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ABSTRACT: Accurate description of the static correlation poses a persistent challenge in
electronic structure theory, particularly when it has to be concurrently considered with the
dynamic correlation. We develop here a method in the generalized Kohn−Sham density
functional theory (DFT) framework, named R-xDH7-SCC15, which achieves an
unprecedented accuracy in capturing the static correlation, while maintaining a good
description of the dynamic correlation on par with the state-of-the-art DFT and wave
function theory methods, all grounded in the same single-reference black-box methodology.
Central to R-xDH7-SCC15 is a general-purpose static correlation correction (SCC) model
applied to the renormalized XYG3-type doubly hybrid method (R-xDH7). The SCC model
development involves a hybrid machine learning strategy that integrates symbolic regression
with nonlinear parameter optimization, aiming to achieve a balance between generalization
capability, numerical accuracy, and interpretability. Extensive benchmark studies confirm
the robustness and broad applicability of R-xDH7-SCC15 across a diverse array of main-
group chemical scenarios. Notably, it displays exceptional aptitude in accurately
characterizing intricate reaction kinetics and dynamic processes in regions distant from equilibrium, where the influence of static
correlation is most profound. Its capability to consistently and efficiently predict the whole energy profiles, activation barriers, and
reaction pathways within a user-friendly “black-box” framework represents an important advance in the field of electronic structure
theory.
KEYWORDS: density functional theory, XYG3-type doubly hybrid functional, renormalized PT2 correlation model,
static correlation effect, machine learning

Kohn−Sham density functional theory (KS-DFT),
grounded in single-reference black-box methodology,

has emerged as the preeminent electronic-structure framework
for analyzing large-scale systems across diverse scientific
fields.1−6 In KS-DFT, density functional approximations
(DFAs) form a development hierarchy, known as the Jacob’s
Ladder, stratified into five rungs reflecting increasing complex-
ity toward chemical accuracy.7 Doubly hybrid (DH)
approximations, which stand on the top rung (the fifth rung)
of the Jacob’s Ladder, have demonstrated significant
superiority over their popular lower-rung counterparts,
particularly for properties dominated by the dynamic
correlation.8−24 Despite this significant progress, accurately
capturing the static correlation remains an unsolved challenge
in KS-DFT,4,25,26 necessitating computationally demanding
multideterminant wave function treatments that are nontrivial
for routine applications.1,27

In this study, we start with the development of a
renormalized XYG3-type doubly hybrid method, designated
as R-xDH7, which utilizes B3LYP density and orbitals, and
incorporates seven empirical parameters through an integration
of a spin-distinctive random-phase approximation (RPA)-type
renormalization of the second-order perturbative contribution
(PT2).5 The R-xDH7 method encapsulates a substantial

portion of the static correlation alongside a broad range of
the dynamic correlation toward chemical accuracy. Based on
this foundation, we further devise a general-purpose term for
the residual static correlation correction specially adapted to R-
xDH7 with 15 parameters (SCC15), utilizing a hybrid machine
learning algorithm that synergistically combines symbolic and
nonlinear parameter regressions. The working scheme is
illustrated in Figure 1 and implemented in the Rust-based
Electronic Structure Toolkit (REST).28 The final R-xDH7-
SCC15 method achieves an unprecedented balance between
accuracy in describing both dynamic and static correlations. Its
robustness is further underscored by the outstanding perform-
ance across a comprehensive benchmark suite for main-group
chemistry, displaying its exceptional aptitude in providing
precise characterizations of complex reaction mechanisms
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beyond the equilibrium regions where static correlation effects
are significant.
The XYG3-type doubly hybrid approximations

