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Abstract

The patterns of genetic variation within and among individuals and populations can be used to make inferences about the evolutionary
forces that generated those patterns. Numerous population genetic approaches have been developed in order to infer evolutionary
history. Here, we present the “Two-Two (TT)” and the “Two-Two-outgroup (TTo)” methods; two closely related approaches for estimating
divergence time based in coalescent theory. They rely on sequence data from two haploid genomes (or a single diploid individual) from
each of two populations. Under a simple population-divergence model, we derive the probabilities of the possible sample configurations.
These probabilities form a set of equations that can be solved to obtain estimates of the model parameters, including population split
times, directly from the sequence data. This transparent and computationally efficient approach to infer population divergence time makes
it possible to estimate time scaled in generations (assuming a mutation rate), and not as a compound parameter of genetic drift. Using
simulations under a range of demographic scenarios, we show that the method is relatively robust to migration and that the TTo method
can alleviate biases that can appear from drastic ancestral population size changes. We illustrate the utility of the approaches with some
examples, including estimating split times for pairs of human populations as well as providing further evidence for the complex relationship
among Neandertals and Denisovans and their ancestors.
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Background
Many population genetic inference approaches compare levels of
genetic variation within and across genomes, individuals and/or
populations in order to uncover their evolutionary history. A mul-
titude of demographic inference methods have been developed in
order to capitalize on the wealth of information that comes with
the availability of full genomes from multiple individuals (see
Schraiber and Akey 2015, for a review).

The sheer scale and complexity of whole-genome data sets
poses its own challenge for making inference of population de-
mographic parameters. A common approach for inference has
been to compare the observed data, often summarized in some
statistic, to simulated data that can be generated under a range
of population-genetic models. Building on this idea and combined
with a rejection algorithm, Approximate Bayesian computation
(ABC; Tavaré et al. 1997; Beaumont et al. 2002; Cornuet et al. 2014;
Pudlo et al. 2016) has proven to be one useful tool for both model
choice and parameter estimation. However, the problem of
choosing which models to test is not trivial for most inference
approaches, including ABC, as the set of models to choose from is
very large.

In parallel, there have been recent developments in methods
that use haplotype information. A challenge for these approaches
is how to model the dependence of genealogies along a sequence.
One solution has been to approximate the full ancestral

recombination graph, a method used in the pairwise sequentially

Markovian coalescent (PSMC) (Li and Durbin 2011) and similar

approaches (Schiffels and Durbin 2014; Terhorst et al. 2017;

Kelleher et al. 2019; Speidel et al. 2019; Wang et al. 2020).
Another strategy has been to rely on relatively short genetic

fragments located sufficiently far away from each other to be

able to assume linkage equilibrium between loci, combined with

absolute linkage (absence of recombination) within each locus

(e.g. Gronau et al. 2011). Both these approaches typically lead to

set-ups that cannot be solved analytically and often rely on com-

putationally heavy, advanced statistical methods in order to esti-

mate parameters (but see Gattepaille et al. 2016; Lohse et al. 2016).

A related strategy is to assume independence among sites, using

a composite likelihood framework (Gutenkunst et al. 2009;

Excoffier et al. 2013). From this assumption, the observed varia-

bles (i.e. frequency spectra) do not depend on the full distribution

of genealogical branch lengths, they are functions only of the

expected branch lengths (Griffiths and Tavaré 1998; Chen 2012).

This observation greatly simplifies the probability computations.

To the extent that closed-form solutions can be obtained, the as-

sumption of independence between sites also leads to inference

tools that are easier to integrate with other methods, and can

provide useful insights into underlying processes (Beichman et al.

2017; Terhorst et al. 2017). Conversely, a disadvantage of assum-

ing independence between sites is that only information
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concerning the expected values can be obtained, rather than the
full distributions of stochastic variables.

For small samples, an alternative is to derive closed-form
expressions for the probability of observing particular configura-
tions of variants in simple divergence models, including the
isolation-with-migration model (Wakeley and Hey 1997;
Wilkinson-Herbots 2008; Chen 2012). Lohse et al. (2011, 2016)
showed that more generally, the probability of observing a partic-
ular variant configuration can be obtained from a generating
function of genealogical branches. Assuming independence
among sequence-blocks, Lohse et al. (2011, 2016) outlined an ap-
proach for computing the likelihood under various demographic
models and sampling schemes.

Regardless of whether independence between sites is assumed
or not, all of these methods can be useful for inferring the time of
divergence between two populations. Examples of simple and di-
rect methods used to estimate population divergence times in-
clude: Gutenkunst et al. (2009),Wakeley (2009),Green et al.
(2010),Schlebusch et al. (2012), and Theunert and Slatkin (2018).
These methods build on the principle of genetic drift accumulat-
ing as a function of effective population size and number of gen-
erations. Following a population backwards in time, and using
that the accumulated drift at generation t is:

Xt

i¼1

1
2NðiÞ ;

where N(i) is the (effective) number of individuals at generation i,
the divergence time is then the number of generations required
to generate the estimated drift. Such estimates are typically not
dependent on knowing the mutation rate but some assumptions
regarding N(i) is required, either by assuming a fixed effective
population size or depending on an estimated function of N(i).

Alternatively, one can base the divergence time estimate on
an assumed mutation rate (e.g. Wakeley and Hey 1997; Chen
2012; Pickrell et al. 2012). By assuming independence among sites,
in a two-population divergence model (without migration), the
probability of observed sample configurations (summarized as
the full site frequency spectrum (SFS), including invariable sites)
can be derived analytically. Using a likelihood framework, we can
then estimate parameters of interest in the divergence model.
Here, we present two simple approaches based on picking two
gene copies from each of two populations: the “Two-Two” (TT)
method, which was briefly introduced in Schlebusch et al. (2017)
and the “Two-Two-outgroup” (TTo) method. These are suffi-
ciently simple to allow for analytical solutions giving closed for-
mulas for the estimates of the model parameters based on the
counts of different sample configurations.

Specifically, assuming a mutation rate and generation time,
we can estimate population divergence time separately from
genetic drift since the model is parametrized with both a drift pa-
rameter and a time parameter.

Observed data
For the purpose of investigating the demographic relationship be-
tween two populations denoted population 1 and population 2,
assume that two gene copies have been sampled from each pop-
ulation. For bi-allelic sites, assume that the ancestral (denoted
“0”) and the derived variant (denoted “1”) is known. The number
of derived alleles in a sample from population 1 combined with
the number of derived alleles in as sample from population 2 is

referred to as the joint frequency spectra (e.g. Chen 2012). In our
set-up, the sample size from both populations is two so that the
number of derived is either 0, 1, or 2, and there are 9 possible
sample configurations, which are presented in Table 1. The ob-
served number of sites with sample configuration Oi;j will be
denoted by mi;j and the total number of investigated sites by mtot.

Theory
We study a general population divergence model where the
population-branch leading to population 1 and the population-
branch leading to population 2 merge (backwards in time) to be-
come the ancestral population. The model makes no assump-
tions regarding population size and/or population structure
changes in the daughter populations. The model assumes no mi-
gration between the two daughter populations and that these
merge into a panmictic ancestral population.

We use the following notation, with time measured in number
of generations:

t1, time to split for population 1;

t2, time to split for population 2;

a1, probability of two lineages in population 1 not coalescing

before t1;

a2, probability of two lineages in population 2 not coalescing

before t2,

n1, expected time to coalescent in population 1 given coales-

cingbefore t1; and

n2, expected time to coalescent in population 2 given coalesc-

ing before t2.

In addition to the drift parameters a1 and a2, the parameters �1

and �2 are needed because two branches with the same time-
length and the same drift can have different distributions of coales-
cence times. To illustrate, a linearly growing population that starts
with size N and ends with size 2N will have the same drift as a
shrinking population that starts with size 2N and ends with size N
but they will not have the same distribution of coalescent times
within that interval. These parameters also cover cases when the
daughter populations are not panmictic. A similar parametrization
can be found, for instance, in Rogers and Bohlender (2015).

