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Cardiocerebrovascular diseases (CCVDs) are the leading cause of death worldwide;

therefore, to deeply explore the pathogenesis of CCVDs and to find the cheap and

efficient strategies to prevent and treat CCVDs, these are of great clinical and social

significance. The discovery of nitric oxide (NO), as one of the endothelium-derived

relaxing factors and its successful utilization in clinical practice for CCVDs, provides

new ideas for us to develop drugs for CCVDs: “gas medicine” or “medical gases.” The

endogenous gas molecules such as carbon monoxide (CO), hydrogen sulfide (H2S),

sulfur dioxide (SO2), methane (CH4), and hydrogen (H2) have essential biological effects

on modulating cardiocerebrovascular homeostasis and CCVDs. Moreover, it has been

shown that noble gas atoms such as helium (He), neon (Ne), argon (Ar), krypton (Kr),

and xenon (Xe) display strong cytoprotective effects and therefore, act as the exogenous

pharmacologic preventive and therapeutic agents for CCVDs. Mechanistically, besides

the competitive inhibition of N-methyl-D-aspartate (NMDA) receptor in nervous system

by xenon, the key and common mechanisms of noble gases are involved in modulation

of cell death and inflammatory or immune signals. Moreover, gases interaction and

reduction in oxidative stress are emerging as the novel biological mechanisms of noble

gases. Therefore, to investigate the precise actions of noble gases on redox signals,

gases interaction, different cell death forms, and the emerging field of gasoimmunology,

which focus on the effects of gas atoms/molecules on innate immune signaling or

immune cells under both the homeostatic and perturbed conditions, these will help us

to uncover the mystery of noble gases in modulating CCVDs.
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INTRODUCTION

Cardiovascular diseases (CVDs) are a group of disorders of
heart and blood vessels, CVDs include primary hypertension,
pulmonary arterial hypertension, abdominal aortic aneurysm,
coronary heart disease (CHD) (especially myocardial ischemia,
which is primarily mediated by the buildup of atherosclerotic
plaque in the blood vessels that supply oxygen and nutrients
to the heart, coronary artery vasospasm, and coronary
microvascular dysfunction) (1–4), congenital heart disease,
valvular heart disease (e.g., rheumatic heart disease), myocarditis
and inflammatory cardiomyopathy, diabetic cardiomyopathy,
and other conditions, ultimately cardiac arrhythmias and/or
heart failure; additionally, cerebrovascular diseases (CBVDs), a
range of conditions influencing brain and cerebral arteries, e.g.,
ischemic stroke, also belong to CVDs; therefore, CVDs also refer
to as cardiocerebrovascular diseases (CCVDs) (5–13). Heart
attack and stroke are the representative diseases of CCVDs (14).
CCVDs are the leading cause of death globally and the statistical
data from the WHO indicate that CCVDs take an estimated
17.9 million lives each year (15). Therefore, to deeply explore
the pathogenesis of CCVDs and to find the cheap and efficient
strategies to prevent/treat CCVDs, these are of great clinical and
social significance.

The discovery of nitric oxide (NO), as one of the endothelium-
derived relaxing factors (for which the Nobel Prize in Physiology

FIGURE 1 | Noble gases have emerged as the novel preventive and therapeutic agents for cardiocerebrovascular diseases (CCVDs). The noble gas family includes

helium (He), neon (Ne), argon (Ar), krypton (Kr), xenon (Xe), and the radioactive radon (Rn). They are monatomic gases at the far right of the periodic table and are

chemically inert. Last but not least, it has been shown that most of noble gases have essential biological effects, including modulation of cell death,

immunity/inflammation, gases interaction, and oxidative stress. They have been acted as protectants for alleviating the injuries of heart, brain, blood vessels (e.g.,

endothelial cells), liver, kidney, and intestine in animal models or in human body. Therefore, noble gases therapy provides a novel idea for the prevention and treatment

of CCVDs.

or Medicine was awarded in 1998) and its successful clinical
application in CCVDs, opens a new direction for the scientists
to discover drugs for treating CCVDs: “medical gases” or “gas
medicine” (16–18). For example, the endogenous gases, including
carbon monoxide (CO), hydrogen sulfide (H2S), sulfur dioxide
(SO2), methane (CH4), and hydrogen (H2, which is primarily
produced by intestinal flora), have been shown to prevent or treat
CCVDs in animals or in human body (19–32). Recently, noble
gas family has emerged as the novel exogenous pharmacologic
preventive and therapeutic agents for CCVDs (33–38). The aim
of this comprehensive review is to summarize and discuss the
current understanding of the biological effects and mechanisms
of noble gases on CCVDs.