(xDH)12,17,24,29 have garnered widespread recognition for
their ability of accurately and efficiently describing dynamic
correlation effects.30−35 This is exemplified by XYG736 recently
developed by our group. Some other successful examples that
follow the same construction strategy as xDH are ωB97M(2)22
and xrevDSD-PBEB86-D4,37 independently developed by the
Head-Gordon and Martin research groups, respectively. The
use of the PT2 term is a key that accounts for the notably good
performance of all doubly hybrid functionals.23,29 Despite this
advancement, PT2 is notoriously inadequate for (near)-
degenerated systems, where static correlation effects are
predominant.4 As shown in Figure 2, the XYG7 results diverge
during molecular bond dissociation processes. To address this
shortcoming, we have previously explored enhancements to
the PT2 correlation model, which included the integration of
the screened second-order Bethe-Goldstone equation
(sBGE2)6 and a spin-distinctive random-phase approximation
(RPA)-type renormalization of PT2.5 These novel correlation

models have demonstrated their efficacy in resolving the
inherent divergence of PT2 in (near)-degenerated systems.4

Building upon these advancements, we introduced here a
renormalized xDH method, R-xDH7, which, akin to the
standard xDH method of XYG7, utilized the B3LYP38−41

density and orbitals, but improved the standard PT2 by the
spin-distinctive RPA-type renormalization5:

E a E a E a E a E a E

a E a E
xc
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1 x
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2 x
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3 x
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4 c
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+ + +
(1)

Here ExHF is the contribution from the Hartree−Fock (HF)-like
exact exchange, while ExS and ExB88 denote the exchange
contributions from the Slater-type local density approximation
(LDA)42 and the Becke88 generalized gradient approximation
(GGA),38 respectively. EcVWN is the local Vosko-Wilk-Nusair
correlation.43 The R-xDH7 method adhered to the specific
VWN-III version utilized in the original B3LYP implementa-
tion to maintain consistency.41 EcLYP is the Lee−Yang−Parr
correlation approximation.39 Specifically, EcosRPT2 stands for the
RPA-type renormalization of opposite-spin PT2, derived from
the spin-pair distinctive adiabatic connection fluctuation−

Figure 1. Development strategy for the renormalized XYG3-type doubly hybrid approximation (R-xDH7) and the machine learned static
correlation correction (SCC15). Only a subset of 10 out of total 23 bond dissociation curves within the MBD23−594 (refer to Figure 2 for more
details) were incorporated into the training set or utilized as constraints during the establishment of the SCC15 model.
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Figure 2. Assessment of various methods on the MBD23−594 data set for chemical bond dissociation. (a) Detailed depiction of calculated
potential energy curves during C−C bond cleavage in ethane (C2H6), exemplifying method’s performance. (b) 23 bond dissociation reactions
encompassed within MBD23−594, which are categorized into three subsets based on the type of bond being broken. (c) Comprehensive
comparison of Mean Absolute Errors (MAEs) of these methods across three critical regions: equilibrium, middle, and the dissociation limit. All
calculations were performed employing the def2-QZVPP basis set. For benchmarking, reference data were prepared using the CCSD(T) method
extrapolated to the complete basis set limit (CBS) for the equilibrium region and the NVEPT2 method for the middle and dissociation limit
regions.
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dissipation (ACFD) framework,5,44,45 while EcssRPT2+ presents
the difference between the standard RPA and osRPT2, which
includes not only the renormalization of the same-spin PT2
but also accounts for the high-order contribution beyond
PT2.5 Note that EcssRPT2+ covers only the high-order direct
diagrams within the same-spin channel, explicitly excluding the
second-order screened exchange (SOSEX) contributions.46

The seven parameters in R-xDH7 were optimized against the
weighted total mean absolute deviation (WTMAD2) of 1505
relative energies of main-group chemistry in the GMTKN55
data set,47 which can be found in the Supporting Information
(SI). While no constraints were applied to the seven
parameters during the optimization process, an interesting
pattern emerges in their final values. Specifically, the first
parameter, associated with the HF-like exact exchange, was
found to be nearly 1, suggesting that the R-xDH7 functional
has less self-interaction error (SIE) than the conventional
DFAs. Furthermore, the sum of the three exchange parameters
(a1, a2, and a3) is approximately close to 1. Likewise, the sum
of the four correlation parameters is also nearly equal to 1. We
believe that this balance in the final optimized values is crucial
for maintaining the accuracy and stability of the functional, as
it ensures that the exchange and correlation contributions are
neither overemphasized nor underrepresented.
Table 1 presents the performance of various DFAs on the

