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Systemic characterization of the human gut microbiota highlighted its vast therapeutic

potential. Despite having enormous potential, the non-availability of their culture

representatives created a bottleneck to understand the concept of microbiome-based

therapeutics. The present study is aimed to isolate and evaluate the probiotic potential of

a human gut isolate. Physiochemical, morphological, and phylogenetic characterization

of a human gut isolate identifies it as a rod-shaped gram-negative microbe taxonomically

affiliated with the Cytobacillus genus, having an optimal growth at 37◦C in a partially

alkaline environment (pH 8.0). This human gut isolate showed continuous growth

in the presence of salts (up to 7% NaCl and 10% KCl), antibiotics, metals and

metalloids [silver nitrate (up to 2mM); lead acetate (up to 2mM); sodium arsenate (up to

10mM); potassium dichromate (up to 2mM)], gastric and intestinal conditions, diverse

temperature (25–50◦C), and pH (5–9) conditions making it fit to survive in the highly

variable gut environment. Genomic characterization identified the presence of gene

clusters for diverse bio-catalytic activity, stress response, and antimicrobial activity, as

well as it indicated the absence of pathogenic gene islands. A combination of functional

features like anti-amylase, anti-lipase, glutenase, prolyl endopeptidase, lactase, bile salt

hydrolase, cholesterol oxidase, and anti-pathogenic activity is indicative of its probiotic

potential in various disorders. This was further substantiated by the CaCo-2 cell line

assay confirming its cellular adherence and biosafety. Conclusively, human gut isolate

possessed significant probiotic potential that can be used to promote animal and

human health.

Keywords: probiotic, human gutmicrobe,microbiome therapeutics, microbial characterization, microbial isolation

INTRODUCTION

Human gut microbes play an important role in the maintenance of human health through
active participation in host metabolism, immunity, gut homeostasis, and pathogen eradication
(Yadav et al., 2018; Yadav and Chauhan, 2022). Gut microbes are being characterized for their
therapeutic potential to treat human disorders (Thaiss and Elinav, 2017). Christensenella sp.
is shown to reduce depression and anxiety-like behavior (Verma et al., 2020). Akkermansia
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muciniphila augments relief to the host from metabolic disorders
(Kalia et al., 2022a), as well as protects against atherosclerosis
by reducing gut permeability and preventing inflammation (Li
et al., 2016). Lactobacillus johnsonii protects the host against the
onset of cancer (Marcial et al., 2017). Bifidobacterium longum
reduces the severity of Crohn’s disease (Yao et al., 2021) and
repairs the mucus layer integrity impaired due to a high-
fat diet (Schroeder et al., 2018). Oxalibacterium formigenes
prevent kidney stones by ensuring oxalic acid breakdown
(Jalanka-Tuovinen et al., 2011). Bacteroides sp. protects against
adiposity (Walker and Parkhill, 2013). Lactobacillus johnsonii,
Akkermansia muciniphila, Bifidobacterium longum, Bacteroides
sp., Roseburia intestinalis, Faecalibacterium prausnitzii, and
Bacillus sp. are characterized for certain health-promoting
benefits such as anti-cancer, anti-diabetic, anti-obesity, anti-
pathogenic, as well as cholesterol-removing properties (Aswathy
et al., 2008). These studies highlighted the scope of harnessing
the potential of gut microbes as probiotic strains in disease
therapeutics (Yadav and Chauhan, 2022). The impact of
probiotics on human as well as animal health has promoted
their use as food additives even on a commercial scale (Cuello-
Garcia et al., 2015; Varankovich et al., 2015). These strains
are also being used as food additives to improve the health
of poultry animals for disease prevention and increased meat
production (Kalia et al., 2022b). Several strains of Lactobacillus,
Bifidobacterium, and Bacillus have also been used as potential
probiotics (Lee et al., 2019). B. cereus, B. clausii, B. coagulans,
B. licheniformis, B. polyfermenticus, B. pumilus, and B. subtilis
are well-characterized commercial probiotic strains (Lee et al.,
2019). Despite the enormous therapeutic potential, the majority
of human gut microbes could not be exploited for their probiotic
potential, which is attributed to the lack of their cultured
representative. Scientific explorations are required to culture
human gut microbes to harness their probiotic potential. The
current study was designed to culture a human gut bacterium and
characterize it for its probiotic potential. The probiotic potential
of this microbe can be efficiently used to improve animal as well
as human health.

METHODS

Sample Collection and Ethical Statement
Bacterial isolate strain NB2 was cultured from a fecal sample
collected from a healthy individual (age 28 years, female, BP
120/80, blood sugar 100–120mg/dl, BMI 26.4, with no symptoms
of any illness). A total of 100mg of fecal sample was homogenized
and serially diluted (10−1-10−5) in phosphate buffer saline (pH
7.4). About 100 µl of each serial dilution was plated on a nutrient
agar medium plate. The culture plates were incubated at 37◦C till
the appearance of microbial colonies. Sub-culturing of microbial
colonies was performed in LB (Luria Bertini) agar medium at
37◦C. The study was conducted after receiving ethical clearance
from the Human ethical committee at M. D. University, Rohtak
Haryana, India. Strict human ethical guidelines were followed,
and written consent was sought from the individual included in
this study.