The composite likelihood assumption of independence be-
tween sites implies that the probability of a mutation on a spe-
cific branch in a genealogy is the expected length of that branch
(given a demographic model) multiplied by the mutation rate. We
denote the mutation rate per site and generation by l, assume in-
dependence between sites, and an infinite sites model.

We define the following events for the two sampled lineages
for each population:

H1 : a coalescence in population 1 beforet1; PðH1Þ ¼ 1� a1

H2 : a coalescence in population 2 beforet2; PðH2Þ ¼ 1� a2:

With 2 � k � 4 lineages surviving to enter the ancestral pop-
ulation (depending on whether coalescence events have occurred

Table 1 Notation for the number of sites with 0, 1, or 2 derived
variants in the sample from population 1 and the sample from
population 2

0 in population2 1 in population2 2 in population2

0 in population 1 O0;0 O0;1 O0;2

1 in population1 O1;0 O1;1 O1;2

2 in population 1 O2;0 O2;1 O2;2
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in the daughter populations), we define Ak to be the number of
derived variants in a sample of size k drawn at the split time in
the ancestral population and write aki ¼ PðAk ¼ iÞ. To illustrate
how the probabilities of the sample configurations are derived,
we can take an example conditional on no coalescent event in
population 1 and a coalescent event in population 2 (the event
:H1 ^ H2). There are then three lineages entering the ancestral
population. These lineages constitute a sample of size 3 from the
ancestral population. Sample configuration O1;0 will then be ob-
served with probability ð2=3Þa31 (the ancestral variant has to be
assigned to the lineage entering population 2; an event with prob-
ability 2/3) plus the probability that a mutation occurs on either
lineage entering population 1 during the time interval t1. The
probability that a mutation hits a branch of length t1 is lt1, and
the probability that this happens and that the derived variant al-
ready exists in the ancestral population can be ignored as it
requires two mutational events at the same site. Thus, condi-
tional on :H1 ^ H2; PðO1;0Þ ¼ ð2=3Þa31 þ 2lt1. The same reasoning
can be applied to derive the conditional probabilities for all seven
(polymorphic) sample configurations and these are shown in
Table 2.

Since a subsample of size n randomly drawn from a larger
sample of size nþ k has the same distribution as a sample of size
n drawn directly from the population, we can reduce the number
of parameters by replacing all aij with i< 4 using aij-terms with
i¼ 4 as follows:

a21 ¼ PðA2 ¼ 1Þ ¼
X4

i¼0

PðA2 ¼ 1jA4 ¼ iÞa4i ¼
1
2

a41 þ
2
3

a42 þ
1
2

a43

a31 ¼ PðA3 ¼ 1Þ ¼ 3
4

a41 þ
1
2

a42

a32 ¼ PðA3 ¼ 2Þ ¼ 1
2

a42 þ
3
4

a43:

These equations together with Table 2 allow us to derive the
probabilities for the different sample configurations. For in-
stance:

PðO1;0Þ ¼ ð1� a1Þð1� a2Þ2lm1 þ ð1� a1Þa22lm1

þa1ð1� a2Þ
2
3

a31 þ 2lt1

� �
þa1a2

1
2

a41 þ 2lt1

� �
¼ 2ð1� a1Þlm1 þ 2a1 lt1 þ

1
4

b1

� �
þ 1

3
a1ð1� a2Þb2

;

where bi ¼ a4i ¼ PðA4 ¼ iÞ.
Using the same strategy for the derivation of the other

six probabilities, we obtain the probabilities for all seven sample
configurations in Table 2. Writing pi;j ¼ PðOi;jÞ for brevity, these
are:

p1;0 ¼ 2ð1� a1Þlm1 þ 2a1 lt1 þ
1
4

b1

� �
þ 1

3
a1ð1� a2Þb2

p0;1 ¼ 2ð1� a2Þlm2 þ 2a2 lt2 þ
1
4

b1

� �
þ 1

3
ð1� a1Þa2b2

p2;0 ¼ ð1� a1Þ lt1 þ
1
4

b1

� �
� ð1� a1Þlm1

þ 1
6
ð2� a1 � a2 þ a1a2Þb2 þ

1
4
ð1� a2Þb3

p0;2 ¼ ð1� a2Þ lt2 þ
1
4

b1

� �
� ð1� a2Þlm2

þ 1
6
ð2� a1 � a2 þ a1a2Þb2 þ

1
4
ð1� a1Þb3

p1;1 ¼
2
3

a1a2b2

p2;1 ¼
1
3
ð1� a1Þa2b2 þ

1
2

a2b3

p1;2 ¼
1
3

a1ð1� a2Þb2 þ
1
2

a1b3

(1)

Furthermore, if we assume a (indefinitely) panmictic ancestral
population (Figure 1A), we define:

T4i

to be the number of generations a coalescent process that starts
with four lineages at the (most recent) base of the ancestral pop-
ulation spends with i lineages, so that the time to the most recent
common ancestor (Tmrca) is Tmrca ¼ T44 þ T43 þ T42. Then (see
Appendix):

b1 ¼ PðA4 ¼ 1Þ ¼ 2
3

lE½T42� þ 2lE½T43� þ 4lE½T44�;

b2 ¼ PðA4 ¼ 2Þ ¼ 2
3

lE½T42� þ lE½T43�;

b3 ¼ PðA4 ¼ 3Þ ¼ 2
3

lE½T42�:

Writing si ¼ lE½T4i�, and replacing the bi with their respective
expression in terms of si, the probabilities for the different sample
configurations can be expressed as:

p1;0 ¼ 2ð1� a1Þlm1 þ 2a1ðlt1 þ s4Þ

þ 1
9

a1ð4� a2Þð2s2 þ 3s3Þ �
1
3

a1s2

p0;1 ¼ 2ð1� a2Þlm2 þ 2a2ðlt2 þ s4Þ

þ 1
9
ð4� a1Þa2ð2s2 þ 3s3Þ �

1
3

a2s2

p2;0 ¼ ð1� a1Þðlt1 þ s4 � lm1Þ

þ 1
18
ð5� 4a1 � a2 þ a1a2Þð2s2 þ 3s3Þ þ

1
6
ða1 � a2Þs2

p0;2 ¼ ð1� a2Þðlt2 þ s4 � lm2Þ

þ 1
18
ð5� a1 � 4a2 þ a1a2Þð2s2 þ 3s3Þ þ

1
6
ða2 � a1Þs2

p1;1 ¼
2
9

a1a2ð2s2 þ 3s3Þ

p2;1 ¼
1
9

a2ð1� a1Þð2s2 þ 3s3Þ þ
1
3

a2s2

p1;2 ¼
1
9

a1ð1� a2Þð2s2 þ 3s3Þ þ
1
3

a1s2

p0;0 þ p2;2 ¼ 1�
X

0< iþj<4

pi;j

(2)

Table 2 Conditional probabilities

H1 ^H2 H1 ^ :H2 :H1 ^H2 :H1 ^ :H2

O1;0 2lm1 2lm1
2a31

3 þ 2lt1
a41
2 þ 2lt1

O0;1 2lm2
2a31

3 þ 2lt2 2lm2
a41
2 þ 2lt2

O2;0
a21
2 þ lðt1 � m1Þ a31

3 þ lðt1 � m1Þ a32
3

a42
6

O0;2
a21
2 þ lðt2 � m2Þ a32

3
a31
3 þ lðt2 � m2Þ a42

6

O1;1 0 0 0 2a42
3

O2;1 0 2a32
3 0 a43

2
O1;2 0 0 2a32

3
a43
2
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These eight equations point to two challenges: (1) it is not pos-
sible to completely separate s4 from divergence times due to its
co-occurrence with lt1 and lt2, ii) disregarding s4, it is still an
underdetermined set of equations with eight parameters but
only seven equations/degrees of freedom (p0;0 þ p2;2 ¼ 1�P