GMTKN55 benchmark set. Notably, the leading performers
predominantly emerge from the standard PT2-based xDH
methods, including ωB97M(2)22 and xrevDSD-PBEB86-D437

with an impressively small WTMAD2 of 2.19 and 2.23 kcal/
mol, respectively. These methods also benefit from the
pairwise dispersion corrections involving several tens of
empirical parameters to properly capture nonbonded inter-
actions. Interestingly, the XYG7 method, featuring only 7
empirical parameters, achieves an outstanding WTMAD2 of
2.05 kcal/mol, although no pairwise dispersion corrections
have been adopted.36 These PT2-based xDH methods
outperform the best hybrid methods such as ωB97X-V48
(3.92 kcal/mol), CF22-D49 (3.62 kcal/mol), and also the
machine-learning local hybrid DM2150 (3.97 kcal/mol), by
approximately 1.5 to 2.0 kcal/mol.
Our R-xDH7 method attains an overall WTMAD2 of 2.23

kcal/mol for GMTKN55, placing it among the top class of
computational methods in this benchmark. This performance
underscores the efficacy of the renormalized PT2 in preserving
the accuracy of PT2-based xDH methods across a broad range
of chemical interactions, when dynamic correlations dominate.
Furthermore, the R-xDH7 method demonstrates remarkable
versatility in accurately modeling various types of interactions,
including covalent bond interactions both in small (Sub1) and
large systems (Sub2), barrier heights (Sub3), and nonbonded
interactions (Sub4 and Sub5) in GMTKN55, as shown in
Table 1. To extend our analysis, we followed the work of Liu
and co-workers49 and partitioned the 55 subsets of GMTKN55
into Radical7 (7 subsets) and Nonradical48 (48 subsets). This
classification offered a focused lens through which to evaluate
the performance of DFAs in reactions involving radical versus
nonradical species. Supplementary Figure S1 in the Supporting
Information suggests that R-xDH7, paralleling other state-of-
the-art xDH methods, provides outstanding and balanced
performance in both radical and nonradical systems.
Remarkably, R-xDH7, also with 7 empirical parameters akin
to XYG7, achieves this level of precision without resorting to
any pairwise dispersion corrections, indicating the capabilities
of renormalized PT2 correlation model for the description of
nonbonded interactions.
Turning to the challenge of the static correlation, its

significance grows substantially as molecules deviate from their
ground state equilibrium geometries.4,25,26 It is a notorious
limitation that conventional DFAs struggle to accurately
portray molecular bond dissociations, particularly when
bonds are heavily stretched and the static correlation prevails
due to (near)-degeneracy.4 As demonstrated in Figure 2a,
lower-rung DFAs, such as GGA of PBE51 and the hybrid GGA
of B3LYP,38−41 exhibit significant static correlation errors. For
instance, in the C−C bond dissociation of C2H6, these
inaccuracies lead to deviations from the correct dissociation
curves as large as 30 to 50 kcal/mol. PT2-based DH
approximations, such as XYG7, fail badly; they tend to diverge
at the dissociation limit, a direct consequence of PT2’s
inherent inability to handle the degenerate situations.
The proposed R-xDH7 method successfully mitigates this

divergence (Figure 2a). By integrating a spin-distinctive RPA-
type renormalization into the PT2 model, R-xDH7 guides the
C2H6 dissociation process toward the correct limit. Given its
excellent performance on the GMTKN55 data set, R-xDH7
manifests its proficiency in effectively capturing a good portion
of dynamic correlation and a substantial amount of the static
correlation. However, an intriguing observation from Figure 2a
reveals the persistence of the residual static correlation error in
R-xDH7, which is particularly noticeable in the middle range of