Molecular and Phenotypic
Characterization
Gram staining of bacterial isolate strain NB2 was performed
using a commercially available gram-staining kit (Himedia,
K001-1KT). The morphology was observed using a compound
microscope. The microbial growth pattern was analyzed after
continuously culturing the bacterial isolate strain NB2 (0.01 at
OD600nm) in LB broth for 24 h at 37◦C. Taxonomic affiliation
of human gut isolate NB2 was performed using 16S rRNA gene
analysis (Kumar Mondal et al., 2017). The substrate preference of
bacterial isolate strain NB2 was checked using the Hi-Carbo kit
(Himedia, KB009A-1KT, KB009B1-1KT, KB009C-1KT) at 37◦C
for 24 h following the manufacturer’s instructions.

Genome Characterization of Bacterial
Isolate Strain NB2
The genomic DNA of bacterial isolate strain NB2 was sequenced
on Illumina MiSeq using Nextera XT DNA Library Prep kit
following the manufacturers’ protocol (https://sapac.illumina.
com/content/dam/illumina-marketing/documents/products/
datasheets/datasheet_nextera_xt_dna_sample_prep.pdf). Raw
reads were quality checked using FASTQC v0.11.9 (http://
www.bioinformatics.babraham.ac.uk/projects/fastqc) and fastQ
Validator v0.1.1 (https://github.com/statgen/fastQValidator).
Removal of contaminated reads was performed to get the error
corrected reads. The SPAdes v3.15.1 assembler was used for the
de novo assembly which uses an automatic k-mer optimization
approach and is thereby a good tool for bacterial genome
assembly. It uses Bayes Hammer to perform read error correction
on each data set and Mismatch Corrector, a post-processing tool,
to reduce the number of mismatches in assembly using the BWA-
0.7.17 tool. Further, the BUSCO v5.0.0 assessment tool was used
with the latest bacterial orthologous catalog (bacteria_odb10)
for analyzing the completeness of a set of predicted genes
in bacterial genome assemblies (https://busco.ezlab.org/).
The sequenced genome was compared with the reference
genomes of the Bacillus species (Supplementary Table S1) to
assess the evolutionary and phylogenetic relationships of the
sequenced bacterial isolate strain NB2 with sequenced Bacillus
genomes. The phylogenomic relationship of the bacterial isolate
strain NB2 was assessed with other Bacillus genomes using
M1CR0B1AL1Z3R webserver (https://microbializer.tau.ac.il/).
The average nucleotide identity and tetra-correlation values
were calculated using J-species software (http://jspecies.ribohost.
com/jspeciesws/). The assembled genome was annotated with
PROKKA-v1.12 annotation pipeline (Seemann, 2014). The
pathogenic islands within the sequenced genome were detected
with the Island Viewer 4 (https://www.pathogenomics.sfu.ca/
islandviewer/resources/) following default parameters (https://
www.pathogenomics.sfu.ca/islandviewer/about/). The antibiotic
resistance genes were identified using the comprehensive
antibiotic resistance database (CARD) (https://card.mcmaster.
ca/) and ResFinder-4.1 server (https://cge.food.dtu.dk/services/
ResFinder/). The dbCANmeta server (https://bcb.unl.edu/
dbCAN2/blast.php) was used to identify CAZymesin, the
sequenced genome.
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Biosafety Assessments of the Bacterial
Isolate Strain NB2
Hemolytic activity of the bacterial isolate strain NB2 bacterial
culture was assessed using the blood agar plate (5% v/v) (Barik
et al., 2021). Cellular toxicity of bacterial isolate strain NB2 was
assessed against Caco-2 cell lines (Dowdell et al., 2020).

Stress Resistance Physiology
Growth of the bacterial isolate strain NB2 was assessed in gastric
(pH 2.0; pepsin for 2 h) and intestinal (pH 8.0; trypsin for
6 h) conditions (AlKalbani et al., 2019). NB2 growth was also
observed in the presence of the bile salts (Nami et al., 2019).
The growth pattern of human gut isolate NB2 was observed in
presence of salts (NaCl and KCl) and metal/metalloids [silver
nitrate (0.1–2mM), cadmium chloride (0.1–2mM), lead acetate
(0.1–2mM), potassium dichromate (0.1–2mM), and sodium
arsenate (0–50mM); Supplementary Table S2]. The growth
pattern of the bacterial isolate strain NB2 was continuously
assessed with an interval of 2 h after growing active microbial
culture [0.05 OD (600 nm)] for 24 h in LB broth supplemented
with a respective stressor. Resistance of the bacterial isolate
strain NB2 was observed against lysozyme activity (Samedi
and Linton Charles, 2019). Antibiotic susceptibility of the
bacterial isolate strain NB2 was observed against antibiotic
discs of amikacin, Amoxicillin, Bacitracin, Cephalothin,
Erythromycin, Novobiocin, Oxytetracycline, Vancomycin,
Ceflnaxone, Ceftazidime, Cefotaxime, Lincomycin, Netilin, and
Ofloxacin (Himedia, OD034R-1PK, and OD003R-1PK) using
disc diffusion assay after recording the zone of the growth
inhibition (mm) on the LB agar medium after incubation
for 24 h at 37◦C.

