet.org/
http://www.disgenet.org/web/DisGeNET/menu/dbinfo
ftp://ftp.omim.org/OMIM/
ftp://ftp.ncbi.nih.gov/gene/DATA/GENE_INFO/Mammalia/
http://genome.ucsc.edu/cgi-bin/hgTables
http://bejerano.stanford.edu/help/display/GREAT/Download
http://genomebrowser.wustl.edu/encode/
http://www.blueprint-epigenome.eu


Nucleic Acids Research, 2015, Vol. 43, No. 18 8841

NIH Epigenomic Roadmap supplementary website
(http://compbio.mit.edu/roadmap) on January 2015, re-
spectively. These data span 93 TFs, the H3K4me3 and
the H3K27ac modification marks across 139 samples that
comprise 96 tissues or cell types (Supplementary File 2).
The ENCODE data were no further processed, while the
BLUEPRINT and NIH Epigenomic Roadmap data were
filtered to keep only peaks with a minimum fold change
and (−log10 q-value) of 3.

The H3K4me3 data were used to filter out genes embed-
ded in closed chromatin. A file containing genes with at
least one H3K4me3 peak within their transcription start
sites (TSS) ±1000 bp was obtained per sample, using the
IntersectBed tool from the BEDTools suite (22) to intersect
each sample’s H3K4me3 data with a file containing Ref-
Seq genes and their TSS ±1000 bp as start and end coor-
dinates. In case of multiple H3K4me3 data files per sample,
we considered evidence from one single file sufficient to call
the mark present. The H3K27ac data served to map active
enhancers. The ENCODE project was the only source of
TF data. To select only TFs known to directly bind DNA,
we used a list of manually curated TFs (23), 111 of which
were included in the ENCODE TFs (Supplementary File
2) and 93 had been assayed in the used cell lines, result-
ing in the presented numbers of unique TFs assayed per
cell line. In case of multiple files of the same TF in a cell
line (e.g. different ENCODE data producing labs), a filter-
ing step for keeping only peaks overlapping by at least 1
bp in two thirds of the ‘replicates’ was applied. The inter-
sectBed tool was used to intersect TF or H3K27ac data
with the file containing regulatory domains for each gene
(see above), requiring a peak to completely fall within the
genes regulatory domain in order to assign it to that gene.
For each TF, we obtained a list of associated genes and de-
rived the TF load per gene from the total number of associ-
ated TFs, across nine ENCODE cell lines (A549, GM12878,
H1hESC, HCT116, HeLaS3, HepG2, HUVEC, K562 and
MCF7). To obtain the enhancer load per gene, we used the
count option of the IntersectBed tool to count the number
of H3K27ac peaks falling within the genes regulatory do-
main. For both TFs and enhancers, we ranked genes based
on the regulatory load and subsequently considered only
genes with the H3K4me3 mark within ±1000 bp of the TSS.
Following the above settings, on average 96% of peaks could
be associated to a target gene.

Gene binning and hypergeometric enrichment tests

In order to group genes based on their regulatory load,
we started binning ranked genes by deciles (bins contain-
ing 10% of the genes), with a separate group for genes
with no associated TFs or enhancers (11 starting bins).
Bins were then extended by inclusion of all genes with the
same regulatory load as the last gene falling in a bin, ex-
cluding cases of genes with equal regulatory load falling in
different bins (fewer bins depending on the sample). Top
bin genes for each sample can be found in Supplemen-
tary File 3. We then performed hypergeometric distribu-
tion tests for the enrichment of disease genes among the
different regulatory load bins per sample and the 340 Dis-
GeNET diseases with at least 15 genes. For each sample,

the ‘population size’ corresponded to the number of genes
with the H3K4me3 mark (varying per sample), the ‘num-
ber of successes’ being the number of disease genes with
the H3K4me3 mark (varying per sample) and the ‘num-
ber of draws’ the number of genes having the regulatory
load of the bin in case (number of TFs or enhancers). Hy-
pergeometric P-values were obtained using the Matlab R©
hypergeometric cumulative distribution function (hygecdf)
and were adjusted for multiple testing with the Benjamini
and Hochberg methodology as implemented in the Bio-
conductor’s qvalue package (http://www.bioconductor.org/
packages/release/bioc/html/qvalue.html).

Bicluster of hypergeometric enrichment statistical signifi-
cance

In order to simultaneously cluster samples and diseases into
homogeneous blocks based on the hypergeometric enrich-
ment significance (adjusted −log10 P-values), the R package
‘blockcluster’ (24) was applied to the matrix (of adjusted
−log10 P-values) from the 139 samples and 174 diseases,
after binarization (‘zero’ for −log10 P-value < 1.301, ‘one’
otherwise) and exclusion of diseases or samples only con-
taining ‘zero’. Shortly, block clustering methods estimate
a mixture model from permutations of objects and vari-
ables in order to draw a correspondence structure (thereby
with certain order variability with repetition). ‘Blockclus-
ter’ requires a predefined number of clusters for the rows
and columns, which we fixed at 9 and 7, respectively (here,
diseases and samples), in order to minimize redundant clus-
ters. Supplementary File 4 contains the ordering for diseases
and samples and their clusters (color shades), as obtained
with the ‘blockcluster’ package.

Identification of super-enhancer genes

NIH Roadmap epigenomics raw data were downloaded
from the GEO ftp site (ftp://ftp.ncbi.nlm.nih.gov/pub/
geo/DATA/roadmapepigenomics/by experiment/) on May
2015, selecting data for all three from H3K4me3, H3K27ac
and Input, resulting in 35 samples. These included bed
files of reads aligned onto the hg19 human genome as-
sembly using Pash 3.0 read mapper (http://egg2.wustl.edu/
roadmap/web portal/processed data.html). As the raw data
contained sample names and the processed data used for the
high regulatory load genes analysis contained sample IDs,
mappings between the two were manually obtained based
on descriptions from the original data sources (http://egg2.
wustl.edu/roadmap/web portal/meta.html). Next, the soft-
ware HOMER (version 4.7, 25th of August 2014) (25) was
used for super-enhancer calling on the H3K27ac bed files
from each sample, pooling samples from the same origin,
with default setting except the local fold change option (-
L) which was set to 0 as recommended by the authors for
super-enhancer analysis, resulting in the obtainment of the
chromosome, start and end coordinates of super-enhancer
peaks. We then used the IntersectBed tool from the BED-
Tools suite (22) and the genes ‘regulatory domain’ file ob-
tained with GREAT (see previous descriptions) to derive
a set of super-enhancer-associated genes per sample. These
genes were subsequently used for testing the enrichment for
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disease-association using the hypergeometric distribution,
as previously described.