Table 1. WTMAD2 Values of Different DFAs (in kcal/mol)
for the Full GMTKN55 Benchmark (All), Basic Properties
and Reactions of Small Systems (Sub1), Isomerizations and
Reactions of Large Systems (Sub2), Barrier Heights (Sub3),
Intermolecular Noncovalent Interactions (Sub4), and
Intramolecular Noncovalent Interactions (Sub5)

all sub1 sub2 sub3 sub4 sub5

Hybrid DFAs
PBE0-D3(BJ)a 6.59 4.42 8.35 9.88 6.65 6.40
B3LYP-D3(BJ)a 6.37 4.25 10.21 9.04 5.56 5.68
ωB97X-Va 3.93 3.21 6.59 4.21 3.03 3.62
ωB97M-Vb 3.47 2.57 4.75 3.40 2.90 4.53
CF22-Dc 3.64 2.53 4.01 3.46 4.22 4.68
Machine-learned hybrid DFA
DM21d 3.97 1.99 4.64 3.63 6.56 4.16
B2PLYP-type double hybrids (bDHs)
DSD-BLYP-D3(BJ)b 3.07 1.84 4.3 3.04 3.92 3.15
B2GPPLYP-D3(BJ)b 3.26 1.95 4.59 3.24 4.28 3.21
XYG3-type double hybrids (xDHs)
XYG3e 3.75 1.72 4.69 2.23 6.04 4.88
XYGJ-OSe 4.04 4.04 1.85 4.42 2.94 6.01
xrevDSD-PBEB86-D4b 2.23 1.80 3.03 2.11 2.33 2.23
ωB97M(2)b 2.19 1.41 2.58 1.99 2.45 2.99
XYG7e 2.05 1.31 2.43 2.30 2.78 2.00
Renormalized xDHs (R-xDHs)
scsRPA 3.54 2.66 3.13 2.79 5.58 3.68
R-xDH7 2.23 1.74 3.09 2.48 2.80 1.55
R-xDH7-SCC15 2.24 1.77 3.05 2.54 2.80 1.55

aResults from ref 37 using the basis set of def2-QZVPP. bResults from
ref 22 using the basis set of def2-QZVPP. cResults from ref 49 using
the basis set of def2-QZVPP. dResults from ref 50 using the basis set
of def2-QZVPP. eResults from ref 36 using the numerical basis set of
NAO-VCC-4Z.
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the dissociation curve, leading to an unphysical repulsive
bump.
To further substantiate our findings, we compiled a

comprehensive data set, MDB23−594, encompassing a total
of 594 data points from 23 distinct bond dissociations in main-
group molecules. This data set, detailed graphically in Figure
2b, includes 9 close-shell single-bond dissociations (CSD9−
256), 8 multiple-bond dissociations (CMD8−204), and 6
open-shell systems (OBD6−134). Aiming to achieve an
unbiased assessment, we partitioned the dissociation curves
into three sections, namely equilibrium, middle and limit
regions, respectively. As illustrated in Figure 2c, both XYG7
and R-xDH7 attain a good accuracy in the equilibrium region,
being comparable to the expensive CCSD(T) method, which
is considered the “gold standard” in quantum chemistry.
However, as the static correlation effects intensifies moving
from the equilibrium region to the middle and limit regions,
their performances significantly degrade. The results from
these 23 dissociation benchmarks confirm that R-xDH7
successfully overcomes the divergence problem observed in
XYG7. However, it still exhibits mean absolute errors (MAEs)
of 34.1 and 20.9 kcal/mol in the middle and limit regions,
respectively. While these errors are notably reduced compared
to other methods, including CCSD(T), they underscore the
need for further improvement in order to accurately capture
the static correlation on par with the accuracy being achieved
by xDHs for the dynamic correlation.
In the realm of dispersion interactions as associated with,

e.g., ωB97M(2)22 and xrevDSD-PBEB86-D4,37 pairwise
corrections with empirical parameters have proven to be
highly effective.52−54 However, addressing static correlation
errors poses a significantly greater challenge due to its complex
multireference character.55,56 Although current diagnostics,
derived from both KS-DFT and wave function theory, often
exhibit weak correlations with the static correlation,57−59