BASIC CHARACTERISTICS OF NOBLE
GASES

The noble gases refer to the gas atoms corresponding to all
the group 18 elements on the periodic table of the elements.
This family constitutes six naturally occurring gases: helium
(He), neon (Ne), argon (Ar), krypton (Kr), xenon (Xe), and the
radioactive radon (Rn) (38) (Figure 1). Xe was first shown to
possess anesthetic properties in 1951, whereas none of the other
five noble gases show anesthetic properties under normobaric
conditions (38, 39). At normal temperature and normal pressure,
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noble gases are odorless, colorless, and monatomic gases that
are characterized by a filled outer shell of valence electrons,
making them “inert” or at least less capable of interaction with
other compounds; therefore, they are also known as “inert gases”
(34–36, 38). However, some of these noble gases have strong
biological activities such as the properties of neuroprotection and
cardioprotection (34–36, 38).

NOBLE GASES: THE “NEW WORLD” OF
CARDIOCEREBROVASCULAR
PROTECTION

Helium
Helium is the secondmost abundant element in the universe after
H2; however, He is only sixth element in the composition of dry
air (0.00052%) (40). It is the lightest noble gas with an atomic
weight of 4 g/mol and has the lowest melting (−458◦F,−272.2◦C)
and boiling (−452.1◦F, −268.9◦C) points of all the elements
(36, 40). Due to the lower density and viscosity, heliox-21 (21%
oxygen and 79% helium), which weight is one-third compared
with air, can reduce work of breathing; therefore, heliox has been
reported to be effective in a variety of respiratory conditions,
including asthma exacerbation, post-extubation stridor, croup,
upper airway obstruction, bronchiolitis, acute respiratory distress
syndrome (ARDS), chronic obstructive pulmonary disease
(COPD), and pulmonary function testing (36, 40, 41). He has
the lower solubility than nitrogen; the mixture of helium and
oxygen rather than nitrogen and oxygen decreases the formation
of nitrogen bubbles and, therefore, alleviating decompression
illness in deep-sea divers (41). Moreover, He is safe for abdominal
insufflation andmay be the insufflating agent of choice in patients
with significant cardiopulmonary disease and laparoscopic renal
surgery (42–44). He inhalation enhanced vasodilator effect of
inhaled NO on pulmonary vessels in hypoxic dogs; this enhanced
vasodilatory effect of NO on He might be associated with
facilitated diffusion of NO diluted in the gas mixture with He
(45). In the past decade, a series of studies showed that He has
essential cytoprotective effects on endothelial cells (ECs) (46–48),
heart (49–60), brain (59, 61–67), liver (68), and intestine (69).

Helium in Endothelial Protection
Caveolin-1 (Cav-1) was secreted after He exposure in vitro,
altered the cytoskeleton, and increased the adherent junction
protein vascular endothelial-cadherin (VE-cadherin) and gap
junction protein connexin 43 (Cx43) expression thus, resulting
in decreased permeability in ECs (47). These indicated that
He protected endothelium by maintaining barrier function
and preventing leakage and tissue edema and ultimately
preserving endothelial function (47). Furthermore, the plasma
of healthy volunteers breathing He protected ECs against
hypoxic cell damage by increasing Cav-1 expression and Cav-
1 knockdown in ECs abolished this effect (48); the interesting
question is what contents from the plasma contribute to these
effects. However, another study showed that pretreating with
He increased ECs damage in vitro under the stimulation

of tumor necrosis factor-α (TNF-α) or hydrogen peroxide
(H2O2) (70).

Helium can induce preconditioning in human endothelium
in vivo: inhalation of 3 cycles of heliox21 for 5min, followed
by 5min of normal air breathing either directly before forearm
ischemia (20min) or 24 h before forearm ischemia (20min),
attenuated ischemia-reperfusion (I/R)-induced endothelial
dysfunction independent of endothelial NO synthase (eNOS),
as that the protection of He was not abolished after blockade
of eNOS (46). However, Eliana Lucchinetti et al. (71) showed
that heliox-50 (50% helium and 50% oxygen), breathing from
15min before ischemia until 5min after the onset of reperfusion,
provided modest anti-inflammatory effects, but did not restore
endothelial dysfunction of the forearm in humans in vivo. A
case report indicated that accidental inhalation of He under
high pressure can cause symptomatic cerebral and coronary
artery gas embolism (72). Therefore, the concentration, time,
and mode (continuously or intermittently) of supplying He, the
different pathological stimuli, and in vivo and in vitro might be
responsible for the above controversies.