Analysis of the RNA-seq data

Data were downloaded from http://egg2.
wustl.edu/roadmap/web portal/processed data.
html#RNAseq uni proc on June 2015, taking the file
‘57epigenomes.RPKM.pc’ containing the RPKM (reads
per kilobase per million mapped reads) for 57 samples,
38 of which were also in the set of 139 samples used for
the analysis of high regulatory load genes. Conversion of
ENSEMBL IDs to ENTREZ GENE IDs was done using
the Bioconductor package ‘biomaRt’ (26), resulting in
expression data for 18 220 ENTREZ GENE IDs across
samples, out of which 18 181 were included in our back-
ground set of 19 238 protein coding genes. For each of the
38 samples, genes were ranked based on expression. Since
the set of genes for high regulatory load and expression is
not the same, we defined the top bin of highly expressed
genes to contain the same number of high regulatory load
genes in each sample, triplicating this number for the 30%
top bins of expression. The 50% and 90% top expression
bins were obtained relative to the total number of genes for
which there was expression data (18 181).

KEGG pathway enrichment testing

KEGG (27) pathways were used to test whether high reg-
ulatory load genes appear in more pathways than ex-
pected. The list of KEGG pathways was obtained through
the REST-style KEGG API from http://rest.kegg.jp/list/
pathway/hsa, resulting in 282 pathways with at least one
gene. KEGG pathways were downloaded and gene info
per pathway was obtained using the R/Bioconductor pack-
age ‘KEGGprofile’. The average number of pathways per
KEGG gene (total of 6822 genes in all KEGG pathways),
per high regulatory load gene (differing from sample to
sample) or based on a random selection of an equal number
of genes as the high regulatory load genes for each sample
(10 000-fold) was calculated. Supplementary File 4 contains
the results obtained for each sample. A P-value (≤0.05 was
considered significant) was calculated from this re-sampling
test based on the probability to get at least the same average
number of pathways per KEGG gene in random selections
as obtained for the high regulatory load genes.

Constructing a liver disease gene network

The list of liver diseases was curated from the Medical Sub-
ject Headings (MeSH) database (http://www.ncbi.nlm.nih.
gov/mesh/). The MeSH database is the National Library of
Medicine’s controlled vocabulary thesauruses consisting of
sets of terms structured in a hierarchical form that facili-
tates searching at different levels. We curated 137 liver dis-
eases. Based on the obtained list of liver diseases, 847 genes
related to liver diseases (liver disease genes in short) were
extracted from the Comparative Toxicogenomics Database
(CTD) database (28). We considered only curated disease-
gene associations to increase the reliability of the liver dis-
ease gene data. The construction of liver disease gene net-

work was carried out by extracting human protein interac-
tions published in the Human Protein Reference Database
(HPRD) (29). The HPRD database contains manually cu-
rated protein interactions from literature and is one of the
most well-known human protein interaction databases.

The final liver disease gene network of interest consisted
of the liver disease genes and their neighbors (nodes), and
their direct interactions (edges). In this study, we took into
account one-step neighbors. The network was undirected
and unweighted because we considered binary interactions.
We obtained a network of 3775 genes and 8278 interac-
tions. To unravel the role of genes in the network, we cal-
culated betweenness centrality for each gene and compared
the average betweenness centrality of the high regulatory
load genes to that of all genes or all genes except those un-
der high regulatory load. Betweenness shows the bridge role
of a gene for other genes in the network (30). For each node
v in the network, we computed the total number of shortest
paths from node s to node t, called d(s,t) and the number of
those paths that pass through v, called d(s,v t), and then ra-
tio d(s,v, t)/d(s,t) was calculated. These steps were repeated
for all pairs of node s and node t in the network. The overall
betweenness centrality of a node v is obtained by summing
up those ratios. Betweeness B(v) of a node v is defined as
following:

B(v) =
∑

s �=v �=t

d(s, v, t)
d(s, t)

(1)

3′ UTR length and miRNA binding site analysis

Annotation data on 5′ UTR, CDS, 3′ UTR, spliced as well
as unspliced transcript length for human mRNA genes was
obtained from Biomart (Ensembl Genes 78). Transcripts
lacking proper UTR annotation were filtered out. In cases
where multiple transcripts correspond to one gene ID, a rep-
resentative member was randomly chosen. A background
set, consisting of 16 307 genes, was used for all comparisons.
In order to test the hypothesis, that highly regulated genes
tend to have longer 3′ UTRs, we compared in all 139 sam-
ples the length of 3′ UTRs, CDS, spliced as well as unspliced
transcript length of the high enhancer load genes with the
background set with the Kolmogorov-Smirnov test, testing
if the background set is smaller than the test set. In order to
correct for multiple testing, Bonferroni correction was used,
with a significance level ≤0.0003597122 (0.05/139).

Predicted target sites for conserved miRNAs were ob-
tained from TargetScan 6.2 (31). The target site count per 3′
UTR were summed up, resulting in an average site count per
transcript. In cases where a site in the 3′ UTR was assigned
to multiple miRNAs, it was counted only once.

RESULTS

Genes under high regulatory load from multiple transcription
factors are enriched for disease-association across cell types

Our previous work on regulation of metabolic genes in hu-
man adipocytes and human primary macrophages has un-
covered that combinatorial control by multiple regulators
is in particular occurring at genes associated to key nodes
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such as entry points of the metabolic networks and at genes
that are often disease-related (14; Pires Pacheco et al., under
revision). Moreover, analysis of metabolic genes controlled
by multiple TFs in HUVEC cells revealed consistent en-
richment for endothelial disease-relevant genes among the
genes under the highest regulatory load (14).

To investigate whether this is a general finding across dif-
ferent cell types and gene categories, we took advantage of
the numerous ChIP-Seq data sets of TF binding produced
by the ENCODE project in a number of cell types (19). In
detail, we used the existing TF binding data for a total of 93
different previously manually curated TFs (23) from nine
ENCODE cell lines, representing different cell and tissue
types (Figure 1, Supplementary File 2; see Methods for de-
tails). The number of assayed TFs per cell line varied from
6 TFs in HUVEC cells to 65 TFs in GM12878 cells. In ad-
dition we used ChIP-Seq data for H3K4me3 from each cell
line to identify the putative active genes and associated all
TF binding events to their proximal protein-coding genes
marked by H3K4me3 following the ‘BasalPlusExtension’
rule of the GREAT tool (17). The number of unique asso-
ciated TFs per each gene was then calculated and the genes
were ranked according to the number of associated TFs,
i.e. their regulatory load in each cell type (Figure 2A). The
number of associated TFs ranged from 0 TFs per gene to
as many as 57 TFs per gene for the genes with highest load
in the GM12878 lymphoblastoid cell line (Supplementary
File 2). Finally, all genes were classified either as disease-
associated or non-disease-associated based on the evidence
in the DisGeNET database (using a cut-off score of 0.08
for disease-association to exclude associations based only
on text mining) (Figure 1; see methods for details) (4,5).