machine learning has emerged as a potent tool, offering
innovative avenues to decipher complex correlation patterns
embedded in data.49,50,60−63 Given that R-xDH7 has already
captures a substantial portion of the static correlation, we
anticipated that the residual errors, as those evident in the
middle and limit regions for bond dissociations, could be
rectified by devising a static correlation correction (SCC).
Acknowledging that the static correlation is more pronounced
yet less well understood than the dispersion interactions, we
turned to machine learning. To precisely target both dynamic
and static correlations for general purpose, we identified four
system-independent input features at diverse theoretical levels
as follows:
Electron-Pair Energy Ratios ({ri})

Defined as ri
i

i

sBGE2

PT2{ }= , these ratios compare sBGE26,64 and

PT2 correlation energies for each electron pair involved in
double excitations. These electron pairs are sorted in
descending order according to the sum of their eigenvalues,
with each pair indexed by “i” to reflect its position in this
ordered sequence. This descending order ensures that the
electron pair with the largest sum of eigenvalues is considered
first. Due to the nature that sBGE2 was designed to mitigate
the PT2 divergence,4,6,64 {ri} were used to serve as an effective
indicator for systems with significant static correlation. As
evidenced in Supplementary Figure S2 in the Supporting
Information, the distinct values of {ri} accurately demarcated

different dissociation regimes and displayed differing con-
vergence tendencies with respect to the number of bonds being
cleaved. This characteristic behavior forms a fundamental basis
of our SCC pairwise correction.
HOMO−LUMO Gap (ΔE)
Calculated as the orbital energy difference between the highest
occupied molecular orbital (HOMO) and the lowest
unoccupied molecular orbital (LUMO) of the B3LYP method.
As also evidenced in Supplementary Figure S2, ΔE was used to
serve as a direct indicator of correlation effects across different
dissociation regimes: a larger gap in the equilibrium region, a
smaller gap in the middle region, and a near-degenerate gap in
the limit region.
Exchange Energy Deviation (ΔEx)

Represented as E 100%E E
Ex

( )x
PBE

x
HF

x
HF= × . This metric was

used to quantify the percentage difference between PBE and
HF exchange energies. First introduced by Truhlar and
colleagues65,66 and also evidenced in Supplementary Figure
S2, it is indicative of the extent of the static correlation effect
within KS-DFT, with a larger difference pointing to a more
important static correlation effect.
Response Functional Radii ({χα, χβ})
These special radii of spin-pair distinctive response functions
were used to provide insight into many-body static correlation
effects. The detailed definition and implementation of {χα, χβ}
was provided in Supplementary Section S1. Our recent finding
suggested that such effects in RPA-type correlation models are
linked to the special radius of the KS noninteraction response
function.4,5 A radius exceeding unity would imply a divergence
in the Dyson expansion of the RPA-like correlation, indicative
of a strong static correlation effect beyond the scope of
standard single-reference perturbation treatments.
Static correlation presents a unique challenge due to its

elusive and ill-defined nature, as well as the scarcity of suitable
data sets. To overcome these obstacles, we built here the
MDB23−594 data set and devised a hybrid machine learning
approach that combined symbolic and nonlinear parameter
regression methods based on ({ri}, ΔE, ΔEx, {χα, χβ}). As
illustrated in Figure 1, we developed a systematic approach
using the Sure Independence Screening and Sparsifying
Operator (SISSO)67 method. It allowed us to thoroughly
explore the descriptor space and identify the most relevant
descriptors for the residual static correlation errors associated
with R-xDH. Consequently, we introduced a select number of
parameters in a nonlinear fashion to refine and enhance the
accuracy. The training process was iterative, continuing until
the desired level of accuracy was reached using descriptors that
displayed well-understood behaviors.
The final correction model, coined SCC15, is composed of

two distinct parts, involving 9 descriptors and 15 empirical
parameters:

SCC15 SCC SCCep mb= + (2)

The detailed formulation of the SCC15 model was provided
in the Supporting Information. Briefly speaking, the first
segment SCC SCCi

i
ep ep= represents the pairwise correction

to the static correlation error, where “i” indexes each electron
pair in double excitations. The second term SCCmb addresses
the residual many-body contributions beyond electron-pair
excitations.
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We started by focusing on R-xDH7’s errors in close-shell
single-bond dissociations, where the relevant static correlation
correction is pairwise and specific to the first electron pair:
SCCep1 . We trained the SCCep1 model using the data set
consisting of 131 data points from the first three reactions
(S1−3) in CSD9−256, as shown in Figure 2b. Meanwhile,
1505 data points in GMTKN55 were also included, which
served as constraints to preserve the good description of
dynamic correlations of R-xDH7. To this stage, we arrived at
the SCCep1 model with 3 descriptors {D1−3

i=1 } and 9 empirical
parameters:

c D b c D b c D bSCC i i i
ep
1

1 1
1

1 5 2 2
1

1 5 3 3
1

1 6= [ ] + [ ] + [ ]= = =

(3)

The 3 parameters {c1−3} were concurrently determined
alongside the 3 descriptors during the SISSO operation,
while the remaining 6 nonlinear parameters {b1−6} underwent
iterative optimization in subsequent outer loops.
In Figure 3a−c, we present the calculated curves for three

critical bond dissociations in H2O, which were not part of the
training sets used in this study. The results showed that the
SCCep1 model notably improved R-xDH7’s performance in
dissociating a single O−H bond from water (H2O → OH +
H); however, it fell short when simultaneously dissociating two
O−H bonds (H2O → O + 2H), as expected. For the
comprehensive MBD23−594 data set, the MAEs of R-xDH7-
SCCep1 in the middle region and dissociation limit were
reduced to 20.8 and 14.1 kcal/mol, respectively, which marked
a substantial progress compared to the uncorrected R-xDH7
method, although further improvement is needed to meet the
desired accuracy comparable to that observed in the
equilibrium region.
To extend the SCCepi model for electron pairs beyond the

first pair (i > 1), we then constructed a new training set
comprising 118 data points from the first four reactions (M1−

4) in CMD8−204. To maintain the success already achieved,
constraints were imposed using data from GMTKN55 and also
Reactions S1−3. Utilizing the hybrid regression approach led
us to an interesting finding: the SCCepi model with i > 1 shares
two common descriptors with SCCep1 . Instead of reoptimizing
the parameters established in the SCCep1 model, we introduced
a novel parameter-descriptor pair {c4, D4} to recalibrate the
static correlation correction for higher-order electron pairs.
Then the form of the SCCepi model was updated to

c D c D b c D b iSCC ( ) for 1i i i
ep 4 4 1 1 1 5 2 2 1 5= [ ] + [ ] > (4)

where {c4, D4} were optimized through a supplementary
SISSO operation. Figure 3 vividly reveals that, by incorporating
the static correlation correction for all electron pairs, the
refined R-xDH7-SCCep approach accurately predicts the
concurrent dissociation of both O−H bonds in the water
molecule. It bears repeating that the three bond dissociation
instances depicted in Figure 3 were neither part of the training
set nor utilized as constraints for the SCCepi model. A detailed
depiction of bond dissociation curves for all 23 molecules can
be found in the Supporting Information (Supplementary
Figures S4−S26). A thorough analysis of these curves reveals
that, R-xDH7, when augmented with the SCCep model,
removes the undesired repulsive bump in the middle range
of the dissociation curves.
Then we proceeded to develop the corresponding many-

body static correlation correction model SCCmb. We employed
a training set comprising 81 data points from two reactions
(O1−2) in OBD6−134 and one reaction (S9) in CSD9−256,
as illustrated in Figure 2b. Consistently applying the same
strategy, data from GMTKN55 and Reactions S1−3, along
with M1−4 were included as constraints to minimize potential
model bias or unintended influence on the outcomes. In light
of the complex nature of many-body static correlation, the final
SCCmb model incorporates another 5 descriptors and their