Helium in Cardioprotection
Helium preconditioning (HePC) can considerably reduce infarct
size in myocardial I/R injury model of rabbits, young rats but
not aged rats, Zucker lean rat but not Zucker obese rats (49–
51, 73) (Table 1). These He-induced cardioprotection are related
to activating phosphoinositide 3-kinase (PI3K), p44/42 mitogen-
activated protein kinase (MAPK) (ERK1/2), p70S6 kinase
(p70s6K), cyclic AMP (cAMP)-dependent protein kinase (PKA),
cyclooxygenase-2 (COX-2), opioid receptors, mitochondrial
Ca2+-sensitive potassium channel, and mitochondrial ATP-
regulated potassium (KATP) channels (possibly producing
small quantities of ROS); inhibiting mitochondrial permeability
transition pore (mPTP) opening and NO production by eNOS
(49, 50, 53, 73–76, 78). Moreover, suppression of glycogen
synthase kinase-3 (GSK-3) or p53 lowered the threshold of He-
induced preconditioning via themPTP-dependent mechanism in
vivo (77). He also induced post-conditioning in the myocardial
I/R injury model of Zucker lean rats or male Wistar rats, these
protective effects on Wistar rats are related to increasing genes
involved in autophagy, inhibiting genes involved in apoptosis,
increasing protein levels of Cav-1/3, and activating ERK1/2 and
Akt (51, 56, 57) (Table 1). However, inhaled 30 or 60min of 70%
He during reperfusion dose does not induce cardioprotection in
male adult Wistar rats (55). This process was not accompanied
by reducing the hyperacute burst of inflammatory cytokines,
but the prolonged He inhalation might contribute to the
proinflammatory response, such as increasing cytokine-induced
neutrophil chemoattractant 3 (CINC-3) and interleukin-1β (IL-
1β) in myocardium from area at risk, but not from area not
at risk (55). Moreover, one clinical investigation indicated that
HePC (3 × 5min of 70% He and 30% oxygen was applied
before aortic cross-clamping), helium post-conditioning (15min
of He was applied before release of the aortic cross-clamp and
was continued for 5min after begin of reperfusion) or the
combination had no effects on the activation of p38 MAPK,
ERK1/2, or on the levels of protein kinase C-epsilon (PKC-ε)
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TABLE 1 | Noble gases alleviate myocardial ischemia/reperfusion (I/R) injury in animal models.

Noble gases Animals Doses and Time Key Results References

Helium Male New Zealand white rabbits

(2.5–3.0 kg)

Rabbits received 1, 3 or 5 cycles of 70% He-30% O2 for 5min

interspersed with 5min of 70% N2-30% O2 or an air-oxygen mixture

before ischemia

Reduced infarct size (49–51, 53, 54, 56, 57,

73–78)

Young male Hannover Wistar rats

(352 ± 15g)

Rats received 70% He-30% O2 for three 5-min periods, interspersed

with two 5-min washout periods 10min before ischemia

Male Wistar rats (∼328g) Rats received 70% He-30% O2, 50% He-30% O2-20% N2, or 30%

He-30% O2-40% N2 for 15min 24 h before ischemia, or received 30%

He-30% O2-40% N2 for 15min on 3, 2, or 1 day(s), interspersed by

24 h, respectively

Zucker lean rat (238–262 g) Rats received 70% He-30% O2 for three 5-min periods, interspersed

with two 5-min washout periods 10min before ischemia, or inhaled

70% He-30% O2 for 15min at the onset of reperfusion

Male Wistar rats (354–426g) Rats were subjected to 25min ischemia and 15min reperfusion, and

70% He-30% O2 post-conditioning (PostC) encompassed the entire

reperfusion phase

Male Wistar Kyoto rats (WKR) and

spontaneous hypertensive rats

(SHR) (12–14 weeks)

PostC, Late preconditioning (LPC) + PostC, or Early preconditioning

(EPC) + LPC + PostC was performed in WKR. EPC + LPC + PostC

was performed in SHR. EPC comprised 3 short cycles of 70% He-30%

O2 (5min each, with wash outs of 5min in between and a final washout

episode of 10min before ischemia). LPC was induced by 15min of

70% He-30% O2 administration 24 h before ischemia. PostC was

induced by 15min of 70% He-30% O2 administration since the

beginning of reperfusion

Neon Male New Zealand white rabbits

(2.5–3.0 kg)