0< iþj<4 pi;j). It can be tempting to reduce the number of
parameters by setting t1 ¼ t2, but because [from equations (1)
above]

lft1 � t2g ¼
1
2
ðp1;0 � p0;1Þ þ ðp2;0 � p0;2Þ þ

1
2
ðp2;1 � p1;2Þ;

specifying t1 ¼ t2 would add additional dependence between the
equations. Although this will decrease the number of parame-
ters, it also decreases the number of independent equations.
Furthermore, allowing for separate divergence times along the
two branches is a valuable asset; not only does it allow the frame-
work to be applicable for temporally structured samples, but sep-
arate estimates for each branch can be useful more generally. In
fact, it turns out that the divergence time estimate based on the
population branch represented by a modern-day individual alle-
viates the potential issue of residual ancient DNA-specific prop-
erties (DNA degradation, sequencing errors, and mapping errors)
that could impact divergence time estimates (see below). In con-
trast, for contemporaneous samples, divergence time estimates
should be the same along the two branches (assuming neutrality
and the same mutation rate and generation time along the two
branches).

The challenges noted above can be dealt with either by assum-
ing a constant ancestral population size (the“TT”-method) or by
using an outgroup to increase the number of equations
(the“TTo”-method).

Assuming a constant ancestral population size
(“TT”)
Assuming a constant ancestral population size NA reduces the
number of parameters in the model (Figure 1B), so that E½T4k� ¼
2NA=ðkðk� 1ÞÞ and (with h ¼ lNA) s2 ¼ h; s3 ¼ h=3 and h ¼ s4=6.
Then the probabilities in equations (2) simplify as:

p1;0 ¼ 2a1T1 þ 2ð1� a1ÞV1 þ
1
3

a1ð4� a2Þh

p0;1 ¼ 2a2T2 þ 2ð1� a2ÞV2 þ
1
3

a2ð4� a1Þh

p2;0 ¼ ð1� a1ÞðT1 � V1Þ þ
1
6
ð6� 4a1 � 2a2 þ a1a2Þh

p0;2 ¼ ð1� a2ÞðT2 � V2Þ þ
1
6
ð6� 2a1 � 4a2 þ a1a2Þh

p1;1 ¼
2
3

a1a2h

p2;1 ¼
1
3
ð2� a1Þa2h

p1;2 ¼
1
3
ð2� a2Þa1h

with

T1 ¼ lt1

T2 ¼ lt2

V1 ¼ lm1

V2 ¼ lm2

:

We set mi;j

mtot
¼ pi;j and solve for the parameters (and note that

this guarantees that they are also maximum likelihood estimates

(MLEs; Doob 1934; Wald 1949) to obtain:

ca1 ¼
2m1;1

2m2;1 þm1;1

ca2 ¼
2m1;1

2m1;2 þm1;1

bh ¼ 1
mtot

3
8
ð2m2;1 þm1;1Þð2m1;2 þm1;1Þ

m1;1

cT1 ¼
1

mtot

m1;0

2
þm2;0 �

ð2m2;1 þm1;1Þð6m1;2 þm1;1Þ
8m1;1

 !

cT2 ¼
1

mtot

m0;1

2
þm0;2 �

ð6m2;1 þm1;1Þð2m1;2 þm1;1Þ
8m1;1

 !
cV1 ¼

1
mtot

m1;0 þm1;2

2
�m1;1

2m2;0 �m1;2

2m2;1 �m1;1

� �
cV2 ¼

1
mtot

m0;1 þm2;1

2
�m1;1

2m0;2 �m2;1

2m1;2 �m1;1

� �
:

(3)

These equations are referred to as the ’TT’-method in

Schlebusch et al. (2017) where, in order to get the divergence time

in years we used G¼ 30 and l ¼ 1:25� 10�8 in

bti ¼
G
l
bTi (4)

where G is the length of a generation.
Note also that if sequencing errors or DNA degradation mainly

result in additional singletons, then errors in the sample from

population 1 only affects m1;0 and thus only cT1 and cV1 (m1;0

occurs exclusively in the equations for estimating T1 and V1).

Adding an outgroup (“TTo”)
The equations (1) are useful for data (including SNP-genotype

data) where the derived variant at each site has been ascertained

in a population that branched off prior to the investigated popu-

lation split. Such data will ensure that derived variants in the

studied sample will be older than the split so that there are no

new mutations occurring in the branches. In such a case,

lt1; lt2; l�1, and l�2 can all be set to 0 in the equations (1) above,

resulting in a new set of equations (see Appendix) that can be

solved for the a’s to get:

A B

Figure 1 Different assumptions for population divergence models (A)
panmictic ancestral population, and (B) constant ancestral population.
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ca1
� ¼ 2

m�1;0 þm�1;2 þm�1;1
2ðm�1;0 þ 2m�2;0 þm�2;1Þ þm�1;1ca2

� ¼ 2
m�0;1 þm�2;1 þm�1;1

2ðm�0;1 þ 2m�0;2 þm�1;2Þ þm�1;1
:

where * indicates that these are the corresponding parameters
and sample configuration counts conditional on ascertainment
in an outgroup.

With this ascertainment procedure it is important that the
population used to ascertain the SNPs represents a true outgroup
to our studied populations and that the populations satisfy an as-
sumption of bifurcating topology (or “tree-ness”). To validate
such an assumption we can set up tests of tree-ness, since if
lt1 ¼ lt2 ¼ l�1 ¼ l�2 ¼ 0, then the test statistics:

Y1 ¼
2m�1;0 þm�1;1
2m�0;1 þm�1;1

�
2m�1;2 þm�1;1
2m�2;1 þm�1;1

(5)

Y2 ¼
ðm�1;0 �m�0;1Þ þ 2ðm�2;0 �m�0;2Þ þ ðm�2;1 �m�1;2Þ

m�tot
(6)

should be 0 (see Appendix, where it is also shown that Y2 is closely
related to the D-statistic, Green et al. 2010).

The estimates ba1
� and ba2

� of a1 and a2 together with the equa-
tions in (2) can furthermore be used to obtain estimates of:

bs2
� ¼ 1

mtot

3
2

2m2;1 þm1;1ca2
� � m1;1ca1

�ca2
�

� �
¼ 1

mtot

3
2

2m1;2 þm1;1ca1
� � m1;1ca1

�ca2
�

� �
bs3
� ¼ 1

mtot

5
2

m1;1ca1
�ca2

� �
2m2;1 þm1;1ca2

�

� �
¼ 1

mtot

5
2

m1;1ca1
�ca2

� �
2m1;2 þm1;1ca1

�

� �
cB1
�
¼ 1

mtot

m1;0

2
þm2;0 þ

m2;1

2
� 5�ca1

�ca2
�

ca1
�ca2

�
m1;1

4

 !
cB2
�
¼ 1

mtot

m0;1

2
þm0;2 þ

m1;2

2
� 5�ca1

�ca2
�

ca1
�ca2

�
m1;1

4

 !
cV1
�
¼ 1

mtot

m1;0

2
�ca1

� m2;0

1�ca1
� þ

m1;2

2ð1�ca1
�Þ

� �
cV2
�
¼ 1

mtot

m0;1

2
�ca2

� m0;2

1�ca2
� þ

m2;1

2ð1�ca2
�Þ

� �

(7)

with

B1 ¼ lt1 þ s4

B2 ¼ lt2 þ s4:

Note the two alternative estimates (one using m2;1 and one us-
ing m1;2) for s3 and s2 and we take the average of these in esti-
mates below.