When focusing on the genes ranked according to their
TF load, a similar pattern emerges in each cell line, inde-
pendent of the number of assayed TFs: the proportion of
disease-associated genes is usually close to or above 40%
for the genes with highest TF load while for the majority of
genes this proportion remains at 10–35% (Figure 2A). To
test whether the observed enrichment is statistically signifi-
cant, we ranked the H3K4me3 marked genes in each cell line
into 10 bins of comparable size according to their TF load
(6 bins in case of HUVEC cells) with an additional 11th
bin in case the gene was not associated with any TF (Fig-
ure 2B). Next, the enrichment of disease-associated genes
within each bin was tested using the hypergeometric distri-
bution (see Methods for details). As shown in Figure 2B,
only the bins of genes with highest TF load show a sig-
nificant enrichment of 1.301 or higher (adjusted −log10 P-
value corresponding to 0.05) for disease-association with
bins based on top 10% genes always showing the most sig-
nificant enrichment. Importantly, similar results were also
obtained when using Gene Set Enrichment Analysis instead
of hypergeometric distribution (15).

In conclusion, genes under combinatorial control from
multiple TFs are enriched for disease association across
multiple cell types, suggesting high regulatory load as a
common feature of genes implicated in human diseases.

High transcription factor load correlates with high abundance
of active enhancers

While presence of a TF binding event in proximity of a tar-
get gene could be indicative of either activation, repression
or even no regulation by the TF, the presence of enhancer
markers such as H3K27ac are indicative of active enhancers
engaged in transcriptional activation via chromatin looping
(32,33). To see whether the observed disease-association en-
richment of genes under high TF load could be more eas-
ily observed by analyzing only few chromatin modifications,
we used the H3K27ac ChIP-Seq data for active enhancers
produced by the ENCODE project from the correspond-
ing cell lines. Comparison of the average TF load and cor-
responding number of enhancer peaks at each open gene
across the cell lines revealed a clear positive correlation, ar-
guing that most genes under high TF load are also iden-
tifiable by a high active enhancer load (Figure 3A). Simi-
lar conclusion can be made when the genes are binned in
comparable sized groups according to their TF or enhancer
loads and analyzed for enrichment of genes within each bin
(Supplementary Figure S1, Supplementary File 5). For ex-
ample, the bins containing genes with highest TF load are
significantly enriched for genes with highest enhancer load,
and vice versa, the bins of genes with no associated TFs are
also enriched for genes with no enhancers.

Based on the obtained correlations, we asked whether
ranking of genes according to their enhancer peak abun-
dance would also reveal higher proportion of disease-
associated genes among the top ranking genes, similarly to
high occupancy by multiple TFs. Indeed, the top ranking
genes with highest enhancer load showed higher propor-
tion of disease genes while genes associated with less than
10 enhancer regions rarely show a disease-gene proportion
higher than 40% (Figure 3B). Again, the enrichments are
also highly significant for the genes under the highest en-
hancer load in each cell line when tested with the hyper-
geometric distribution after grouping genes in comparable
size bins, with top bins showing the most significant en-
richments (Figure 3C). And yet again, similar results were
also obtained when using Gene Set Enrichment Analysis in-
stead of hypergeometric distribution (15). Moreover, sim-
ilar enrichment patterns are also visible when more strin-
gent groups of disease genes (DisGeNET score cut-off 0.2
or genes of monogenic diseases from OMIM database) are
used (Supplementary Figure S2). Importantly, the disease-
gene proportion profiles obtained using the enhancer load
data appear more comparable between the different cell
lines than in the TF load analysis that is highly dependent
on the number and identity of the assayed TFs.

Taken together, the TF load of accessible (H3K4me3
marked) genes is positively correlated with the number of
associated active enhancer peaks and the genes with high-
est enhancer load are enriched for known disease-relevant
genes. This could allow the identification of novel disease
genes through ChIP-Seq analysis of enhancer load using hi-
stone marks such as H3K27ac.
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Figure 1. The workflow of the disease-gene enrichment analysis. Processed ChIP-seq data (bed files) from 93 transcription factors (TFs), H3K27ac and
H3K4me3 across 139 sample sets were downloaded from the ENCODE (19), NIH Epigenomic Roadmap (21), and BLUEPRINT Epigenome (20) projects
(see Supplementary File 2 for additional details). The H3K27ac was used as a mark for active enhancers. The GREAT tool (17) was used to derive a
‘regulatory domain’ for each protein coding gene (‘BasalPlusExtension’ rule with default settings) and the regulatory load per gene was obtained from the
number of TF or enhancer peaks falling within the genes regulatory domain. Genes within closed chromatin regions (without the H3K4me3 mark within
±1000 bp from the TSS) were ignored. Gene-disease associations for 340 diseases with at least 15 genes were based on the DisGeNET database (requiring
a minimum association score of 0.08), for a total of 7428 disease genes (4,5). The 19 238 protein coding genes (including 6167 of the disease genes) in our
background set were grouped into comparable sized bins based on the regulatory load per sample. These ‘regulatory load’ bins were used for testing disease
association enrichment (hypergeometric distribution) across 139 samples on the 340 diseases. The enrichment significance (adjusted −log10P-value) for
each disease across samples was used to infer cell type and function related associations.

Cell type-selective disease-association of genes controlled by
multiple active enhancers

H3K4me3 and H3K27ac profiles have already been mapped
in numerous different tissue and cell types, allowing us to
extend our analysis beyond the nine cell lines from the EN-
CODE project. To this end, we collected additional pre-
processed ChIP-Seq data mapping both modifications from
the ENCODE project (19), NIH Epigenomic Roadmap
Consortium (21) and BLUEPRINT Epigenome project
(20), obtaining a total of 139 sample sets corresponding to
96 different cell types and tissues (Figure 1, Supplementary

File 2). For each sample set we performed the enhancer-to-
gene association as described in Methods and binned the
H3K4me3 marked genes according to their enhancer load
to identify the genes under high regulatory load (in the top
bin) in each sample set (Supplementary File 3). To compare
the top bins, the Jaccard similarity index was calculated for
the pair-wise combinations of the 139 samples (Supplemen-
tary File 4). Interestingly, the genes with high regulatory
load varied a lot between the different cell types and tis-
sues, with most cell types showing lower than 30% similarity
when compared with the Jaccard similarity index (Supple-
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Figure 2. TF load enriches for disease association. Based on ENCODE data from 93 TFs across nine cell lines, the proportion of disease genes is higher
among genes with high TF load. (A) 3D scatter plot of the TF load per gene and proportion of disease associated genes across nine cell lines. The proportion
of disease genes is higher among genes with more TFs. Genes were ranked based on the number of TFs falling within their regulatory region (as defined
in Methods). The TF load is depicted on the z-axis and the gene rank based on the TF load on the x-axis. Data from genes without the H3K4me3 mark
within ±1000 bp of the transcription start site are not shown. The nine ENCODE cell lines are shown across the y-axis. 6167 disease genes were considered
based on the DisGeNET version 2.1 associations (minimum association score of 0.08). The proportion of disease genes among all genes with each unique
observed TF load is represented by the color gradient on the TF load for each cell line. (B) Heatmap depicting the statistical significance of the enrichment
for disease associated genes in all TF load bins (adjusted −log10P-value), across nine cell lines. For each cell line, genes were grouped based on the number
of TFs into deciles, and genes without TFs grouped separately. To avoid different bins having genes with the same TF load, the deciles were adjusted to
contain all genes with the same number of TFs as the last gene in the decile. Using the set of 6167 disease associated genes derived from the DisGeNET,
hypergeometric tests for each bin were performed. The statistical significance is indicated by the color gradient. Values below 1.301 (i.e. adjusted P-values
larger than 0.05) are shown in gray and not considered significant. The enrichment significance is highest in the top bin of each cell line.