Auto-Aggregation and Cell Surface
Hydrophobicity
The auto-aggregation tendency and cell surface hydrophobicity
of the bacterial isolate strain NB2 were also observed (Collado
et al., 2008; Dowarah et al., 2018).

Health-Promoting Features of Bacterial
Isolate Strain NB2
The anti-pathogenic property of the bacterial isolate strain
NB2 was screened against the pathogens Staphylococcus aureus
(MTCC No. 96), E. coli (MTCC No. 443), and Salmonella typhi
(MTCC No. 98) with a disc diffusion assay (Kumar et al., 2021).
Co-aggregation tendency of the bacterial isolate strain NB2
with pathogens [Staphylococcus aureus (MTCC No. 96), E. coli
(MTCC No. 443), and Salmonella typhi (MTCC No. 98)] was
also assessed (Valeriano et al., 2014). Human gut bacterial isolate
strain NB2 was assessed for anti-amylase activity (Sekhon-Loodu
and Rupasinghe, 2019), anti-lipase activity (Jaradat et al., 2020),
cholesterol removal activity (Shobharani and Halami, 2016),
and bile salt hydrolysis activity (Shobharani and Halami, 2016).
Bacterial isolate strain NB2 was screened for the activity of
glutenase (Shobharani and Halami, 2016), prolylendopeptidase
(Kumar et al., 2018), lactase (Leksmono et al., 2018), laccase
(Mandic et al., 2019), peroxidase (https://www.sigmaaldrich.

com/IN/en/technical-documents/protocol/protein-biology/
enzyme-activity-assays/enzymatic-assay-of-peroxidase), and
phosphatase (Ndubuisil et al., 2002).

RESULTS

Characterization of Bacterial Isolate Strain
NB2
Microscopic observation of human gut isolate NB2 indicated
it is a rod-shaped gram-negative bacteria. Growth pattern
analysis of gut isolate NB2 indicated that this microbe
attains log phase after 2 h (Figure 1), and a doubling time
for the isolated gut microbe was observed to be 53.3min
in aerobic growth conditions. Additionally, bacterial isolate
strain NB2 also showed growth (0.413 OD at 600 nm) after
incubating the culture for 24 h at 37◦C in anaerobic growth
conditions. Good growth in aerobic conditions in comparison
to anaerobic conditions indicates its growth preference in
aerobic conditions. It also indicates its facultative nature. The
16S rRNA gene of the gut isolate NB2 shared 99 and 96%
nucleotide similarity with Cytobacillus oceanisediminis 2691
(CP015506.1) and Bacillus firmus (AY833571.2), respectively
(Supplementary Table S3) indicating its taxonomic affiliation
with Cytobacillus oceanisediminis. Phylogenetic analysis of gut
isolate 16S rRNA gene also indicated a similar observation
(Figure 2). Combining the 16S rRNA gene homology and
polygenetic analysis, bacterial isolate strain NB2 was labeled
as Cytobacillus sp. NB2 till further taxonomic characterization.
Substrate utilization assay of the human gut isolate NB2 indicated
its potential to utilize xylose, maltose, raffinose, trehalose,
melibiose, sucrose, L-arabinose, mannose, esculin, and citrate out
of the given 35 substrates (Table 1; Supplementary Table S4).
Substrate-utilization preference of gut isolate NB2 was found
similar to the Cytobacillus oceanisediminis as compared to
Bacillus firmus (Supplementary Table S4). Even the antibiotic
susceptibility assay of gut isolate NB2 (Supplementary Table S5)
indicates its higher similarity with Cytobacillus oceanisediminis
than Bacillus firmus. Substrate utilization assay, antibiotic
susceptibility along with 16S rRNA gene homology, and
phylogenetic analysis indicate that the gut isolate NB2 is a strain
of Cytobacillus oceanisediminis, hence labeled as Cytobacillus
oceanisediminis NB2.

Genomic Characterization of Cytobacillus
oceanisediminis NB2
Genome sequence assembly of Cytobacillus oceanisediminis
NB2 resulted in 203 contigs amounting to 5,235,740 base
pairs with 41.41% GC content (Supplementary Table S6).
BUSCO v5.0.0 assessment tool was used with the latest
bacterial ortholog catalog (bacteria_odb10) for analyzing the
completeness of the set of predicted genes in the bacterial
genome assembly (Supplementary Table S6). A quantitative
assessment of the completeness in terms of the expected
gene content of a genome assembly or annotated gene set
(https://busco.ezlab.org/) was done. The BUSCO assessment
resulted in 100% genome assembly and 124 complete, 123
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FIGURE 1 | Growth pattern analysis of the bacterial isolate strain NB2 in Luria-Bertani broth for 24 h at 37◦C with constant shaking at 200 rpm. Each point in the

graph is the mean value of readings observed in triplicate experiments.

single copies, 1 duplicated copy, 0 fragmented, and 0 missing
conserved proteins within the bacterial genome. Genome
annotation has identified 5,195 coding genes and 128 RNAs
in the genome of Cytobacillus oceanisediminis NB2 (Figure 3;
Supplementary Table S7). Genome characterization identified
the presence of 254 genome-encoded protein features associated
with metal/metalloid toxicity resistance, 147 features associated
with antibiotic resistance, 414 protein features associated with
oxidative stress tolerance, and 108 features associated with heat
tolerance (Supplementary Table S8). Additionally, CAZymes
annotation with HMMER resulted in a total of 35 CAZymes
clusters (Supplementary Table S9). No pathogenic islands/genes
were determined within the genome of the microbial isolate.
Additionally, the virulence genes were manually searched within
the genome of the microbial isolate resulting in the absence
of many genes related to the pathogenic behavior of the
isolated microbe.