Based on the obtained estimates of s2 and s3, we can attempt
to approximate s4 as a combination of s2and 3s3. In a constant
population, E½T43�=E½T42� ¼ 1=3 and E½T44�=E½T43� ¼ 1=2 or

s4

s3
¼ E½T44�

E½T43�
¼ 3

2
E½T43�
E½T42�

¼ 3
2

s3

s2
:

For this reason we propose to approximate s4=s3 as ð3=2Þx
where x is the estimated ratio of s3=s2. This leads to

bs4
� ¼ 3

2
ð bs3
�Þ2bs2
�

to get

bTi
�
¼ bBi

�
� 3

2
ð bs3
�Þ2bs2
� : (8)

We refer to this approach to estimate divergence time as:TTo”
(as in“TT outgroup”).

Picking two gene copies from population 1 and
one gene copy from population 2
The method so far described can be seen as an expansion of the
simpler case of picking two gene copies from one population, and
only one gene copy from the other population. This simpler set-
up can be useful, for instance, when dealing with low-coverage
genome data (e.g. ancient DNA sequence data). With this simpler
approach, divergence time estimation needs an outgroup (only
assuming a constant population size is not sufficient to solve the
equations in this case). This 2 plus 1 approach does, however,
provide reliable estimates of branch specific genetic drift (under
often reasonable demographic assumptions, see Appendix and
Wakeley 2009; Schlebusch et al. 2012; Skoglund et al. 2011).

Simulations and comparison to GPhoCS
The model underlying the TT method assumes a panmictic an-
cestral population of constant size prior to the split, and no gene-
flow between populations after the split. Although common to
many coalescent-based approaches, such assumptions are rarely
realistic for natural populations, and it is increasingly evident
that mis-specification of an overly simplistic model may lead to
substantially biased parameter estimates (Gronau et al. 2011;
Mazet et al. 2016; Orozco 2016).

Here, we investigate the robustness of the TT-method param-
eter estimation against violation of the basic model assumptions
[equations in (3)]. We compare its performance under these con-
ditions against an alternative method for parameter inference,
GPhoCS (Gronau et al. 2011). The analytical TT method and the
Bayesian inference method GPhoCS are located to some degree at
opposite ends of the statistical inference spectrum; instead of re-
lying on independent single bi-allelic sites, GPhoCS assumes
complete linkage between individual sites at a genetic locus (typi-
cally 10 kb), but independence between these loci. It should be
noted that GPhoCS is capable of estimating parameters under
more complicated demographic models than the simple split
model we study here. In particular, GPhoCS allows users to spec-
ify migration rates and define migration bands between popula-
tions, such that it does not share the TT method assumption of
no gene-flow occurring between populations after the population
split. For this reason, the effect of migration on parameter esti-
mation was investigated only for the TT method.

The software MS (Hudson 2002) was used to generate poly-
morphic datasets using a standard coalescent algorithm under a
variety of demographic scenarios. The effects of changes in an-
cestral population size (Figure 2A) and migration between
branches since the split (Figure 2B) were investigated. In each
model, the ancestral population size, NA, was fixed at 34,000, cor-
responding to 17,000 diploid individuals. This value is in line with
recent estimates of African ancestral effective population size �1
million years ago (Li and Durbin 2011; Schiffels and Durbin 2014;
Schlebusch et al. 2017). MS scales time by 4Ne, and simulations
were constructed with true split times of 10,000 and 1500 genera-
tions. Assuming a generation time of 30 years this equates to split
times of 300,000 and 45,000 years, respectively. These were cho-
sen to keep simulations relevant to the findings of previous work
where the deepest split among human groups was estimated at
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>260,000 years (Schlebusch et al. 2017), together with more recent
divergence events.

MS generates samples assuming h ¼ 4N1l, where N1 is the dip-
loid population size of population 1, and l is the neutral mutation
rate. Mutation rates vary across the human genome and esti-
mates vary depending on the method used (Scally and Durbin
2012). Li and Durbin (2011) calculated a human neutral mutation
rate of 2:5� 10�8 per generation (assuming 25 years per genera-
tion), whilst recent consensus suggests a lower rate of 1:25� 10�8

per base pair per generation is more accurate (Moorjani et al.
2016). The latter is the mutation rate used across all simulations.
Results were filtered such that only those simulations resulting
in all sample configurations represented by > 10; 000 sites were
used in subsequent analyses.

The Bayesian inference method GPhoCS is based on likelihood
estimation and in order to allow adequate convergence of param-
eter estimates, a burn-in period of 100,000 iterations was used
when applied to MS simulated data.

The effect of varying ancestral population size
In simulating the demographic scenario shown in Figure 2A,
populations 1 and 2 are constant backwards in time, but not
(necessarily) equal in size; each population size is independently
drawn from a uniform distribution between 170 and 1,700,000
diploid individuals. A total of 1000 of such demographies were
generated. Populations 1 and 2 merge at 10,000 generations to
form a single ancestral population of initial size NA ¼ 17; 000
individuals for / generations. The ancestral population then
changes to kNA, [drawn uniformly from (1.7 � 102, 1.7 � 106)] for
s generations, before returning to NA. We investigate the impact
of that change in ancestral population size (kNA for s genera-
tions) on TT estimates of population divergence time (bt) and an-
cestral population size, cNA , for s ¼ 0; 100; 500; 1; 000 generations
and / ¼ 0; 100; 500; 2000 generations (Supplementary Figure
S1). Supplementary Figure S1 shows that increasing ancestral
population size for s generations can have the effect of inflating
divergence time estimates for the TT method. This behavior is
expected; if we imagine an expansion of the ancestral popula-
tion to infinite size for s generations, no coalescence events
would occur during that time, and divergence time estimates
would be upwardly biased by s generations. This bias however
seems to be relatively minor compared with that arising from

severe bottlenecks. For instance, when the true t¼ 10,000, a bot-

tleneck in the ancestral population of 1500 individuals lasting

for 100 generations results in bt � 9000 generations. However,

the same severity of bottleneck lasting for 500 generations will

result in a greater underestimate of bt � 5000 generations.

Similarly, NA is underestimated when severe bottlenecks occur,

though these estimates seem to be more robust than estimates

of divergence time (Supplementary Figure S2). When studying

more recent splits, (1500 generations), we observe that severe

bottlenecks have the potential to result in nonsensical negative

split time estimates (Supplementary Figure S3).
Figure 3 shows a comparison between TT method and GPhoCS

estimates of population divergence time (t) and ancestral popula-

tion size (NA) in cases where the duration of the bottleneck (s) is

fixed at 1000 generations and true split time is 10,000 genera-

tions. Results suggest that both methods react similarly to viola-

tions of the assumption of a change in ancestral population size;

each being particularly susceptible to bias when severe bottle-

necks have occurred. GPhoCS performs somewhat better than

the TT method, with severe bottlenecks resulting in less of an un-

derestimate of population divergence time.
An interesting effect appears when a bottleneck of sufficient

severity occurs, whereby both methods’ bt estimates begin to re-

bound towards the true split time of 10,000 generations. Again

this behavior is expected as all lineages will coalesce in a bottle-

neck of sufficient severity prior to a population divergence event.

In this case the bottleneck itself will act as the constant ancestral

population size, and as long as it occurs in close proximity to the

split, divergence time estimates are not affected much. For the

same reason, when a severe bottleneck occurs a long time prior

to the split, both methods produce a (slight) overestimate of the

true divergence time (Figure 3E).

Figure 3 A comparison of the effect of ancestral population size changes
on TT method and GPhoCS parameter estimates. The time between
population divergence and change in ancestral population size (/) is (A,
B) 0, (C, D) 2000, and (E, F) 10,000 generations. In all cases, the duration of
change in ancestral population size (s) is 1000 generations and true split
time is 10,000 generations.