mentary Figure S3). Consistent with previous reports, the
similarity was highest between the cell types from the same
tissue, function or developmental origin.

Based on this cell-type selectivity of the high regula-
tory load genes, we hypothesized that high regulatory load
would also enrich for diseases in a cell type-selective man-
ner, and possibly allow informative links between different
diseases and cell types. To test this, we collected all 340 dis-

eases from DisGeNET database that had at least 15 asso-
ciated genes with a minimum score of 0.08 (Supplemen-
tary File 1). Next, the enrichment of genes associated to
each of these diseases was tested separately in all 139 sets
of high regulatory load genes derived above based on the
number of associated H3K27ac peaks (Supplementary File
3) to obtain a matrix of cell type- and disease-selective sig-
nificant enrichments (Figure 4, Supplementary Figure S4,



8846 Nucleic Acids Research, 2015, Vol. 43, No. 18

Figure 3. Enhancer load enriches for disease association. (A) Plots of the average number of TFs (y-axis) for each unique number of enhancer peaks per
gene (x-axis) for nine cell lines. A positive correlation between the two is observed and the Spearman’s rank correlation coefficient (r) is shown on the
lower right corner of each plot varying from 0.5 (HCT116) to 0.72 (HepG2). (B) 3D scatter plot of the enhancer load per gene and proportion of disease
associated genes across nine cell lines. The proportion of disease genes is higher among genes with more enhancers. Genes were ranked based on the number
of enhancer peaks falling within their regulatory region (as defined in Methods). The enhancer load is depicted on the z-axis and the gene rank based on
the enhancer load on the x-axis. Data from genes without the H3K4me3 mark within ±1000 bp of the transcription start site are not shown. The nine
ENCODE cell lines are shown across the y-axis. A set of 6167 disease genes were considered based on the DisGeNET version 2.1 associations (minimum
association score of 0.08). For each cell line, the proportion of disease genes among all genes with each unique enhancer load observed was calculated. This
proportion is represented by the color gradient on the enhancer load for each cell line. (C) Heatmap depicting the statistical significance of the enrichment
for disease associated genes on all the different bins of genes based on their enhancer load (adjusted −log10P-value), across nine cell lines. For each cell line,
genes were grouped based on the number of enhancers into deciles, and genes without enhancers grouped separately. To avoid different bins having genes
with the same enhancer load, the deciles were adjusted to contain all genes with the same number of enhancers as the last gene in the decile. Using the set of
6167 disease associated genes derived from the DisGeNET, hypergeometric tests for each bin were performed. The statistical significance is indicated by the
color gradient. Values below 1.301 (i.e. adjusted P-values larger than 0.05) are shown in gray and not considered significant. The enrichment significance
is the highest in the top enhancer load bin in all nine cell lines.
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Figure 4. Cell type-selective disease-association of genes under high regulatory load. Heatmap showing the statistical significance (adjusted −log10P-
value) of the disease association enrichment of the high enhancer peak load genes across 139 samples. For each of 139 samples, the set of genes with highest
enhancer load (top 10% bin) was taken to perform hypergeometric enrichment tests for disease association on 340 diseases (disease associated genes from
DisGeNET version 2.1, minimum 15 genes with a minimum score of 0.08 per disease). The significance of each test is represented as adjusted −log10P-value
for the 139 samples (columns) across 174 diseases (rows), as indicated by the color gradient. Values below 1.301 (i.e. adjusted P-values larger than 0.05)
are shown in gray and not considered significant. 166 diseases did not have an adjusted −log10P-value of at least 1.301 in any of the 139 samples. The R
package ‘blockcluster’ (24) was used to perform the clustering for samples and diseases resulting in the observed pattern. Supplementary Figure S4 shows
the same heatmap with names of all samples and diseases included and Supplementary File 4 contains the details of the diseases and samples as ordered
in the heatmap.
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Supplementary File 4). A total of 174 diseases showed sig-
nificant enrichment (adjusted −log10 P-value ≥ 1.301) in
the high regulatory load genes of at least one cell type. Fig-
ure 4 shows bi-clustering of the diseases and cell types or tis-
sues according to the enrichment profiles. As expected, cell
types are clustered together largely according to their func-
tion or developmental origin. For the different diseases the
clustering patterns are not as obvious but still interesting
clusters emerge. The largest cluster (second from the bot-
tom) consists of 76 various diseases that are fairly weakly
enriched in only one or a few different cell types or tis-
sues. On the contrary, only very few diseases (mostly in
the third disease cluster from bottom) showed enrichment
in almost all cell types. These include many systemic dis-
eases or syndromes such as type 2 diabetes and rheumatoid
arthritis or broad categories related to cancer such as car-
cinoma and leukemia. Among the different cell types, the
enrichments in the high regulatory load genes of the im-
mune cells included many different diseases. Diseases like
multiple sclerosis and systemic lupus erythematosus were
particularly enriched for cells of both innate and adaptive
immune systems while other autoimmune and inflamma-
tory diseases, including Crohn’s disease and asthma as well
as acute inflammations, induced for example by pneumonia
and drug-induced liver injuries, were preferably enriched in
high regulatory load genes of the innate immune cells. Fi-
nally, the most selective disease enrichments were observed
for the high regulatory load genes of the different brain re-
gions and the closely clustering pluripotent stem cells. Most
of these showed enrichments mainly for the disease groups
such as pervasive child development disorders, substance-
related disorders, schizophrenia and autistic disorder. Fi-
nally, among the cell types with a particularly low number of
disease-associations, pancreatic islet was associated to only
seven different diseases, with the most significant disease-
association to type 2 diabetes. Such selective disease associ-
ations might reflect the highly specialized functions of the
cell types like islet cells and stem cells, but might also reflect
the fact that relatively little is still known about the disease
mechanisms in tissues like brain.