Genome Comparison of Cytobacillus
oceanisediminis NB2
The sequenced genome of Cytobacillus oceanisediminis NB2 was
compared with the genomes of the Bacillus species isolated
from the various sources (Supplementary Table S1) to elucidate

genome-level similarities and uniqueness. The comparison was

made for genome size, coding sequences, tRNA, and rRNA

(Supplementary Table S1). Additionally, the average ANI value
among all Bacillus species was ∼66–97%, which is toward the

lower end of the 62–100% spectrum of interspecies variation
within a genus (Kim et al., 2014), suggesting substantial genomic
diversity. This observation was reaffirmed by tetra correlation
among member species, highlighted by a wide distribution of
z-scores (Supplementary Table S10). The isolated gut microbe
shared high ANI (>98.0%) with Bacillus oceansedimins while
ANIs with Bacillus mediterraneensis, Bacillus subtilis, Bacillus
clausii, Bacillus sp. bd59s, and Bacillus megaterium were found
to be 69.5867.16, 66.00, 67.25, and 68.05%, respectively (Table 2).
A z-score value of 0.99806 during tetra-correlation scoring
corroborates its similarity with Bacillus oceansedimins. Other
Bacillus strains also shared good similarities with the gut
isolate (z-score∼0.90–0.99; Supplementary Table S9). Genome-
based phylogenetic analysis of Cytobacillus oceanisediminis NB2
also indicated its similarity with Cytobacillus oceanisediminis
(Figure 4). Genome characterization indicated the presence of a
total of 19736 COGs (Supplementary Figure S1). These results
indicate genome plasticity, which could be attributed due to
niche-specific genome evolution (Woodcock et al., 2017).
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FIGURE 2 | Phylogenetic affiliation of bacterial isolate strain NB2 with the other Bacillus species. Phylogenetic tree was constructed with the neighbor-joining method

of phylogenetics using the 16S rRNA gene sequences of bacterial isolate strain NB2 and NCBI database homologs using MEGAX software. Numbers at the node

represent bootstrap values in percent for the node (based on 500 bootstrap sampling). Out-group was represented by Bacillus cereus ATCC 14579 SSU rRNA gene

sequence.
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TABLE 1 | Physiological, morphological, and biochemical characterization of

Cytobacillus oceanisediminis NB2.

Property Term

Gram stain Negative

Cell shape Rod

Temperature range 20–40◦C

Optimum temperature 37◦C

pH range 5–9

Optimum pH 8.0

Habitat Human gut

Salinity/metal/metalloid resistance Upto 7% NaCl and 10% KCl; Silver nitrate

(upto 2mM); Lead acetate (upto 2mM);

Sodium arsenate (upto 10mM); Potassium

dichromate (upto 2mM)

Substrate utilization preference Xylose, Maltose, Raffinose, Trehalose,

Melibiose, Sucrose, L-arabinose, Mannose,

Esculin, and Citrate

Oxygen requirement Aerobic/Anaerobic

Biotic relationship Host-associated

Pathogenicity Non-pathogenic

Hemolytic and Cytotoxicity Activity
Evaluation of bacterial toxicity is essential before considering a
bacterial strain a probiotic, as it should not be harmful to the host
cells. Toxicity and hemolytic activity assessment of Cytobacillus
oceanisediminis NB2 indicated no hemolytic activity in Blood
agar plate assay after 24 h of incubation at 37◦C. Even cytotoxicity
analysis of Cytobacillus oceanisediminis NB2 demonstrated that
Caco-2 cells showed 91.82 ± 5.04% and 89.28 ± 7.85% viability
after 24 h of exposure with the cell-free supernatant and cell lysate
of Cytobacillus oceanisediminis NB2, respectively.

Stress-Response Physiology
Cytobacillus oceanisediminis NB2 showed continued growth
within the pH range of 5.0–9.0, with an optimum growth at
pH 8.0 (Figure 5A). Cytobacillus oceanisediminis NB2 showed
continued growth within the temperature range of 25–50◦C,
while an optimum growth was observed at 30–35◦C (Figure 5B).
Cytobacillus oceanisediminis NB2 also indicated continued
growth in the LB medium supplemented up to 7.0% NaCl (w/v)
and 10.0%KCl (w/v). Similarly,Cytobacillus oceanisediminisNB2
showed growth in the presence of various metals (silver, lead,

FIGURE 3 | Genome map of the Cytobacillus oceanisediminis NB2. The circular genome map was drawn using Proksee online tool (https://proksee.ca/) that uses a

complete genome sequence and annotates it using PROKKA. It also identifies resistance gene using CARD identifier.
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TABLE 2 | Average nucleotide identity (ANI) of Cytobacillus oceanisediminis NB2 with reference to other Bacillus species.