Rabbits received 3 cycles of 70% Ne-30% O2 for 5min interspersed

with 5min of 70% N2-30% O2 before ischemia

Reduced infarct size (73)

Argon Male New Zealand white rabbits

(2.5–3.0 kg)

Rabbits received 3 cycles of 70% Ar-30% O2 for 5min interspersed

with 5min of 70% N2-30% O2 before ischemia

Reduced infarct size (73, 79)

Male Wistar rats (240–380g) Inhalation of 80% Ar-20% O2 for 20min starting 5min before

reperfusion

Preserved left ventricular function

at 1 and 3 weeks after surgery

Krypton No report yet No report yet No report yet None

Xenon New Zealand white rabbits

(2.7–3.4 kg)

Inhalation of 70% Xe-30% O2 during first 15min of reperfusion Reduced infarct size (80–87)

Male Wistar rats (275–350g) Administration of 20% Xe-80% O2 was commenced 3min prior to, and

discontinued 30min after, the onset of reperfusion. Moreover, active

cooling was commenced 5min prior to, and hypothermia maintained

for 1 h after, the onset of reperfusion

Male Wistar rats (200–250 or

300–450g)

Rats received 70% Xe-25% O2-5% N2 for three 5-min periods,

interspersed with two 5min and one final 10-min washout periods

before ischemia

Male Wistar rats (280–340g) Rats received 3 cycles of 70% Xe-30% O2 administered for 5- min

periods interspersed with 5 -min intervals 70% N2-30% O2 following by

a final 15-min interval of 70% N2-30% O2 before ischemia

Male Wistar rats (200–250g) 24 h before ischemia, rats received 70% Xe-30% O2 for 15min

Radon No report yet No report yet No report yet None
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and heat-shock protein 27 (HSP27) in patient hearts undergoing
coronary artery bypass graft surgery; HePC and helium post-
conditioning did not affect postoperative troponin release in
these patients (58). In contrast to the healthy Wistar Kyoto
rats (WKRs), only a triple intervention of He conditioning
can reduce cell damage after myocardial I/R in spontaneous
hypertensive rats (SHR), suggesting the presence of a threshold
in the hypertensive heart (54) (Table 1). An in-vitro study
indicated that He conditioning contributed to cardioprotection
by increasing fibroblast migration, but not by releasing protective
medium extracellular vesicles or soluble factors from the cardiac
fibroblasts (88). Our recent study indicated that intraperitoneal
injection of 99.999% He gas improved lipopolysaccharide (LPS)-
induced left ventricular dysfunction and cavity enlargement in a
dose-dependent manner, it is better at the dose of 1.0 ml/100 g
(89). Mechanistically, He inhibited Toll-like receptor 4 (TLR4)
expression, reduced the phosphorylation of nuclear factor-kappa
B (NF-κB), and subsequently alleviated interleukin-18 (IL-18)
and TNF-α expression in heart (89). The dose effect of He gas
has also been confirmed in intestine; the HePC profile consisting
of three cycles of 10 or 15min He breathing interspersed with
three 5-min washout periods by breathing room air reduced
I/R-induced intestinal injury, inflammatory response, and cell
apoptosis; however, the 2- or 5-min He breathing dose does not
confer any protective effects (69).

Helium in Neuroprotection
Helium displayed neuroprotective effects on a traumatic brain
injury model in vitro (61) and in a decompression-induced
neurological deficits model in vivo (90). Breathing 70% He
during a middle cerebral artery occlusion (MCAO) for 2 h and
early reperfusion (1 h) reduced infarct volume and improved
neurological deficits 24 h after MCAO in rats (91). Seventy-
five percentage He treatment from 1 h after reperfusion to 4 h
after reperfusion also provided neuroprotection by producing
hypothermia in rats (62). In a rat resuscitation model, HePC
and He post-conditioning (received 70% He and 30% oxygen
for 5min before cardiac arrest and for 30min after restoration
of spontaneous circulation) reduced apoptosis in brain, but
had no influence on viable neuron count and no beneficial
effects were seen on neurofunctional outcome (59). He-PC-
induced NO production and subsequent NO-mediated up-
regulation of antioxidases (e.g, nuclear factor E2-related factor
2), angiogenesis, and inhibition of inflammation and apoptosis,
all contributed to the neuroprotective effect of helium in a
neonatal cerebral hypoxia/ischemia model (63, 65, 66). However,
in a clinical perspective for the treatment of acute ischemic
stroke, He should not be administered before or together
with tissue plasminogen activator therapy due to the risk of
inhibiting the benefit of tissue plasminogen activator-induced
thrombolysis; He therapy could be an efficient neuroprotective
agent, if given after tissue plasminogen activator-induced
reperfusion (64).