Figure 2 The two general demographic models used to simulate data for
testing robustness of TT method, with (A) changes in ancestral
population size, and (B) variation in proportion and timing of migration
between branches since a population split.
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The effect of migration between branches
In simulations based on the demographic scenario shown in
Figure 2B, a pulse of admixture occurs d generations ago, with pro-
portion 0 � c � 1 of one daughter population made up of
migrants from the other daughter population. Thus we examine

the effect of increasing proportion of migration occurring at vari-
ous times between present and the split time. All populations are
kept fixed and constant at 17,000 diploid individuals
(N1 ¼ N2 ¼ NA). Figures 4 and 5 show the effect of increasing pro-

portion of migrants on TT divergence time estimates when true

split time is 10,000 generations. Divergence times are reliably esti-
mated when the proportion of migrants is below 0.1, and as
expected, even at higher proportions the bias decreases the nearer
the admixture event is to split time. Note that under this set-up,
the TT method returns bt � 3000 generations even when the pro-
portion of migrants (c) is 1 and admixture time (d) is 0. We would
expect in this case a bt ¼ 0, but it seems that this scenario (where
all populations are equal in size) is equivalent to a violation of the
assumption of a constant ancestral population. As described previ-
ously, this has the effect of biasing bt upwards, and shows that in
cases of high proportion of recent admixture, differences between
the size of the daughter populations and the ancestral population
also has the potential to result in biased bt. Estimates of ancestral
population size on the other hand, are only very slightly affected
(Supplementary Figures S4 and S5). Very similar results are ob-
served when a more recent true split time of 1500 generations is
studied (Supplementary Figures S6 and S7).

Although simulations have shown the TT method to be rela-
tively robust to violations of its assumptions in general, it is evident
that extensive, recent gene flow between daughter populations or
strong, prolonged bottlenecks in the ancestral population has the
potential to introduce bias. If however we obtain external estimates
of a1 and a2 through the outgroup ascertainment procedure out-
lined above (TTo), we can obtain estimates of divergence time that
are much less dependent on assumptions concerning the ancestral
population. Figure 6 shows a comparison of TT and TTo method
results in scenarios of increasing duration of ancestral population
size change. The true values of a1 and a2 have been used in equa-
tions in (7) to obtain estimates of B1, B2, s2 and s3 that in turn have
been used to approximate s4 and divergence times following equa-
tion (8). These results show that by using external estimates of drift,
there is the potential to considerably reduce bias in divergence time
estimates when severe bottlenecks have occurred in the ancestral
population. Furthermore, Figure 6 also compares estimates of NA,

Figure 5 The effect of varying admixture time (d) on TT split time
estimates (bt), when proportion of admixture (c) is (A) 0.25, (B) 0.5, (C) 0.75,
and (D) 1, and true split time is 10,000 generations.

Figure 6 A comparison of TT method estimates of divergence time and
ancestral population size with (TTo), and without (TT) using external
estimates of drift. The duration of alternative ancestral population size
(s) is (A, B) 100, (C, D) 500, and (E, F) 1000 generations. In all cases, the
change in ancestral population size occurs immediately prior to the split
(/¼0) and true split time is 10,000 generations.

Figure 4 The effect of varying admixture time (d) on TT split time
estimates (bt), when proportion of admixture (c) is (A) 0, (B) 0.01, (C) 0.05,
and (D) 0.1, and true split time is 10,000 generations.
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from that of the TT method to one based on the TTo estimate of s4

(6 bs4=l), which is found to be much more sensitive to ancestral bot-
tlenecks.

Application to data
The TT method requires good quality sequence data, typically
high-coverage genome sequence data since diploid genotype calls
are utilized, including invariable sites and singletons (in the sam-
ple of four chromosomes). Alternatively, instead of one high-
coverage diploid genome, several low-coverage genomes from
the same population data can be combined to produce (suffi-
ciently many) sites with two gene copies. It is also important to
be careful when filtering the genome for reliable regions as this
can cause an artificial bias of the mutation rate.

The formulas are sufficiently simple to allow for asymptotic
confidence intervals based on MLE theory, and one can imagine
thinning the genome data to make sites independent of each
other (to overcome potential dependence via linkage). However,
we chose a more conservative approach of estimating confidence;
the weighted block jackknife procedure (Busing et al. 1999), which
should be more robust to large-scale “outlier” regions driving the
signal. We conducted pairwise comparisons among the 11 HGDP
individuals and the Denisovan genome and the Altai Neandertal
genome from (Meyer et al. 2012) and (Prüfer et al. 2014) and esti-
mate population divergence times (see Appendix for a description
of data cleaning and calling of ancestral states). The 11 individu-
als from the Human Genome Diversity Project (HGDP) include 5
individuals from Africa: one Khoe-San (“San”), one rainforest
hunter-gatherer (“Mbuti”), two West-African (“Mandenka” and
“Yoruba”) and one East-African (“Dinka”). The other individuals
were two Europeans (“French” and “Sardinian”), two East-Asians
(“Han” and “Dai”), one individual from Oceania (“Papuan”) and
one individual representing a South-American indigenous popu-
lation (“Karitiana”). In addition, we used the high-coverage an-
cient southern African hunter-gatherer genome (“Balito Bay A”;
Schlebusch et al. 2017) as an outgroup for some divergence esti-
mates (see below).

Split model parameter estimates
We refer to split time estimates in years in the TT-method as bti

and under the TTo method as bti
�
. These are obtained by setting

G¼ 30 and l ¼ 1:25� 10�8 in equation (4) and applying this to the
estimates of T1 and T2 in equations (3) and (8), respectively.

Comparisons are grouped according to the population split
they represent. For instance, the comparison between French
and San is referred to as the “Khoe-San split.”

Divergence estimates according to the
TT-method
Assuming a constant ancestral population size, NA, it is possible to
estimate NA, a1, a2, �1, �2 as well as t1, t2 without relying on ascer-
tainment procedures. Estimates of a, NA and � are shown in
Supplementary Figures S8–10, respectively. From Supplementary
Figure S10 it is apparent that � is often poorly estimated and the
uncertainty of the estimate appears to be closely linked to the
amount of branch-specific genetic drift (Supplementary Figure
S11). A closer look at any of the formulas for pi;j reveals that the im-
pact of � on the probabilities disappears as aapproaches 1 (no drift).

Estimates of the ancestral population size remain remarkably
constant at around NA ¼ 17; 000, regardless of choice of individu-
als (Supplementary Figure S8).

Values of bt are shown in Figure 7. To summarize, estimates of
the different split times are (in descending order):

• the split between Neanderthal and Denisovans 962� 979 kya;
• the split between archaic humans and modern humans 510�

707 kya;
• the deepest split among modern human population (between

Khoe-San and other human populations) 233� 266 kya (see
Schlebusch et al. 2017) for the consequence of using the an-
cient southern African Balito Bay A genome);

• the split between Mbuti and other modern humans (exclud-
ing Khoe-San populations) 186� 220 kya

• the split between West- and East-Africans 96� 117 kya;
• the split between East-Africans and non-African 66� 82 kya;

and
• splits between non-African < 0 ya.

Here, the range for the split between archaic and modern
humans takes into account the fact that the archaic genomes are
older than 40 ky. There are two obvious odd sets of estimates
among these: the negative times for non-Africans, and the deep
time between Denisovans and Neandertals contrasted to the
younger time between Denisovans/Neandertals and modern
humans (note that we assume a constant ancestral population
size here). We discuss each of these split time estimates below,
but first we revisit the utility of ascertaining variants in an out-
group.