Cytobacillus

oceanisediminis

NB2 (current

study)

Bacillus

clausii strain

ENTPr

Bacillus

coagulans

strain HM-08

Bacillus

infantis

NRRLB-14911

Bacillus

subtilis strain

B-1

Bacillus

subtilis strain

UD1022

Bacillus

subtilis

subsp.

Spizizenii str.

W23

Bacillus

subtilis

subsp.

subtilis

str.168

Cytobacillus

firmus

Bacillus

velezensis

strain

BIMB-454D

Cytobacillus

oceanisediminis

2691

Cytobacillus

oceanisediminis

strain

YPW-V2

Cytobacillus

oceanisediminis NB2

(current study)

* 66.12 [17.61] 67.75 [20.05] 70.98 [39.56] 67.52 [21.36] 67.83 [23.30] 67.96 [23.27] 67.83 [23.37] 88.39 [63.37] 67.58 [21.54] 98.00 [89.18] 97.89 [90.28]

Bacillus clausii strain

ENTPr

66.00 [20.90] * 66.01 [17.64] 65.68 [19.23] 66.12 [19.35] 65.89 [21.37] 66.19 [21.03] 65.97 [21.36] 65.91 [19.63] 66.06 [19.91] 65.91 [20.96] 65.98 [21.17]

Bacillus coagulans strain

HM-08

67.85 [28.25] 66.36 [20.27] * 68.08 [28.83] 67.71 [26.92] 67.34 [27.28] 67.35 [26.65] 67.33 [27.29] 68.25 [27.98] 67.78 [27.16] 67.87 [28.37] 67.77 [28.83]

Bacillus infantis

NRRLB-14911

71.15 [41.79] 65.81 [17.42] 68.06 [21.95] * 67.78 [23.34] 67.74 [24.21] 67.74 [24.24] 67.72 [24.17] 71.41 [39.28] 67.78 [23.57] 71.18 [41.90] 71.16 [42.21]

Bacillus subtilis strain B-1 67.48 [27.18] 65.95 [21.06] 67.33 [24.47] 67.63 [27.57] * 76.21 [72.75] 76.30 [72.81] 76.21 [73.32] 67.74 [26.31] 97.34 [93.01] 67.61 [27.32] 67.54 [27.45]

Bacillus subtilis strain

UD1022

68.05 [29.49] 66.33 [23.29] 67.50 [25.34] 68.13 [28.66] 76.28 [72.23] * 92.47 [89.08] 98.12 [94.29] 68.27 [28.03] 76.43 [72.95] 68.11 [29.75] 68.06 [29.95]

Bacillus subtilis subsp.

spizizenii str. W23

68.07 [29.24] 66.24 [23.32] 67.41 [24.65] 67.71 [29.34] 76.43 [71.64] 92.60 [88.82] * 92.50 [88.18] 68.17 [27.79] 76.55 [72.26] 68.06 [29.43] 68.04 [29.63]

Bacillus subtilis subsp.

subtilis str.168

68.06 [28.04] 66.27 [22.16] 67.49 [24.26] 67.98 [27.50] 76.34 [69.33] 97.93 [90.56] 92.23 [85.12] * 68.31 [26.49] 76.47 [71.31] 68.07 [28.40] 68.10 [28.48]

Cytobacillus firmus 88.56 [69.24] 66.41 [19.07] 68.52 [23.11] 71.31 [41.19] 68.11 [23.49] 68.29 [24.69] 68.27 [24.67] 68.21 [24.90] * 68.07 [23.69] 88.77 [70.40] 88.71 [71.22]

Bacillus velezensis strain

BIMB-454D

67.94 [25.78] 66.27 [20.79] 67.90 [23.63] 67.94 [26.89] 97.31 [87.52] 76.34 [69.92] 76.44 [69.43] 76.33 [71.12] 68.05 [25.22] * 67.98 [26.02] 67.88 [26.24]

Cytobacillus

oceanisediminis 2691

97.97 [85.73] 66.18 [17.40] 67.91 [19.84] 71.12 [38.50] 67.94 [20.89] 68.19 [22.72] 68.18 [22.59] 68.18 [22.74] 88.60 [61.99] 67.95 [21.02] * 98.72 [87.37]

Cytobacillus

oceanisediminis strain

YPW-V2

98.02 [88.62] 66.18 [18.63] 67.87 [20.89] 71.19 [40.03] 67.82 [21.83] 68.03 [23.48] 68.11 [23.54] 68.04 [23.55] 88.65 [64.30] 67.82 [22.09] 98.81 [89.27] *

*Indicates the ANI between the same genomes.
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FIGURE 4 | Phylogenetic assessment of the genome of Cytobacillus oceanisediminis NB2 with the genomes of other Bacillus species. The phylogenetic relationship

of the gut bacterial isolate strain NB2 was assessed with other Bacillus genomes using M1CR0B1AL1Z3R webserver (https://microbializer.tau.ac.il/). The online tool

extracts ORFs, detects OGs, extracts OG sequences, infers a core proteome, and reconstructs the species’ phylogeny. The tree was drawn by taking Maximal

e-value cutoff: 0.01; identity minimal percent cutoff: 80.0%; minimal percentage for core: 100.0% with no bootsrapping.