Helium in Hepatic Protection
Fukuda et al. have confirmed that inhalation of H2 gas (1–4%
at 10min before reperfusion until the end of reperfusion)

suppressed hepatic I/R (90/180min) injury through reducing
oxidative stress in male C57 BL/6N mice (4–5 weeks old, 15–
18 g); however, 4% He gas showed no protective effect (92).
Similarly, HePC (three cycles of ventilation with inhalation of
mixture of 70% He and 30% oxygen for 5min, each followed
by 5-min washout with inhalation of mixture of 30% oxygen
and 70% nitrogen) did not attenuate hepatic I/R (45/240min)
injury in male Wistar rats (300 ± 30 g), although there was
evidence for a modulation of the inflammatory response (93).
In contrast, Zhang et al. have revealed that HePC (70%
He-30% oxygen mixture inhalation for three 5-min periods
interspersed with three 5-min washout periods using room
air) alleviated 90min ischemia-induced liver injury at 1, 3,
and 6 h after reperfusion in male BALB/c mice (25–30 g);
mechanistically, activation of hepatic adenosine A2A receptor-
PI3K-Akt axis, alleviation of necrosis and apoptosis, reduction
of IκBα phosphorylation, and TNF-α, interleukin-6 (IL-6),
monocyte chemotactic protein-1 (MCP-1) and chemokine (C-X-
C motif) ligand 10 (CXCL10, IP-10) expression, and inhibition
of inflammatory cell infiltration in liver all contributed to
this protective effects of HePC (68). The difference of animal
strains, the time of I/R, and even the gas mixture used in
washout periods might be responsible for these controversy.
Furthermore, Zhang et al. have confirmed that HePC-induced
protection in hepatic I/R injury and Akt activation were
dependent on the interaction between He inhalation and
air gaps, but not any of the two factors alone (68). As
the protection of the intermittent pattern of He inhalation,
drinking hydrogen-rich water, or intermittent hydrogen gas
exposure, but not lactulose or continuous hydrogen gas exposure,
prevented 6-hydroxydopamine-induced Parkinson’s disease in
rats (94). Therefore, the continuous heliox inhalation, rather than
intermittent pattern, might be responsible for the none alteration
of myocardial infarct size or the extent of no reflow in rabbits
with continuous heliox breathing during 30min of ischemia and
180min of reperfusion (95).

Argon
Argon in Neuroprotection
When 7-day-old postnatal Sprague-Dawley rats subjected to
hypoxic-ischemia (moderate) injury, 2 h after hypoxic insult,
exposure of He, Ar, and Xe (70% noble gas balanced with
oxygen) for 90min improved cell survival, brain structural
integrity, and neurologic function on postnatal day 40 compared
with nitrogen, whereas only Ar and Xe reduced infarct volume
after more severe hypoxic-ischemic injury (96). The in-vivo
and in-vitro studies indicated that Ar acted as a protector
for cerebral ischemia injury, brain trauma, and cardiac arrest-
induced neurological damage (97–110). The neuroprotective
effects of Ar were involved in inhibiting microglia/macrophage
activation and enhancingM2microglia/macrophage polarization
(107, 109, 110), reducing stress-activated protein kinase/c-Jun
N-terminal kinase (SAPK/JNK) activation and high mobility
group protein B1 (HMGB1) expression (106), inhibiting TLR2/4-
mediated activation of signal transducer and activator of
transcription 3 (STAT3) and NF-κB, and subsequently decreasing
IL-8 expression (111).
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Argon in Cardioprotection
Argon displayed cardioprotective effects both in vitro and in
vivo (73, 79, 106, 112, 113). Pre-treatment with 30 or 50%
Ar for 90min before oxygen-glucose deprivation protected
human cardiac myocyte-like progenitor cells against apoptosis
via activation of ERK, Akt, and biphasic regulation of JNK
(113). Preconditioning with three cycles of 50% Ar (50% Ar,
21% oxygen, and 29% nitrogen) for 5min, interspersed with
5min of 79% nitrogen-21% oxygen in vivo, enhanced post-
ischemic cardiac functional recovery following cardioplegic
arrest and global cold ischemia in vitro; this protective effect
of Ar was related to improving cardiac energy metabolism,
inhibiting JNK phosphorylation, and HMGB1 expression (106).
The cardioprotection of Ar on ischemia was also confirmed in
rabbit in vivo (73) (Table 1). Lemoine et al. have further revealed
the therapeutic effect of Ar on left ventricular dysfunction
in myocardial I/R injury in vivo, in which Ar activated
PI3K/Akt mitogen-activated protein kinase kinase (MEK)-
ERK1/2 signaling, inhibited the opening of mitochondrial
permeability transition pore (79) (Table 1).