Figure 7 Split time estimates assuming a constant ancestral population
and a mutation rate of 1:25� 10�8 and a generation time of 30 years.
Corresponding to the branch specific divergence time, there are two
estimates each comparison.
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Divergence estimates according to the TTo
method
By comparing two individuals using only those sites where the
derived variant was present in an outgroup, it is possible to: (1)
test whether the outgroup represents a true outgroup, and (2) ob-
tain estimates of a1 and a2 that do not rely on assumptions con-
cerning the ancestral population. We utilized the Mbuti, Balito
Bay A, or Neandertal/Denisovan as outgroups. The estimates of a

conditional on the derived variant being present in an outgroup
are shown in Supplementary Figure S15. These three options
were variably suitable as outgroups depending on the compari-
son being made. For instance, when comparing an individual
from outside Africa to an African individual, Neandertal/
Denisovan would not be true outgroups given the archaic admix-
ture shared among non-African individuals (Green et al. 2010).
This was also visible in the tests based on equations (5) and (6)
above (as well as the D-test, see Supplementary Figure S12). A
likely consequence of the documented additional Denisovan an-
cestry in Papuan (Meyer et al. 2012) is that no comparison involv-
ing Papuan passed the outgroup tests. Perhaps more surprising,
any comparison involving Mbuti failed the tests when Balito Bay
A was used as the outgroup. Moreover, both Mbuti and Balito Bay
A were expected to be true outgroups for the comparison of
Neandertal vs Denisovan, but the test; however, pointed to them
not being true outgroups.

Comparisons between estimates of h (assuming a constant an-
cestral population size) to estimates of s2 and 3s3 using different
outgroups for ascertainment are shown in Supplementary
Figures S16–18. Since there is presently no suitable outgroup for
comparisons between a modern human and one of the two ar-
chaic humans—this would require a genome from an archaic hu-
man that split off before the Neandertal/Denisovan branch—it
was not possible to estimate s2 and 3s3 for such comparisons.

When reliable outgroup ascertained estimates of a1 and a2 can
be obtained, we estimate s2, s3, B1 and B2 using equations (7) that
are used in equation (8) to obtain an estimate of T�i . This in turn
gives bt� that are shown in Supplementary Figures S16–21. For the
majority of comparisons, such an approach does not yield differ-
ent estimates compared with assuming a constant ancestral pop-
ulation size. The major exceptions to this are those comparisons
involving non-Africans that show positive and realistic diver-
gence time estimates using the ascertainment scheme (Figure 8).

Divergence times outside Africa
The divergence time estimates for non-African populations under
a constant model (bti ) are nonsensical, (negative values). This is
likely a consequence of the severe out-of-Africa bottleneck that
leads to s4 ¼ lE½T44� being much smaller than s2=6, which then
violates the assumption of a constant NA (E½Tnk� ¼ 2NA=kðk� 1Þ in
a constant population with NA chromosomes). Estimates based
on the three outgroup ascertainment schemes (bti

�
) give more rea-

sonable values as shown in Figure 8.
Here, the split times estimates are:

• 50–75 kya between Europeans and Asians/Americans;
• �40 kya between Sardinians and French;
• 25–30 kya between Dai and Karitiana;
• 25–30 kya between Dai and Han; and
• < 25 kya between Han and Karitiana.

These estimates are generally consistent with the prevailing
view of the demographic history outside Africa. For instance, the

deep split between Sardinians and French may reflect previous
findings that while Sardinians trace their ancestry mostly to the
early Neolithic farmers, the French are more admixed with
European hunter–gatherers and components of the Yamnaya ex-
pansion (Skoglund et al. 2014; Allentoft et al. 2015; Günther et al.
2015; Haak et al. 2015). To interpret the split times between Han,
Dai, and Karitiana, it should be noted that Karitiana is best mod-
eled as a combination of three source populations (an ancient
Siberian Eurasian source, a north East Asian source and an
Australasian source), where the north East Asian contribution is
substantially greater than the other two sources combined
(Raghavan et al. 2015; Skoglund et al. 2015). The fact that the
Karitiana show a more recent divergence with Han than with Dai
likely reflects north East Asians contributing substantially to
Native Americans, and that the Dai has a south East Asian com-
ponent (closer to an Australasians; Raghavan et al. 2015;
Skoglund et al. 2015). This admixture pattern results in shallower
divergence between Karitiana and Han, and deeper divergence
between Karitiana and Dai and between Han and Dai (see
e.g.Figure 2 in Raghavan et al. 2015).

Western vs Eastern Africa and timing of the out-
of-Africa event
Assuming a constant ancestral population size, we estimate the
split between non-Africans and East-Africans (Dinka) to between
66 and 82 kya. The split between Mandenka and Yoruba is esti-
mated to 100 kya while the split between Western Africans and
Eastern Africans (Dinka and non-Africans) is estimated to be-
tween 96 and 117 kya.

The estimates based on the three outgroup ascertainment
schemes (bti

�
) are generally older. Although the demographic his-

tory of Western and Eastern Africa appears to be particularly
complex (Pickrell et al. 2014; Gurdasani et al. 2015; Triska et al.
2015; Busby et al. 2016; Hollfelder et al. 2017), and the SD esti-
mates suggest one should not over-interpret the bti

�
values, there

are a few interesting tendencies among these estimates
(Figure 9). First, estimated split times are consistently lower
among Yoruba, Mandenka, and Dinka than between any of these
populations and a non-African population; likely an effect of

Figure 8 Different estimates of split times using outgroup ascertainment
assuming a mutation rate of 1:25� 10�8 and a generation time of
30 years. Comparisons with Papuans not included as no such
comparison passed the outgroup-tests. Three estimates are shown:
estimates where outgroup ascertainment is performed in Mbuti (þ), in
Balito Bay A (�) and in Neandertal/Denisovan (�). Transparent gray
represents SD and for comparisons that failed the outgroup tests.
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gene flow among the three African populations (Gurdasani et al.
2015; Busby et al. 2016; Schlebusch and Jakobsson 2018). Second,
estimates between Yoruba and Dinka (or non-Africans) are
deeper than split time estimates between Mandenka and Dinka
(or non-Africans). This is consistent with some observations sug-
gesting that Mandenka have a greater east African/European an-
cestry component compared with Yoruba (Gurdasani et al. 2015;
Patin et al. 2017; Schlebusch and Jakobsson 2018). Although
Mandenka is more distant geographically from Dinka than
Yoruba, there is evidence that historical trading routes along the
Sahel belt may have resulted in more gene-flow between East
Africans and Mandenka (than with Yoruba; Triska et al. 2015;
�Cern�y et al. 2018). Third, there is a tendency for split estimates be-
tween East Asians (Dai or Han) and West Africans (Yoruba,
Mandenka, or Dinka) to be deeper than split estimates between
Europeans (French or Sardinian) and West Africans. This obser-
vation, combined with gene-flow between east and west Africa, is
consistent with previous suggestions of migration into East Africa
from a European or Middle Eastern source (Llorente et al. 2015).

Deepest splits among modern human
populations
The split between Khoe-San and other modern human popula-
tions are estimated to around 250 kya using the TT-method
(Schlebusch et al. 2017). It was further demonstrated that all
modern-day Khoe-San groups and individuals, including the
HGDP San individuals investigated here, were affected by
Eurasian/east African admixture, which in turn impacts esti-
mates of the deepest divergence of modern humans (different
methods are differently sensitive to admixture; Schlebusch et al.

2017). This observation became evident in comparisons with an
ancient southern African individual (the Balito Bay A boy who
lived some 2000 years ago), closely related to modern-day Khoe-
San individuals, but without the Eurasian/east African admixture
that post-dated the life-time of the Balito Bay A boy. Population
divergence time estimates based on the ancient Balito Bay A boy
predates the estimates based on modern-day Khoe-San individu-
als, and give an estimate that is unaffected by the migration and
admixture in the last 2000 years (Schlebusch et al. 2017).

Above we showed the effect of assuming a constant ancestral
population size, and how violations of this assumption by a bot-
tleneck in the ancestral population can bias divergence time esti-
mates. However, we find no evidence for such a bottleneck in the
common ancestral population to all modern humans, and hence.