FIGURE 5 | Growth pattern assessment of the Cytobacillus oceanisediminis NB2in Luria-Bertani broth with diverse pH (3–10 with an interval of 1.0 pH) (A) and

temperature (10–60◦C with an interval of 5◦) (B) conditions for 24 h with constant shaking at 200 rpm. Each point in the graph is the mean value of readings observed

in triplicate experiments.

cadmium, and potassium) and metalloid arsenic. Cytobacillus
oceanisediminisNB2 also exhibited resistance to Cephalothin (30
µg), Ceflnaxone (30 µg), Ceftazidime (30 µg), and Ofloxacin (2
µg), moderate susceptibility to Amoxicillin (10 µg), Bacitracin

(10 µg), and Lincomycin (2 µg), and high susceptibility to
Amikacin (10 and 30µg), Erythromycin (15µg), Novobiocin (30
µg), Oxytetracycline (30 µg), Vancomycin (30 µg), Cefotaxime
(30 µg), and Netilin (30 µg). Cytobacillus oceanisediminis NB2
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FIGURE 6 | Autoaggregation (A) and Co-AGGREGATION (B) of Cytobacillus oceanisediminis NB2 with pathogen mixture of E. coli, Staphylococcus aureus, and

Salmonella typhimurium.

did not show any bile salt hydrolysis activity. Even, a 62.90
± 0.5% growth suppression of Cytobacillus oceanisediminis
NB2 was observed in the bile-enriched medium. Cytobacillus
oceanisediminis NB2 did not show any growth suppression
in gastric conditions, while a 48.6% growth suppression was
observed in intestinal conditions. A high concentration of
lysozyme (100mg/L) suppressed theCytobacillus oceanisediminis
NB2 growth, while no effect was observed at lower lysozyme
concentration (1 mg/L).

Auto-Aggregation and Cell Surface
Hydrophobicity
The adherence properties of microbial cells are due to their
aggregation abilities. The gut isolates showed adherence to the
epithelial cells and mucosa due to their auto-aggregation activity
(Krausova et al., 2019). Cytobacillus oceanisediminis NB2 cells
showed low adherence to toluene (0.97%± 0.87), which confirms
the hydrophilic nature of the isolate and indicated its electron-
donating nature. Cytobacillus oceanisediminis NB2 showed 78.43
± 0.97% auto-aggregation after 24 h, with auto-aggregation of
15.03± 2.04%, 17.05± 2.10%, 18.82± 1.57%, and 25.81± 2.58%
after 2, 4, 6, and 10 h, respectively (Figure 6A). Cytobacillus
oceanisediminis NB2 also showed 15.89 ± 2.45 % adherence to
the Caco-2 cells. Adherence to intestinal cells is an essential
feature for successful establishment and colonization (Yadav and
Chauhan, 2022). The cellular adherence property of Cytobacillus
oceanisediminis NB2 indicated the possibility of its successful
establishment in the gut environment.

Health-Promoting Properties of
Cytobacillus oceanisediminis NB2
The probiotics can modulate pathogenic abundance by co-
aggregating with them (Yadav and Chauhan, 2022). Cytobacillus
oceanisediminis NB2 was found to co-aggregate with the
pathogenic strains. A time-dependent co-aggregation was

observed for Staphylococcus aureus (MTCC No. 96), E. coli
(MTCC No. 443), and Salmonella typhi (MTCC No. 98)
(Figure 6B). Disc diffusion assay showed an anti-pathogenic
activity for Cytobacillus oceanisediminis NB2 against three
pathogenic strains of Staphylococcus aureus (MTCC No. 96), E.
coli (MTCC No. 443), and Salmonella typhi (MTCC No. 98).
A zone of 10.8 ± 1.0mm, 12.8 ± 1.0mm, and 13.5 ± 0.5mm
growth inhibition was observed, respectively, for Staphylococcus
aureus (MTCC No. 96), E. coli (MTCC No. 443), and Salmonella
typhi (MTCC No. 98) that indicated Cytobacillus oceanisediminis
NB2-induced growth inhibition.

Anti-glycemic and anti-lipogenic effects are considered
therapeutic targets to overcome diabetic mellitus (Type-II),
obesity, and cardiovascular pathological conditions (Salehi
et al., 2020). Thus, α-amylase inhibition seems to be the prime
therapeutic target. Cytobacillus oceanisediminis NB2 has shown
9.82 ± 0.55% inhibition in the amylase activity. The isolated
microbial culture shows 14.79 ± 1.44% inhibition of the lipase
activity. Similarly, the Cytobacillus oceanisediminis NB2 showed
cholesterol-oxidizing activity. Cytobacillus oceanisediminis
NB2 also showed a significant prolylendopeptidase activity
(0.318 units/mg microbial pellet). The presence of this enzyme
activity could be helpful in removing the gluten antigen
to overcome gluten-induced celiac diseases. Cytobacillus
oceanisediminis NB2 also showed a significant lactase activity
(38.796 units/mg of the bacterial pellet), which could help
overcome lactose indigestibility issues for lactose-intolerant
individuals. Cytobacillus oceanisediminis NB2 was found to
possess alkaline phosphatase (9.54 ± 0.04 units/mg bacterial
pellet) and acid phosphatase activity (and 190.8 ± 0.16 units/mg
bacterial pellet), respectively. Phosphatase activity could play
an important role in cell proliferation and differentiation. This
microbe was also found to have peroxidase activity (2.4804 ±

0.02 units/mg bacterial pellet) of the enzyme, which could help
to overcome oxidative stress. Laccase is a multi-copper oxidase
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that was characterized to play a vital role in host health (Janusz
et al., 2020). Cytobacillus oceanisediminis NB2 was also found to
have laccase enzyme activity (0.004452 units/mg bacterial pellet).