In summary, the genes under high regulatory load vary
between different cell and tissue types and, consistently, are
enriched for different diseases in different cell types, often
in accordance with known involvement of those cell types
in the respective diseases. Therefore, identification of genes
under high regulatory load using epigenomic data for ac-
tive enhancers could guide identification of novel disease-
associated genes in a cell-type-selective manner.

Identification of novel putative disease genes in human mono-
cytes

Among the 139 samples of enhancer data the cell type with
most samples are the monocytes that are innate immune
cells involved in a wide range of diseases. To test the pre-
diction of novel disease genes based on their regulatory
load, we combined the high regulatory load genes from
10 monocyte samples to obtain an extensive list of 3131
monocyte high regulatory load genes. Next we compared
this list to high regulatory load genes in all other samples
in order to obtain a unique list of 82 monocyte-specific

high regulatory load genes (Supplementary File 6). From
these genes 25 were already included as disease-associated
genes in DisGeNET version 2.1 (from 5th of May 2014)
used in our analysis above, and 15 of them were associ-
ated to diseases with known involvement of monocytes or
cell types derived from them (e.g. arthritis, pycnodysostosis,
myeloid leukemia and properdin deficiency). This leaves 57
monocyte-specific high regulatory load genes that we expect
to have higher probability of being associated with disease,
especially in monocytes (Supplementary File 6).

After the initial submission of the manuscript a new ver-
sion of DisGeNET (version 3.0, May 2015) was released,
including 767 novel high confidence disease genes (cut-off
score of 0.2 including only strong evidence associations),
710 of which are included in the gene background set used
for our epigenomic analysis (Supplementary File 1). Search-
ing for the 57 predicted monocyte disease genes described
above among the 710 newly associated disease genes showed
that as many as 14 of them had now been included as
high confidence disease genes during the year between the
two releases. These include genes such as NUSAP1 and
MS4A6A that are associated to glomerulonephritis, an IgA
nephropathy (34); GPBAR1 that is highly expressed in in-
testinal monocytes of patients with inflamed Crohn’s dis-
ease (35), and; SYNJ1 and PLD3 that are both associ-
ated to Parkinson’s disease and Alzheimer’s disease (36–39).
While the latter two genes have been studied mainly in the
context of neurons, both associated neurodegenerative dis-
eases have also a well-established neuroinflammatory com-
ponent. And interestingly, PLD3 shows the highest expres-
sion across all cell types in monocytes and related cell types,
similarly to another non-classical phospholipase D family
member, PLD4, that is known to be involved in microglial
phagocytosis in the brain (40,41).

Finally, to perform a more robust test of the prediction
power of high regulatory load for disease-gene association,
we tested whether more of the newly associated 710 disease
genes from DiGeNET version 3.0 could be found among
the high regulatory load genes across all 139 samples used
in our analysis. Notably, 469 or 66% of the new disease
genes could indeed be found among the high regulatory
load genes across the analyzed cell types, a significantly
higher fraction than expected by chance (hypergeometric
test, P-value = 1.6880e-12). Thus, arguing that high regu-
latory can guide identification of novel disease-associated
genes.

Comparison of high regulatory load and super-enhancer
genes

High regulatory load from multiple active enhancer peaks
is conceptually very similar to previously described super-
enhancers or stretch-enhancers that have also been as-
sociated to disease through high occurrence of disease-
associated genetic variants within them (10,11). To com-
pare high regulatory load genes with super-enhancer genes
we used the 35 Epigenomics Roadmap samples for which
mapped reads of H3K27ac ChIP-Seq data were available to
call super-enhancer peaks in those samples (see Methods for
details). This yielded between 300 and 900 super-enhancer
genes per sample. Overlapping these genes with previously
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identified high regulatory load genes from the same samples
showed that in all cases the majority (on average 67.9%) of
the super-enhancer genes belong also to the group of high
regulatory load genes (Figure 5A). However, these make up
only 13–37% of all high regulatory load genes.

As expected, also super-enhancer genes were enriched for
disease-association in all tested cell types (Figure 5A). This
led us to wonder if the observed disease-associations for
high regulatory load genes are simply due to the included
super-enhancer genes. To address this possibility we gener-
ated separate lists of high regulatory load genes that exclude
super-enhancer genes in all 35 samples and tested these
genes for their disease-association enrichment. Importantly,
in each case the remaining high regulatory load genes en-
riched for disease-association also when the super-enhancer
genes were excluded from the analysis (Figure 5A).

Given that high regulatory load genes are associated with
high number of active enhancers it could be assumed that
they are also higher expressed than other genes on average.
Consistently, this has already been shown to be the case
for super-enhancer genes (9). To test this for high regula-
tory load genes we obtained normalized RNA-seq data for
38 cell types and tissues for which they were available from
the Epigenomics Roadmap consortium. In keeping with the
hypothesis, the high regulatory load genes showed approx-
imately 2.1-fold higher expression levels than all genes on
average (Supplementary File 7). And looking at all known
disease genes, they too exhibited approximately 1.65-fold
higher expression levels. This was mainly based on the two
largest disease categories called ‘Biomarkers’ and ‘Genetic
Variation’ which both showed the same average expression
levels while the other smaller categories all showed even fur-
ther elevated levels of expression between 2.65- to 3.2-fold
above the average of all genes.

Based on these results we asked whether the high regu-
latory load genes could be obtained simply by focusing on
the highest expressed genes in each cell type. To do this we
grouped the genes in each sample according to their expres-
sion depending whether they were in the top 10%, top 30%
or top 50% of highest expressed genes or in top 90% group
containing most genes. Next we asked how large proportion
of the high regulatory load genes in each cell type could
be found in each group. As shown in Figure 5B, on aver-
age across the cell types, only 16.6% of high regulatory load
genes could be found among the comparably sized top 10%
of highest expressed genes. And only when considering the
higher expressed half of all genes (top 50%) could 76.7%
majority of high regulatory load genes be obtained.

Taken together, the majority of super-enhancer genes
can be identified among the genes with high regulatory
load, but they do not alone explain the observed disease-
association enrichment of high regulatory load genes. Sim-
ilarly to super-enhancer genes, both high regulatory load
and disease genes show above average expression levels but
expression level alone serves as a poor predictor of high reg-
ulatory load.

High regulatory load genes are not associated to disease only
by genetic variation

As much as 90% of disease-associated genetic variants are
located outside of coding genic sequences in humans and
recent work integrating epigenomic analysis with GWAS
has showed that around 60% of the variants are coinciding
with active enhancers (6–8,19). This is particularly true for
super-enhancers that serve as binding platforms for com-
binations of multitude of TFs (10,11). While the observed
enrichment of disease genes among the genes under high
regulatory load is not only due to super-enhancer genes, it
might still be due to increased likelihood of these genes be-
ing associated to genetic variants.