In general, we find very little difference between the TT and
the TTo estimates (Supplementary Figure S19). In fact, there is a
tendency for bti

�
to be lower than bti for the Mbuti-split, providing

additional support that the Khoe-San split is the deepest split
among modern human populations (Schlebusch et al. 2012).

Archaic split times
The split between modern humans and both Neandertal and
Denisovan is estimated to between 510 amd 707 kya, which is in
line with previous such estimates (e.g.Prüfer et al. 2014). In fact,
restricting the analysis to split times on the non-ancient branch
(to alleviate issues with fossil dating and potential excess ancient
DNA damage) and only to comparisons between Africans and the
two archaic humans, gives a range of estimates from 609 to 681
kya (Figure 10). Unfortunately, there is (presently) no suitable
outgroup for comparisons between modern humans and archaic
humans in order to utilize the outgroup ascertainment approach.

The estimated split between Neandertal and Denisovan is
around 970 kya; more than 250 ky older than the split between
modern humans and archaic humans. This is likely an artifact of
violating the model assumptions; the existence of a more com-
plex demography is indicated by our finding that neither Mbuti
nor Balito Bay A were found to be true outgroups to the

Figure 10 Split time estimates between the five African individuals and
the two archaic humans assuming a constant ancestral population. Only
estimates based on the non-ancient branch are shown. A mutation rate
of 1:25� 10�8 and a generation time of 30 years is assumed.

Figure 9 Different estimates of split times using outgroup ascertainment
assuming a mutation rate of 1:25� 10�8 and a generation time of
30 years. Three estimates are shown: estimates where outgroup
ascertainment is performed in Mbuti (þ), in Balito Bay A (�) and in
Neandertal/Denisovan (�). Transparent gray represents SD and for
comparisons that failed the outgroup tests.
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Neandertal–Denisovan comparison according to our outgroup
test and the D-test (Supplementary Figures S14 and S13). Some
studies hypothesize that the demographic relationship between
Neandertals and Denisovans was governed by meta-population
dynamics (Rogers et al. 2017). Others suggest complicating demo-
graphic factors such as admixture between Denisovans and Homo
erectus (Prüfer et al. 2014) or admixture from the modern human
branch into the Altai Neandertal (Kuhlwilm et al. 2016).

Conclusion
We present a simple approach to estimate parameters under a
comparatively general split model. In particular, no assumptions
are needed concerning the population size processes/changes in
the daughter populations (i.e. more recent than the split). The un-
derlying model does not include gene-flow between daughter
population; however, we can show that moderate violation of
this assumption has little impact on the population divergence-
time estimates. Assuming a constant ancestral population size,
this approach provides an unbiased estimate of divergence time.
However, when the ancestral population is not constant, and par-
ticularly in the case of severe bottlenecks, divergence time esti-
mates can be biased. Indeed, simulations comparing the TT-
method to GPhoCS—an alternative, fundamentally different ap-
proach to demographic inference, has shown that the two meth-
ods are sensitive to violations of the same assumptions. The
reason for this can be intuitively understood in terms of the
tMRCA in the ancestral population; most of this time is spent
with two lineages and the duration of this is utilized by both
methods to estimate the size of the ancestral population. Since,
by assumption, the ancestral size is constant, if the time to the
first coalescent event in the ancestral population is shorter than
expected, (for instance, due to a bottleneck shortly before the di-
vergence), then both methods underestimate the true population
divergence time. When such severe bottlenecks have occurred,
we have shown that it is possible to reduce much of this bias
through the outgroup ascertainment procedure implemented in
the TTo method.

Applying the TT-method to a sample of 11 genomes from the
HGDP panel together with the Neandertal and Denisovan
genomes, we provide further information on the details of the
various splits within the sample and corroborate many previ-
ously estimated population divergence times.

Finally, accumulating evidence suggests that human evolution is
highly reticulated, and perhaps not well approximated by the sort of
bifurcating tree-models studied here (Schlebusch and Jakobsson
2018; Henn et al. 2018; Scerri et al. 2018; Stringer 2016). Nonetheless,
the framework presented here is still a useful tool: different popula-
tion genetic methods vary in their assumptions and sensitivities to
model violations, thus it is important when investigating the com-
plex demographies underlying the evolution of humans to have ac-
cess to a variety of different methods. The TT-method is relatively
robust to model violations and provides a simple and transparent
analytic framework that can be compared with, and potentially even
integrated with, other, more computationally demanding methods
(Beichman et al. 2017; Terhorst et al. 2017; Wang et al. 2020).

Data availability
Genome sequence data from the following publications was
extracted and reprocessed in order to avoid mapping and filtering
biases: Prüfer et al. (2014) and Schlebusch et al. (2017). Scripts
used in simulations and plotting of results, together with open

source code for running the TT method is freely available in

Python at github.com/jammc313/TT-method.
Supplementary material is available at figshare: https://doi.

org/10.25386/genetics.13415774.
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Appendix

Data cleaning and calling of ancestral state
We follow the same data cleaning as in Schlebusch et al. (2017).

Specifically, the ancestral state was inferred using an alignment

of three apes (gorilla, chimpanzee, and orangutan). We consid-

ered that the ancestral state of a site could be reliably inferred if

the site had the same allele (A, C, T, or G) in the three apes and

that there were at most two alleles among the three apes and the

individuals being analyzed. Additionally, sites where one the ana-

lyzed individuals had a coverage in the 0.001 tail were not used.

Ascertained data
Conditional on the derived variant being present in a true out-

group (in a population that has branched off before the investi-

gated split), there are no mutations within the branches so that

lt1; lt2; lm1 and lm2 can all be set to 0 in the equations (1) above.

Thus we are left with:

p�1;0 ¼
1
2

a1b�1 þ
1
3

a1ð1� a2Þb�2

p�0;1 ¼
1
2

a2b�1 þ
1
3
ð1� a1Þa2b�2

p�2;0 ¼
1
4
ð1� a1Þb�1 þ

1
6
ð2� a1 � a2 þ a1a2Þb�2 þ

1
4
ð1� a2Þb�3

p�0;2 ¼
1
4
ð1� a2Þb�1 þ

1
6
ð2� a1 � a2 þ a1a2Þb�2 þ

1
4
ð1� a1Þb�3

p�1;1 ¼
2
3

a1a2b�2

p�2;1 ¼
1
3
ð1� a1Þa2b�2 þ

1
2

a2b�3

p�1;2 ¼
1
3

a1ð1� a2Þb�2 þ
1
2

a1b�3:

Under these equations:

2p�1;0 þ p�1;1
2p�0;1 þ p�1;1

¼
2p�1;2 þ p�1;1
2p�2;1 þ p�1;1

p�1;0 þ 2p�2;0 þ p�2;1 ¼ p�0;1 þ 2p�0;2 þ p�1;2

leading to the test statistics Y1 and Y2 in equations (5) and (6)

above.
The second outgroup test (Y2) is similar to the D-test since the

probability to draw the ancestral (single) allele from population 1

and the derived allele from population 2 is:

p�0;2 þ
1
2
ðp�0;1 þ p�1;2Þ þ

1
4

p�1;1

and the probability to draw the derived allele from population 1

and the ancestral allele from population 2 is:

p�2;0 þ
1
2

p�1;0 þ p�2;1
� �

þ 1
4

p�1;1:

Similarly, for sites where the derived variant is observed in a sam-
ple of size 1 in the outgroup (note that our conditioning is different):

D ¼
m��0;2 þ

1
2
ðm��0;1 þm��1;2Þ þ

1
4

m��1;1

� �
� m��2;0 þ

1
2
ðm��1;0 þm��2;1Þ þ

1
4

m��1;1

� �
m��0;2 þ

1
2
ðm��0;1 þm��1;2Þ þ

1
4

m��1;1

� �
þ m��2;0 þ

1
2
ðm��1;0 þm��2;1Þ þ

1
4

m��1;1

� � ;
¼ 2

ðm��0;1 �m��1;0Þ þ 2ðm��0;2 �m��2;0Þ þ ðm��1;2 �m��2;1Þ
m��1;1 þ 2ðm��0;1 þm��1;0Þ þ 4ðm��0;2 þm��2;0Þ þ 2ðm��1;2 þm��2;1Þ

where “**” indicates sites where the derived variant is observed in
a sample of size 1 in the outgroup (our conditioning is different).
The nominator is very similar to the nominator in the second
outgroup test [Y2 in equation (6) above].