DISCUSSION

Diet has an important impact on a healthy life (Lindefeldt
et al., 2019). Supplementation of diet with probiotic strains
can further augment human health (Wang et al., 2019). The
application of any bacteria as a probiotic strain requires
extensive characterization for safety and applicability (Yadav
and Chauhan, 2022). Recently, probiotic bacteria are being
extensively explored and characterized for their potential
therapeutics for various human disorders (Yadav and Chauhan,
2022). Probiotic strains were identified from various sources like
dairy products (Haghshenas et al., 2017; Karami et al., 2017),
fermented drinks (Angelescu et al., 2019; Setta et al., 2020),
plants (Rahman et al., 2018; Samedi and Charles, 2019), soil
(Siraj et al., 2017), and animals (Abdou et al., 2018; Li et al.,
2021). Human gut microbiota are being extensively characterized
for their health-promoting benefits; however the full potential
for their usage as microbiome therapeutics has humongous
possibilities (Yadav and Chauhan, 2022). These characterizations
are primarily performed as a consortium; however, individual-
specific microbial diversity has not been characterized to date
for assessing their suitability as probiotic strain, especially in
different geographical regions of the world as well as within large
countries like India. The lack of pure culture for a majority of gut
microbes is the major bottleneck toward their functional usage
(Lagier et al., 2015). Efforts are being made to culture human gut
microbes in laboratory conditions to characterize them for their
probiotic potential (Tang et al., 2020). Thus, the current study
was planned to explore the human gut microbiota to isolate the
human gut bacterium for probiotic applications.

In the current study, a bacterial culture was isolated from
the human feces. Biochemical, physiological, and taxonomic
characterization identifies it as a species of Bacillus. Members
of the Bacillus were characterized by diverse habitats, including
human feces, and showed a wide range of biotechnological
potential (Singh et al., 2009; Zhang et al., 2010; Kumar et al.,
2013, 2014; Patel et al., 2014; Boucherba et al., 2017). Various
Bacillus species have already been characterized for probiotic
potential (Elshaghabee et al., 2017). B. cereus, B. clausii, B.
coagulans, B. licheniformis, B. polyfermenticus, B. pumilus, and
B. subtilis are commercially used probiotics. Although various
strains of Bacilluswere studied in various organisms such as mice
and pigs, studies regarding the Bacillus strains as a probiotic
in the human body are still evolving (Hong et al., 2009).
The bacterial isolate strain NB2 was assessed for its substrate
utilization tendency where it has shown the positive esculin
hydrolysis and citrate utilization that is in line with the substrate
utilization characteristic of the other Bacillus strains (Beesley
et al., 2010). The whole-genome analysis of the bacterial isolate
strain NB2 indicated the presence of COGs associated with the
general adaptive and metabolic mechanisms required for the
microbial cell survival within the human body, thus suggesting

a strong affiliation to survive and thrive within the human host
(Yadav et al., 2020, 2021). The gut isolate was found to possess
no pathogenic islands indicating its safety considerations for
probiotic features (Li et al., 2018). The bacterial isolate strain
NB2 contains a total of 35 CAZymes. The Bacillus strains have
unique anti-cancer, anti-oxidant, anti-diabetic, as well as anti-
obesity characteristics (Elshaghabee et al., 2017). Within the
human body, the microbe may suffer various stressful conditions
such as gastric environment, heat, temperature, and pH stress.
Thus, a probiotic bacterium should possess significant features
to resist all these stressful conditions. Bacillus strain is well-
known to adapt and thrive within the host’s body (Yadav et al.,
2018). Likewise, Cytobacillus oceanisediminis NB2 was identified
to thrive in high salt, variable pH, and temperature conditions
indicating its suitability to survive in a highly variable gut
ecosystem. Bile salts pose a major challenge to microbial survival
(Bustos et al., 2018). The differential expression of bile salt
resistance proteins may influence bile tolerance of the isolated
microbe (Hamon et al., 2011).