Argon in Hepatic Protection
Argon is the key modulator of IL-6 expression in different
liver injury models. Under the physiological conditions, IL-
6 is essential for proper hepatic tissue homeostasis, liver
regeneration, infection defense, and fine-tuning of metabolic
functions, while persistent activation of IL-6 seems to be
detrimental, impairs liver regeneration and can even lead to
the development of liver cancer (114, 115). Inhalation of 50%
Ar inhibited liver regeneration after hepatic I/R or after partial
hepatectomy in rats, the former may be related to upregulation
of IL-1β and IL-6 in liver, and the latter may be related
to the downregulation of hepatocyte growth factor (HGF)
and IL-6 (116, 117). Breathing 70% Ar in a rabbit model
of abdominal aorta occlusion for 30min and reperfusion for
300min also reduced the plasma concentrations of IL-6 and
HMGB1, improved hepatic and renal injuries (118). The detail
mechanisms of Ar-mediated IL-6 expression are not clear.

Xenon
Xenon in Neuroprotection
As that of Ar, Xe also has essential neuroprotective effects
and it has been extensively investigated in the animal models
of ischemia- and/or hypoxia-induced nervous system damage,
such as, stroke, brain trauma, and hypoxic-ischemic injury in
rat hippocampus (61, 96, 119–135). Glutamate mediates most
excitatory neurotransmission in the mammalian central nervous
system; normal activation of glutamate receptors mediates, in
large measure, physiological excitatory synaptic transmission in
the brain and is, therefore, crucial for the normal functioning
of nervous system (136, 137). However, among three classical
glutamate-gated ion channels, excessive activation of N-methyl-
D-aspartate receptor (NMDA-R) leads to increasing intracellular
calcium concentrations and the consequent production of
damaging free radicals and activation of proteolytic processes
that contribute to cell injury or death (136, 138). Xe has been
identified to competitively inhibit the glycine site of NMDA-R,

thus contributing to neuroprotective effects (128, 133, 139, 140)
and it has carried out several clinical trials on brain–heart injury
after cardiac arrest and achieved the positive results (141–143).

Xenon in Cardioprotection
Xenon is a new type of gaseous anesthetic with minimal
hemodynamic side effects, thus, it is an ideal anesthetic for
patients with heart damage (80, 144), while it has been suggested
that Xe should be used with caution in patients with known
intracranial hypertension (145–148). Global administration of
50 or 70% Xe only significantly reduced left ventricular systolic
pressure and the maximum rate of pressure increase (dP/dtmax),
the regional myocardial function and coronary blood flow in
left anterior descending coronary artery- and left circumflex
coronary artery-dependent myocardium were not changed;
regional administration of 50 or 70% Xe only to the left
anterior descending-perfused myocardium had no influence
in global hemodynamics, regional myocardial function, and
coronary blood flow in the circumflex coronary artery-dependent
myocardium, while 70% xenon, rather than 50% xenon, reduced
systolic wall thickening by 7.2 ± 4.0% and mean velocity of
systolic wall thickening by 8.2 ± 4.0% in the left anterior
descending coronary artery-perfused area, resulting in a small but
consistent negative inotropic effect on beagle dog heart in vivo
(149). Forty or 80% Xe did not significantly alter NO-dependent
flow response, the electrical, mechanical, or metabolic effects
in isolated guinea pig hearts, possibly due to no alteration of
major cation currents in cardiomyocytes by Xe (150). Moreover,
breathing 70% Xe had only minimal negative inotropic effects
on rabbits with left ventricular dysfunction after coronary artery
ligation (151). Schroth et al. also showed that 65%Xe did not alter
myocardial contractility and the response to inotropic stimuli
such as calcium, isoproterenol, or increase in pacing frequency
in isolated guinea pig ventricular muscle bundles (144). The
biological mechanisms of cardiovascular stability and unchanged
muscle sympathetic activity during Xe anesthesia have been
revealed by the Peter Kienbaum group; they found that the
increased concentrations of norepinephrine at the synaptic cleft
and in plasma by Xe in an NMDA-R-dependent mechanism
contributed to the hemodynamic stability of patients during Xe
anesthesia (152).