In order to assess whether this is sufficient to explain
our findings, we divided all protein coding genes into three
categories: (i) genes not associated to any disease with a
score above 0.08 according to DisGeNET database (13 071
genes); (ii) genes associated to diseases based on evidence
for genetic variation (score ≥ 0.08; 2832 genes), and; (iii)
genes associated to diseases based on other evidence than
genetic variation (score ≥ 0.08; 4596 genes). Subsequently,
enrichment of each of these gene sets in the high regulatory
load genes of all 139 samples was tested and the boxplots
of the adjusted enrichment P-values are depicted in Fig-
ure 5C. Importantly, the genes not associated to any dis-
ease also did not show any enrichment in any of the sam-
ples while genes associated to diseases through genetic vari-
ation showed significant enrichment in all samples with a
median adjusted −log10 P-value of 6.1. However, also the
other disease-associated genes, without evidence for genetic
variation, showed a highly significant enrichment among all
139 sets of high regulatory load genes with a median ad-
justed −log10 P-value of 9.0. Thus, suggesting that there
could be also other explanations for the frequent disease-
association of the high regulatory load genes besides their
higher likelihood of being affected by a genetic variation.

High regulatory load genes are involved in multiple pathways

The positioning of disease genes as central hubs in gene-
regulatory or protein-protein interaction networks has been
suggested to make the genes more likely to cause or be af-
fected by perturbations than what would be the case for
more peripheral genes (42). Indeed, one of the putative
explanations for the higher occurrence of disease associa-
tion among the genes under high regulatory load could lie
within their role as central network nodes and as integration
points within and between pathways. To see whether this
hypothesis is supported by the current pathway knowledge
we obtained the node information for all KEGG pathways
(27) and calculated in how many pathways the high regu-
latory load genes occur on average in each of the 139 sam-
ples (Figure 6A). This was compared to the average path-
way occurrence of an equal number of randomly selected
H3K4me3 marked genes from each sample. Interestingly,
in 135 of the 139 samples the average pathway occurrence
was significantly higher (4.66 pathways per HRL gene on
average) than for the randomly selected genes (3.52 path-
ways per gene on average) based on a re-sampling test (see
Methods for details) with a large variation up to almost
6 pathways per gene in some cell types. Consequently, the
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Figure 5. Features of the disease association of high regulatory load genes and comparison to super-enhancer genes. (A) Proportions of high regulatory load
genes (descending diagonal stripes), super-enhancer genes (asscending diagonal stripes) and their overlap (crossing diagonal stripes) from their combined
count in 35 samples from Epigenomics Roadmap consortium are indicated as cumulative bars. Code name for the each sample corresponds to those
described in (21) and can be found in Supplementary File 2. Heatmap shows the statistical significance (adjusted −log10P-value) of the disease association
enrichment of either the super-enhancer genes (upper part of the bar) or high regulatory load genes without super-enhancer genes (lower part of the bar).
(B) Average cumulative proportion (±SD) of high regulatory load genes within the top 10%, top 30%, top 50% and top 90% of highest expressed genes
across 38 RNA-Seq samples from Roadmap Epigenomics consortium corresponding to samples detailed in Supplementary Files 2 and 7 (see Methods
for details). (C) Boxplot showing the statistical significance (adjusted −log10P-value) of the enrichment for disease association of the top enhancer load
bin from each sample (n = 139) obtained considering the 2832 genes for which the association to a disease is defined as ‘genetic variation’ (based on the
DisGeNET) versus the 4596 genes for which the association type is other than ‘genetic variation’. Adjusted −log10P-value values below 1.301 (gray dashed
line), i.e. P-values larger than 0.05 are considered non-significant. While disease-associated genes based on genetic variation enrich on the top enhancer
load bin, this enrichment is not lost when excluding those genes and keeping disease-associated genes based on other types of association evidence based
on DisGeNET (‘altered expression’, ‘biomarker’, ‘post-translational modification’ and ‘therapeutic’). The set of 13 071 genes in our background set that
are not disease associated was used as a control, showing no significant enrichment of non-disease genes among the genes with more enhancer peaks across
all 139 samples.
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Figure 6. High regulatory load genes appear on average in more pathways
and exhibit higher betweenness centrality than randomly observed. (A)
Plot of the average number of pathways per gene for the high regulatory
load genes across 139 samples (one dot per sample) as a function of the av-
erage number of pathways per randomly selected equal number of genes.
While randomly selected genes appear on average in 3.52 pathways (con-
stant number of pathways, the variation over the x-axis is very low), high
regulatory load genes appear on average in 4.66 pathways and present a
much higher variation (min. 3.86, max. 5.78), suggesting their importance
as network nodes. 282 KEGG pathways were considered. For each set of
highest enhancer load genes from the 139 samples, the average number of
KEGG pathways they belong to was calculated (y-axis). Equal numbers
of randomly selected genes were taken in a 10 000 fold re-sampling and
the average number of pathways they belonged to are depicted on the x-
axis. The statistical significance was determined by a re-sampling test and
the significant (P ≤ 0.05) and non-significant samples are shown as black
and gray dots, respectively. (B) Betweenness centrality of genes under high
regulatory load in liver disease gene network (for illustration see Supple-
mentary Figure S5). A liver disease gene network was constructed as de-
scribed in Methods and the betweenness centrality was calculated for each
gene present in the network and potentially expressed in either liver sample
based on the H3K4me3 mark. Boxplots (left side of the dashed line) repre-
sent the distribution of average betweenness centralities for 10 000 sets of
equal numbers of randomly selected network genes. Asterisks (right side of
the dashed line) represent the average betweenness centralities (±SEM) of
all genes, all genes except those under HRL in primary liver tissue (E066)
or HepG2 cell line and, high regulatory load genes in the two different
samples as indicated. The average betweenness centrality of high regula-
tory load genes is significantly higher than for other genes as determined
by a re-sampling test.

high regulatory load genes occur in more known pathways
than other genes on average, suggesting that the identified
disease-association enrichment could be due to central role
of these genes within biological networks.

Genes under high regulatory load in liver exhibit high be-
tweenness centrality in liver disease gene network

To directly address the positioning of high regulatory load
genes in biological and disease networks, we constructed
a liver disease-specific network covering 137 liver diseases
that comprises of 3775 genes (nodes) and 8278 interactions
(edges) based on human protein interactions from the Hu-
man Protein Reference Database (HPRD) (29) (see Meth-
ods for details of the network construction). An illustra-
tion of the network with positioning of high regulatory load
genes can be found in Supplementary Figure S5. Next we
obtained the lists of all H3K4me3 marked and high regula-
tory load genes in two liver samples, primary liver tissue and
HepG2 hepatocarcinoma cell line, that were also present in
the newly constructed liver disease gene network. As addi-
tional control, we created 10 000 lists of random selection
of genes of equal numbers from both samples. Finally, to
analyze the positioning of the high regulatory load genes
we calculated the betweenness centrality for each gene in
the network and compared the average betweenness cen-
tralities of the high regulatory load genes to the different
control gene lists. Notably, while randomly selected genes
showed similar mean betweenness as all genes, the high reg-
ulatory load genes showed in both samples almost 3 times
higher betweenness than either of these control groups (Fig-
ure 6B). This is consistent with the somewhat lower be-
tweenness centrality of the gene group where high regula-
tory load genes have been excluded. Accordingly, high reg-
ulatory load genes occupy the more central nodes within the
liver disease gene network.