Cytobacillus oceanisediminis NB2 showed growth in the
presence of bile salt, despite slight growth suppression indicating
its bile tolerance property. The strain/species-specific acid
tolerance might have influenced the bacterial survival in the
acidic gastric conditions (Nami et al., 2019) since certain
microbial strains are adapted to thrive in acidic conditions
(Guan and Liu, 2020). The Cytobacillus oceanisediminis NB2
did not show any growth suppression in the gastric pH in
presence of pepsin while it showed partial growth suppression
in the human intestinal conditions. These results indicate its
survivability in diverse environments, making it suitable to apply
in the human gastrointestinal ecosystem. Bacillus strains were
known to produce toxins and may transfer antibiotic resistance;
thus, a safety evaluation needs to be done (Kotowicz et al., 2019).
Cytobacillus oceanisediminis NB2 toxicity was assessed against
the Caco-2 cells. The 24-h bacterial exposure showed 89.3%
cell viability, thus, indicating it is a safe and non-toxic microbe.
Furthermore, the bacterial isolate strain NB2 did not show
hemolysis. Auto-aggregation and co-aggregation properties
are important for the anti-pathogenic potential of probiotics
(Collado et al., 2008). Auto-aggregation enables the microbes
to bind with each other and form the first line of defense
against the pathogens (Trunk et al., 2018), while co-aggregation
enables the microbial assessment for their binding capacity
with the pathogens. Cytobacillus oceanisediminis NB2 was
found to have different levels of aggregation and co-aggregation
indicating differential environmental and internal factors
(Vlková et al., 2008). Thus, this microbe can impart several
benefits to maintain intestinal health by protecting it from
pathogens. The probiotics improve the host’s health without
posing adverse effects on other microbial groups as well as the
host due to antibiotics-led dysbiosis (Plaza-Diaz et al., 2019).
The microbial factors can suppress the pathogen’s survival and
thus modulate the risk of infection. The gut isolate suppressed
the growth of three pathogenic strains, i.e., Salmonella typhi,
E. coli, and Staphylococcus. Thus, the anti-pathogenic activity
indicates that microbes can be easily used to eradicate the
overgrown pathogens within the host. The bacterial isolate
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strain NB2 was detected to possess various enzymatic activities
against various substrates. Different levels of activities were
obtained, and positive enzymatic activities indicate that the
microbe can be used to promote the metabolic capacity of the
host. The antibiotic treatment is a major threat to the host’s
health as it may modulate the other microbial strains as well
as develop microbial dysbiosis leading to infections and health
risks. The probiotics must contain the genetic features that
may provide resistance to antibiotics. The bacterial isolate
strain NB2 has shown resistance against a diverse range of
antibiotics like (Amikacin, Amoxicillin, Bacitracin, Cephalothin,
Erythromycin, Novobiocin, Oxytetracycline, Vancomycin,
Ceflnaxone, Ceftazidime, Cefotaxime, Lincomycin, Netilin,
and Ofloxacin). The presence of resistance against a range of
antibiotics would allow it to survive in presence of antibiotic
compounds. It also extends suitability when ingested with
antibiotic drugs. The adherence properties of cells are due
to their aggregation abilities. The bacterial isolate strain NB2
showed adherence to the epithelial cells and mucosa due to its
auto-aggregation activity (Krausova et al., 2019). In the present
study, the adherence ability is linked to auto-aggregation. The
bacterial isolate strain NB2 cells showed low adherence to
toluene (0.97 ± 0.87%) confirming the hydrophilic nature of the
isolate and indicating its electron-donating nature. The bacterial
isolate strain NB2 showed various health-promoting features
such as anti-amylase, anti-lipase, lactase, laccase, protease,
prolyl endopeptidase, and cholesterol-removing activities.
Dietary polyphenols induce hyperglycemic effects by binding
with the glucose transporters and inhibiting the activity of
the digestive enzymes. Carbohydrate utilization by α-amylase
produces glucose that causes an increase in blood glucose.
Thus, α-amylase inhibition is the prime target in the case of
diabetes mellitus Type-II pathophysiological condition. In the
present study, Cytobacillus oceanisediminis NB2 has shown
9.83% inhibition in the amylase activity. Phosphatases are
required for cell proliferation and differentiation (Krausova
et al., 2019). The presence of alkaline, as well as acid phosphatase
activities within the gut isolate indicated its significant survival
within the human body. The bacterial isolate strain NB2 also
possessed significant peroxidase activity that enables it to
survive under oxidative stress. Lactase is required to convert
lactose to glucose. Thus, the lactase enzyme is required for the
treatment of lactose intolerance. The significant lactase activity
within the Cytobacillus oceanisediminis NB2 indicated that
ingestion/introduction of this microbe can be beneficial for
the treatment of lactose intolerance. The presence of laccase
activity indicated the role of the microbe in the digestion and
metabolism of various phenolic compounds. To treat obesity,
the gastrointestinal absorption of fats should be first reduced

(Apovian et al., 2015). The presence of anti-lipase activity within

the Cytobacillus oceanisediminis NB2 strongly indicates its
potential for the treatment of obesity. Hypercholesterolemia is a
major concern in the modern lifestyle. The removal of cholesterol
from the blood can treat this disorder. The Cytobacillus
oceanisediminis NB2 possesses significant cholesterol-removing
ability. Though these initial characterizations strongly indicate
the probiotic potential of Cytobacillus oceanisediminis NB2,
further in vivo investigations are needed to validate its efficacy.
The health-promoting tendencies of the isolated gut microbe
can thus be harnessed to treat various disorders such as diabetes,
lactose intolerance, hypercholesterolemia, celiac disease, as well
as obesity. Microbiome engineering can thus be a significant
effort for human healthcare.
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