However, Xe (0, 20, 50, and 65%), in addition to basic
intravenous anesthesia, has been shown to elicit downregulation
of heart rate and cardiac output with no change in mean arterial
pressure, decrease portal venous blood flow with no change
in hepatic arterial blood flow, and reduce total hepatic oxygen
delivery and venous hepatic oxygen saturation, but did not
impair intestinal oxygenation in pigs (153, 154). 73–78% Xe with
additional supplementation of pentobarbital and buprenorphine
increased oxygen contents of hepatic venous blood in pigs
(155). These indicate that the basic intravenous anesthesia might
influence the effects of Xe on cardiovascular activities and hepatic
oxygen contents.

Under pathological conditions, 70% Xe inhalation in the early
stage of reperfusion can reduce infarct size after myocardial
ischemia in rabbits (81); combined application of 20% Xe
and 34◦C hypothermia in early reperfusion can also reduce
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myocardial infarction size in rats (82) (Table 1). The mechanisms
of Xe in cardioprotection have been relatively clear. Xe first
activates mitochondrial KATP channel and phosphatidylinositol-
dependent kinase-1 (PDK-1); these two activates PKC-ε, PKC-
ε activates p38 MAPK, subsequently, two downstream targets
of p38 MAPK, MAPK-activated protein kinase-2 (MAPKAPK-
2/MK-2) and HSP27, are phosphorylated, and then, induces the
translocation of HSP27 to particulate fraction and increases F-
actin polymerization (80, 83, 84). Besides p38 MAPK, ERK1/2,
and COX-2 are essential mediators of Xe preconditioning
(85, 86); Xe can also induce the phosphorylation of Akt and
GSK-3β, inhibit Ca2+-induced opening of mPTP, and preserve
mitochondrial function (87). Similar to Ar, Xe also acts as an
inhibitor of NF-κB activation and prevents adhesion molecule
expression in TNF-α-treated ECs in vitro (156). The saturation
point of Xe in water without a cage vehicle for encapsulation of
xenon was 0.22mM; when the cage molecule 2-hydroxypropyl-
β-cyclodextrin (HPCD) was added, Xe solubility increased from
0.22 to 0.67mM; supplement of this Xe-enriched solutions by
gavage improved hypertension and left ventricular hypertrophy
and dysfunction in aged apolipoprotein E (ApoE)-knockout mice
fed high-fat diet (HFD) for 6 weeks (157).

Xenon in Renoprotection
Both the Ar and Xe have been shown as renoprotectants in
kidney transplantation (158, 159). In addition, 70% Xe has
been reported to improve kidney function and renal histology
and decrease neutrophil chemoattractants expression in kidney,
thereby attenuating the glomerular neutrophil infiltration in
an accelerated and severe lupus nephritis model in female
NZB/W F1 mice (160). This protective effects of Xe on kidney
was mediated by enhancing renal hypoxia inducible factor 1-
α expression; decreasing serum levels of antidouble-stranded
DNA autoantibody; and inhibiting ROS production, glomerular
deposition of IgG and C3 and apoptosis, nucleotide-binding
oligomerization domain (NOD)-like receptor family protein 3
(NLRP3) inflammasome and NF-κB activation, and intercellular
cell adhesion molecule-1 (CD54 or ICAM-1) expression in
kidney (160). The role of Xe and other noble gases on the
activation or inhibition of other forms of inflammasomes still
need further investigation.

Neon and Kr
The biological effects of Ne and Kr have been relatively few
investigated in the past. Similar to He and Ar, Ne has also
been shown to reduce the infarct area in rabbit model of
myocardial I/R injury (73) (Table 1). Kr gas can promote
the survival rate of Japanese quails embryos under acute
hypoxia, Kr partial pressure of 5–5.5 kg/cm2 produces the
narcotic effect on adult Japanese quails (161). However, in
hypoxia/glucose deficiency injury model and in focal mechanical
injury model of mouse hippocampal slices, only Ar and Xe
showed the neuroprotective effects, while He, Ne, and Kr
did not show neuroprotective effects (128, 133). Thus, the
biological effects and mechanisms of Ne and Kr are worthy of
further exploration.