Assuming an ancestral population with no
structure backwards in time
Define:

Tki

to be the number of generations a coalescent process that starts
with k lineages at the (most recent) base of the ancestral popula-
tion spends with i lineages (so that Tmrca ¼

P2
i¼k Tki). The probabil-

ity that there are k derived variants in a sample of size n given that
a mutation occurred when there were i lineages is (Slatkin 1996).

PðAn ¼ kjmutation during Tn;iÞ ¼

n� k� 1
i� 2

� �
n� 1
i� 1

� �

implying that:

PðAn ¼ kÞ ¼
X2

i¼n

PðAn ¼ kjmutation during Tn;iÞPðmutation during Tn;iÞ

¼
X2

i¼n

n� k� 1
i� 2

� �
n� 1
i� 1

� � liE½Tn;i�

we get:

b1 ¼ PðA4 ¼ 1Þ ¼ 2
3

lE½T42� þ 2lE½T43� þ 4lE½T44�

b2 ¼ PðA4 ¼ 2Þ ¼ 2
3

lE½T42� þ lE½T43�

b3 ¼ PðA4 ¼ 3Þ ¼ 2
3

lE½T42�

:
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Picking two gene copies from population 1
and one gene copy from population 2
Here, instead of two gene copies from both populations, the
method assumes two sampled gene copies from population 1 and
one sampled gene copy from population 2. The possible sample
configurations are then (Table A1):

The observed number of sites with sample configuration Oi;j

will be denoted by mi;j and the total number of sites by mtot.
Assume independence between sites, an infinite sites model and
a split model with no migration where the two daughter popula-
tions merge into a panmictic ancestral population and define the
event

H : a coalescent event in population 1 before t1ðPðHÞ ¼ 1� aÞ

Also define Ak to be the number of derived variants in a (hypo-
thetical) sample of size k drawn at the split time in the ancestral
population. Writing aki ¼ PðAk ¼ iÞ, the conditional probabilities
for sample configurations O1;0; . . . ;O1;1 are as in Table A2.

Since

a21 ¼ PðA2 ¼ 1Þ ¼ 2
3

a31 þ
2
3

a32

we write bi ¼ a3i ¼ PðA3 ¼ iÞ to get:

p1;0 ¼ 2ð1� aÞlmþ 2a lt1 þ
1
3

b1

� �
p0;1 ¼

1
3
ð1� aÞb2 þ lt2 þ

1
3

b1

p2;0 ¼ ð1� aÞ lt1 þ
1
3

b1

� �
� ð1� aÞlmþ 1

3
b2

p1;1 ¼
2
3

ab2

p0;0 þ p2;1 ¼ 1�
P

0< iþj<3 pi;j

;

where pi;j ¼ PðOi;jÞ.
Similar to the case when two gene copies are picked from each

subpopulation: (1) it is not possible to completely separate b1

from divergence times due to the co-occurrence of b1 with lt1 and
lt2, (2) disregarding b1, this is an underdetermined set of equa-
tions with five parameters but only four equations/degrees of
freedom ðp0;0 þ p2;1 ¼ 1�

P
0< iþj<4 pi;jÞ. Setting t1 ¼ t2 does not

help since:

p0;1 � p2;0 þ
1
2

p1;1 � p1;0Þ ¼ lðt2 � t1Þ
�

and thus reduces the number of independent equations.
Assuming the model in Figure 1B, does not reduce the number of
parameters and does not help in this case.

If ascertainment is done in an outgroup:

p�1;0 ¼
2
3

ab�1

p�0;1 ¼
1
3
ð1� aÞb�2 þ

1
3

b�1

p�2;0 ¼
1
3
ð1� aÞb�1 þ

1
3

b�2

p�1;1 ¼
2
3

ab�2

;

where “*” indicates that these are the corresponding conditional
parameters and probabilities. This can be solved to yield two esti-
mates of a:

ba� ¼ m�1;0 þm�1;1
2m�0;1 þm�1;1ba� ¼ m�1;0 þm�1;1
2m�2;0 þm�1;0

and these two estimates can be compared with create the tests

m�1;0 þm�1;1
2m�0;1 þm�1;1

�
m�1;0 þm�1;1

2m�2;0 þm�1;0
¼ 0

2m�0;1 � 2m�2;0 þm�1;1 �m�1;0 ¼ 0

of that ascertainment was performed in a true outgroup.
Assuming the model in Figure 1A, then b2 ¼ lE½T32� and b1 ¼

3lE½T33� þ lE½T32� and

p1;0 ¼ 2aðlt1 þ s3Þ þ 2ð1� aÞlmþ 2
3

as2

p0;1 ¼ lt2 þ s3 þ
1
3
ð2� aÞs2

p2;0 ¼ ð1� aÞðlt1 þ s3Þ � ð1� aÞlmþ 1
3
ð2� aÞs2

p1;1 ¼
2
3

as2

With s3 ¼ lE½T33� and s2 ¼ lE½T32�. If a is given by ba�, we solve to
get:

bs2 ¼
3

2ba�m1;1

mtotdlt1 þ s3 ¼
1

mtot
m1;0

1
2
þm2;0 �m1;1

1ba�
� �

dlt2 þ s3 ¼
1

mtot
m0;1 �m1;1

2� ba�
2ba�

� �
clm ¼ 1

mtot
m1;0

1
2
�m2;0

ba�
1� ba� þm1;1

1
2ð1� ba�Þ

 !
:

In Skoglund et al. (2011) and Schlebusch et al. (2012),

Table A2 Conditional probabilities

H :H

O1;0 2lm 2
3 a31 þ 2lt1

O0;1
1
2 a21 þ lt2

1
3 a31 þ lt2

O2;0
1
2 a21 þ lðt1 � mÞ 1

3 a32

O1;1 0 2
3 a32

Table A1 Number of derived in the two samples

0 in population 2 1 in population 2

0 in population 1 O0;0 O0;1

1 in population 1 O1;0 O1;1

2 in population 1 O2;0 O2;1
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3
2

m1;1

m2;0 þm1;1

is used to estimate a. A comparison to the framework presented
here gives:

3
2

m1;1

m2;0 þm1;1
¼ 3

2
p1;1

p2;0 þ p1;1
¼ a

b2

ð1� aÞlðt1 � mÞ þ 1
3
ð1� aÞb1 þ

1
3

1þ 2aÞb2
�

which is approximately a for a close to 1 or if b1 � 2b2 and either
b2 	 ð1� aÞlðt1 � mÞ or t1 � m � 0.

Assuming a constant ancestral population size (Figure 1B)
implies b1 ¼ 2lNA ¼ 2b2 and

3
2

p1;1

p2;0 þ p1;1
¼ a

NA

NA þ ð1� aÞðt1 � mÞ

which is approximately a for a close to 1, for NA 	 ð1� aÞðt1 � mÞ
and for t1 � m � 0.

If ascertainment is performed in an outgroup,

3
2

m�1;1
m�2;0 þm�1;1

¼ 3
2

p�1;1
p�2;0 þ p�1;1

¼ a
3b�2

ð1� aÞb�1 þ ð1þ 2aÞb�2

which is approximately a for a close to 1 or if b�1 � 2b�2.
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