Genes under high regulatory load at transcriptional level have
longer 3′ UTRs and contain more miRNA binding sites

Since high regulatory load genes appear to function as im-
portant nodes in biological pathways and integrate multi-
ple signals at the transcriptional regulation level, we asked
whether a similar finding could be made also at the other
regulatory levels. More specifically, we assumed that high
enhancer load genes might be under higher regulatory load
also at the post-transcriptional level. Post-transcriptional
regulation of mRNA stability and translation takes place
mainly via the binding of miRNAs and various RNA-
binding proteins to their regulatory regions in the mRNAs
3′ UTR with longer 3′ UTRs allowing higher number of
regulatory regions (43,44). To test whether the 3′ UTRs of
genes under high regulatory load from multiple enhancers
in different cell types could in principle occupy more regu-
latory regions than all genes on average, we collected the
3′ UTR lengths for all genes and compared the 3′ UTR
lengths in the different gene sets (Figure 7A, see Meth-
ods for details). Curiously, in 138 of the 139 samples the
3′ UTR length distribution was significantly longer for the
top bin of highest enhancer load genes than for all genes
(Kolmogorov-Smirnov test). The average 3′ UTR length for
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Figure 7. Genes under high regulatory load at transcriptional level have longer 3′ UTRs. (A) Distributions of 3′ UTR lengths in 139 sets of high enhancer
load genes from different samples (each depicted by a green line) and in a background set of 16 307 3′ UTRs (depicted by the black line). The average 3′
UTR length of all mean lengths of the high enhancer load genes was 1695 nt, 39% longer than the average length of 1213 nt for the background set genes.
For 138 samples the length was significantly longer than for the background set (Kolmogorov-Smirnov test, see methods). (B) Distributions of counts of
predicted conserved miRNA binding sites (TargetScan 6.2) in 139 sets of high enhancer load gene 3′ UTRs from different samples (each depicted by a
green line) and in a background set of 16 307 3′ UTRs (depicted by the black line). (C) The total number of predicted miRNA binding sites per 3′ UTR
(y-axis) is positively correlated with the number of distinct miRNA families targeting the 3′ UTR (x-axis) across all genes.

all genes was 1213 nt while mean of all high regulatory load
genes means was 1695 nt, i.e. 482 nt (or 39%) longer. To fur-
ther see whether these longer 3′ UTRs indeed contain more
regulatory regions, we analyzed the distribution of con-
served miRNA binding sites predicted by the TargetScan
software (31) within the 3′ UTRs (Figure 7B). In keeping
with the longer length, the 3′ UTRs of the high enhancer
load genes from each of the 139 sample sets contain signifi-
cantly more miRNA binding sites than other genes on aver-
age, making them more prone to post-transcriptional reg-
ulation. In general, across all genes, the increased number
of miRNA binding sites strongly correlates with the num-
ber of miRNAs from distinct miRNA families (Figure 7C),
suggesting that the observed high number of miRNA bind-
ing sites also reflects targeting by multiple different miRNA
families. Thus, the high regulatory load genes appear to be

under combinatorial regulation by distinct regulators me-
diating multiple signals both at transcriptional and post-
transcriptional level.

DISCUSSION

Much of the research is focused on elucidating the roles of
selected few genes in human health and disease although
this emphasis is not warranted by their connectivity, con-
servation or other features when compared to the less stud-
ied genes (1). The advent of different genome-wide ap-
proaches has allowed an improved ‘equality’ among genes
and unbiased approaches to prioritize the previously un-
characterized genes based on these vast data sets will be
increasingly important. Here we show that genes regulated
by a high TF load are more likely to be disease-associated
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genes and can be identified across cell types through epige-
nomic mapping of active enhancers. The sets of high regu-
latory load genes vary between cell types, thereby allowing
identification of putative disease-associated genes in a cell
type-selective manner. Disease-association of these genes
appears to rely on multiple different categories of associa-
tion evidence and we propose central role within biological
networks as one of the likely explanations for the observed
enrichment. In keeping with the putative role as integra-
tors of multiple signals between pathways, the high regu-
latory load genes appear also to be targeted by more post-
transcriptional regulators such as miRNAs. This is consis-
tent with earlier findings for positive correlation between
numbers of TF and miRNA binding sites (45), and provides
an additional feature that could be shared by the most rele-
vant genes.

High load of active enhancers often assumes high ex-
pression levels of the target genes, a concept already sug-
gested by many studies (9,10; Supplementary File 7). There-
fore it is somewhat paradoxical why these genes would also
be targeted by higher number of post-transcriptional reg-
ulators, such as miRNAs, that are mainly repressing their
target genes. One possibility is that the miRNA regula-
tion serves as a buffer to keep the abundant expression of
the target genes within certain threshold in a robust man-
ner (46). On the other hand, it is known that miRNAs
and their target mRNAs are expressed in a mutually exclu-
sive manner, suggesting that the high regulatory load genes
could be under strong miRNA-mediated repression in other
cell types where they are not occupied by high enhancer
load, thus further enforcing their selective expression pro-
files (47). Consistently, multiple different miRNA binding
sites might be needed to allow the repression of the genes
by different miRNAs in different cell types.

While analyzing the 3′ UTR lengths we observed that
also the coding sequences (CDS) of the high regulatory
load genes are longer than the mean of all genes, albeit
with smaller (24%) and less significant increase (Supple-
mentary Figure S6A). And importantly, the unspliced pri-
mary transcripts are as much as 94% longer (Supplementary
Figure S6B). This raises the possibility that these are sim-
ply longer genes occupying larger genomic regions, with the
higher regulatory association at transcriptional level stem-
ming from this feature. However, the 3′ UTR and CDS
lengths of the different genes show no correlation and sim-
ilar results for 3′ UTR lengths can be obtained when focus-
ing only on enhancers or TF binding sites located upstream
of the target genes (Supplementary Figure S6C and data not
shown). Therefore, the longer 3′ UTR and indeed an over-
all longer gene length appear to be inherent features of the
high regulatory load genes. This is particularly interesting in
the light of the recent observation that human orthologs of
mouse essential genes are significantly longer than all other
genes on average (48). Indeed, 77% of the 2472 known es-
sential genes with human orthologs are also identified as
high regulatory load genes in our analysis and significantly
enriched in the top regulatory load bins across all 139 sam-
ples (data not shown).