Radioactive Rn
Radon is an imperceptible natural occurring radioactive noble
gas that exists in soil, water, and outdoor and indoor air;
exposure to Rn accounts for more than 50% of the annual
effective dose of natural radioactivity, it contributes as the
largest single fraction to radiation exposure from natural sources
(162, 163). Rn is a recognized pathogenic factor of human lung
cancer, it is the second leading cause of lung cancer death
after tobacco smoke (162). However, a certain dose of Rn has
been reported for treating chronic musculoskeletal diseases, e.g.,
ankylosing spondylitis, osteoarthritis, or rheumatoid arthritis,
these effects may be related to the regulation of oxidative stress
and inflammation (163).

PERSPECTIVE

The noble gases are chemically inert because their outer electron
orbitals are completely filled; however, they have been found to
be very biologically active (159, 164). The noble gas family has
emerged as the essential cellular or organic protectants such as in
ECs, heart, brain, liver, kidney, and intestine; therefore, it protects
against CCVDs (Figure 1).

Helium, Ar, and Xe displayed the neuroprotective effects on
acute brain I/R injury models in vivo or in vitro. He, Ne, Ar,
and Xe can reduce infarct size; Ar can improve the impaired
left ventricular function in myocardial I/R injury animal models;
however, the roles of other noble gases on left ventricular
function under I/R or other pathological conditions still need
further investigation (Table 1). It has been reported that oral
administration of 6 weeks of Xe-enriched solution can be a
promising nutraceutical strategy for cardiovascular protection
(157). However, the effects of noble gases on chronic CCVDs and
the side effects of long-time supplement of noble gases still need
further investigation.

Besides competitively inhibiting NMDA-R by Xe in
nervous system, modulation of cell death (mainly apoptosis),
inflammatory or immune signals, oxidative damage, and
gases interaction are the essential mechanisms of noble gases
(Figure 1). The detail roles of noble gases on redox signaling,
necrosis, autophagy, pyroptosis, and ferroptosis, which all play
essential roles in CCVDs (165–167), and on other novel cell
death types, such as alkaliptosis (168) and oxeiptosis (169),
still need further investigation. The modulation of TLR4
signaling by He (89), NLRP3 inflammasome by Xe (160), and
TLR2/4-mediated signaling by Ar (111) indicated that noble
gases might act as essential modulators of innate immune
signaling. Innate immune signaling is a complex cascade that
quickly recognizes pathogen-associated molecular patterns
(PAMPs) or damage-associated molecular patterns (DAMPs)
through multiple germline-encoded cell surface or cytoplasmic
pattern recognition receptors (PRRs), then, transmits signals
through adaptors, kinases, and transcription factors, resulting
in the production of cytokines (170–174). The mammalian
host innate defense system utilizes more than 50 PRRs, which
can be divided into two classes: the membrane-bound PRRs
[including TLRs, C-type lectin receptors (CLRs), and receptors
for advanced glycation end-products (RAGE)] and the cytosolic
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PRRs [including RIG-I-like receptors (RLRs), NOD-like
receptors (NLRs), absent in melanoma 2 (AIM2)-like receptors
(ALRs), and other nucleic acid-sensing receptors] (173, 174).
Gasoimmunology, which investigates the effects of medical gases
(such as NO, CO, H2S, SO2, H2, CH4, and noble gases) on
innate immune signaling or on immune cells under both the
homeostatic and perturbed conditions, will help us to open a
novel door for medical gases investigation. Moreover, NO, CO,
H2S, SO2, H2, and CH4 are essential endogenous gas molecules
in modulating cardiocerebrovascular homeostasis (19–32). The
cardioprotection of He is partially mediated by inducing NO
production through eNOS in rabbits (78). It is not clear whether
other noble gases can influence the levels and/or activities
of these endogenous gases, if they can, what will happen to
cardiocerebrovascular homeostasis and CCVDs?

It is not known the action forms of noble gases in vivo, by gases
directly (in the alveolus where a gas phase exists) or dissolved
non-electrolytes at very low concentration and with extremely
weak interactions with other atoms/molecules. Therefore, as that
of the small molecule signaling agents NO, CO, H2S, and their
derived species, the physical or chemical interactions between
noble elements and biological targets will be an important
factor in their roles as signaling agents; thus, a fundamental
understanding of the physics, chemistry, and biochemistry of
noble gas atoms will be essential to understand their biological,
physiological, or pathophysiological utility (175).
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