Our data suggest that epigenomic mapping of active en-
hancers could be used to predict disease-associated genes
and thereby prioritize the analysis of previously unknown

genes. Current analysis presented in Figure 4 provides an
interesting starting point. More detailed analysis of the in-
dividual cell types and associated disease enrichments might
provide novel insights into relationship of cell types and
diseases in question, and in particular, how do the previ-
ously unassociated high regulatory load genes within dif-
ferent cell types fit into the network of the already known
disease genes. To take the first step we already performed an
analysis to identify monocyte-specific high regulatory load
genes that could be novel disease genes and show this to be
the case for 14 of them. Moreover, genes like PLD3, that
has been linked to neurodegenerative diseases and studied
in the context of neurons, is identified as monocyte-specific
high regulatory load gene in our analysis. This suggests that
PLD3’s association to neurodegenerative diseases might be
related to neuroinflammatory component of these diseases,
similarly as has been shown for many Alzheimer’s disease-
associated genetic variants that are enriched in enhancer re-
gions active in inflammatory cells (49).

On the other hand, the enrichment of disease genes as-
sociated to many systemic diseases across the high regula-
tory load genes of most cell types further highlights the need
to find interventions to these diseases at whole-body level.
Moreover, obtaining epigenomic data from diseased cell
types or cells responding to different external signals could
provide further interesting target genes for future analysis.
In particular, the profiling of previously uncharacterized
disease related cell types such as dopaminergic neurons in
context of Parkinson’s disease could reveal entirely new in-
sights into the underlying epigenetic mechanisms of the dis-
ease development (50).

Our comparison of high regulatory load and super-
enhancer genes (Figure 5) suggests these features to be two
sides of the same coin and a less exclusive definition of these
key genes might be beneficial for future analysis. The high
enhancer load of the selected genes is largely a reflection of
binding of multiple TFs in the regulatory regions of these
genes as indicated by the correlations in Figure 2A. Sim-
ilarly, Joshi has found TF hotspots to be enriched for en-
hancers and consistently, Siersbak et al. have shown super-
enhancers to be enriched for TF hotspots (12,51). These
findings together with the increased occurrence of these
high regulatory load genes in more pathways than expected
by chance and with increased betweenness centrality within
liver disease gene network (Figure 6) lead us to propose the
central role of these genes in regulatory networks as a pos-
sible explanation for their increased likelihood for disease
association. The high regulatory load genes appear to serve
as integration points within and between pathways, possibly
also at the post-transcriptional level (Figure 7). Indeed, re-
cent work by Hnisz et al. showed embryonic stem cell super-
enhancers to consist from several constituents that together
serve as binding platforms for a number of TFs to merge
signals from multiple signaling pathways (52).

In conclusion, the central role of high regulatory load
genes as signal integrators comes with an inherent feature of
high enhancer load that can be taken advantage of to iden-
tify the genes through epigenomic profiling in a cell type-
selective manner. In the future, an integrative approach us-
ing high regulatory load together with other features such
as network centrality, post-transcriptional regulation, and



8854 Nucleic Acids Research, 2015, Vol. 43, No. 18

expression data could be used to prioritize the previously
unstudied genes in terms of their relevance for disease.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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Gröne,H.-J., Herzenberg,A.M., Scholey,J.W., Hladunewich,M.,
Cattran,D.C. et al. (2014) The molecular phenotype of endocapillary
proliferation: novel therapeutic targets for IgA nephropathy. PLoS
One, 9, e103413.

35. Yoneno,K., Hisamatsu,T., Shimamura,K., Kamada,N., Ichikawa,R.,
Kitazume,M.T., Mori,M., Uo,M., Namikawa,Y., Matsuoka,K. et al.
(2013) TGR5 signalling inhibits the production of pro-inflammatory
cytokines by in vitro differentiated inflammatory and intestinal
macrophages in Crohn’s disease. Immunology, 139, 19–29.

36. Quadri,M., Fang,M., Picillo,M., Olgiati,S., Breedveld,G.J.,
Graafland,J., Wu,B., Xu,F., Erro,R., Amboni,M. et al. (2013)
Mutation in the SYNJ1 gene associated with autosomal recessive,
early-onset parkinsonism. Hum. Mutat., 34, 1208–1215.

37. Drouet,V. and Lesage,S. (2014) Synaptojanin 1 Mutation in
Parkinson’s Disease Brings Further Insight into the
Neuropathological Mechanisms. Biomed Res. Int., 2014, 289728.

38. Satoh,J.-I., Kino,Y., Yamamoto,Y., Kawana,N., Ishida,T., Saito,Y.
and Arima,K. (2014) PLD3 is accumulated on neuritic plaques in
Alzheimer’s disease brains. Alzheimers. Res. Ther., 6, 70.

39. Cruchaga,C., Karch,C.M., Jin,S.C., Benitez,B. a, Cai,Y.,
Guerreiro,R., Harari,O., Norton,J., Budde,J., Bertelsen,S. et al.
(2014) Rare coding variants in the phospholipase D3 gene confer risk
for Alzheimer’s disease. Nature, 505, 550–554.

40. Mabbott,N.A., Baillie,J.K., Brown,H., Freeman,T.C. and Hume,D.A.
(2013) An expression atlas of human primary cells: inference of gene
function from coexpression networks. BMC Genomics, 14, 632.

41. Otani,Y., Yamaguchi,Y., Sato,Y., Furuichi,T., Ikenaka,K., Kitani,H.
and Baba,H. (2011) PLD4 is involved in phagocytosis of microglia:
Expression and localization changes of PLD4 are correlated with
activation state of microglia. PLoS One, 6, e27544.

42. Furlong,L.I. (2013) Human diseases through the lens of network
biology. Trends Genet., 29, 150–159.

43. Matoulkova,E., Michalova,E., Vojtesek,B. and Hrstka,R. (2012) The
role of the 3′ untranslated region in post-transcriptional regulation of
protein expression in mammalian cells. RNA Biol., 9, 563–576.

44. Cheng,C., Bhardwaj,N. and Gerstein,M. (2009) The relationship
between the evolution of microRNA targets and the length of their
UTRs. BMC Genomics, 10, 431.

45. Cui,Q., Yu,Z., Pan,Y., Purisima,E.O. and Wang,E. (2007)
MicroRNAs preferentially target the genes with high transcriptional
regulation complexity. Biochem. Biophys. Res. Commun., 352,
733–738.

46. Mukherji,S., Ebert,M.S., Zheng,G.X.Y., Tsang,J.S., Sharp,P.A. and
van Oudenaarden,A. (2011) MicroRNAs can generate thresholds in
target gene expression. Nat. Genet., 43, 854–859.

47. Stark,A., Brennecke,J., Bushati,N., Russell,R.B. and Cohen,S.M.
(2005) Animal microRNAs confer robustness to gene expression and
have a significant impact on 3UTR evolution. Cell, 123, 1133–1146.

48. Georgi,B., Voight,B.F. and Bućan,M. (2013) From Mouse to Human:
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