Figure 3. Effect of different components of the R-xDH7-SCC15 method on three critical bond dissociation regions for H2O (a−c) and on the
MBD23−594 data set (d−f). B3LYP and CCSD(T) results are also presented for comparison in (a−c).
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corresponding parameters, which were systematically identified
and fine-tuned using the standard SISSO symbolic regression
approach:

c DSCC
i

i imb
5

9

=
= (5)

To this end, we arrived at the SCC15 model step by step,
which is specifically adapted to R-xDH7.
As evident in Figure 3, the resultant R-xDH7-SCC15

method achieves a remarkably accurate description for all
three types of bond dissociation processes involved in H2O.
Notably, within the MBD23−594 data set, 13 out of total 23
dissociation curves (over 300 distinct data points) were
deliberately excluded from the training of the SCC15 model
(see Figure 1). Deeper exploration within this expended
framework further highlights the advancements brought forth
by the R-xDH7-SCC15 method for the static correlation are
indeed significant. The overall MAEs in the middle range and
dissociation limit are now 5.6 and 3.6 kcal/mol, respectively,
approaching to its performance in the equilibrium region
(MAE = 1.6 kcal/mol) where the dynamic correction is
dominant. Therefore, R-xDH7-SCC15 strikes an unprece-
dented balance between accurately capturing dynamic and
static correlation effects. This conclusion is further reinforced
by its high accuracy on the GMTKN55 data set. As detailed in
Table 1, the overall MAE of R-xDH7-SCC15 for GMTKN55 is
2.24 kcal/mol. Upon examination across five subsets of
GMTKN55, it is clear that the SCC15 model introduces, on
average, an influence of less than 0.1 kcal/mol. Thus, the
significant advancement of R-xDH7-SCC15 in describing
strongly correlated systems is achieved without compromising
its accuracy in describing dynamic correlations.
The MGCDB84 data set,68 developed by the Head-Gordon

group, represents a chemically diverse and comprehensive
database designed for main-group chemistry. It encompasses
84 subsets containing a total of 4986 individual data points.

Similar to GMTKN55, MGCDB84 primarily targets dynamic
correlations with exception to 3 subsets denoted by the “MR”
suffix.68 Given the limited overlap of only 804 data points
across 24 subsets shared by GMTKN55 and MGCDB84, we
utilized the MGCDB84 data set as a supplementary means of
validation. Supplementary Figure S3 in the Supporting
Information suggests XYG7 and R-xDH7 as the top performers
with MAEs of 0.65 and 0.67 kcal/mol, respectively. Notably,
the SCC15 model shows a negligible effect on MGCDB84,
with R-xDH7-SCC15 maintaining the good performance with
an overall MAE of 0.67 kcal/mol. This consistency highlights
the robustness and transferability of the predictive power of R-
xDH7-SCC15.
While MGCDB84 is predominantly governed by the

dynamic correlation outside the training set, we further
evaluate the performance of R-xDH7-SCC15 on the MG23
set, which comprises 23 chemical reaction energies having
important static correlation effects. These testing cases involve
both main-group metal and nonmetal elements as detailed in
Supplementary Table S1 in the Supporting Information,
meticulously collected from prior literature sources69,70 and
identified using the %[(T)] diagnostic for their static
correlation characters. While the CCSD(T) method yields an
MAE of 4.03 kcal/mol, standard PT2-based methods,
hampered by their inherent limitations in handling static
correlation effects, demonstrate less accurate results. For
instance, XYG7 records an MAE of 6.23 kcal/mol on the
MG23 set. In sharp contrast, R-xDH7 effectively captures a
significant portion of the static correlation with its innovative
renormalized design, reducing the MAE to 2.96 kcal/mol.
More significantly, R-xDH7-SCC15 achieves top-tier accuracy
with an MAE of 2.43 kcal/mol on the MG23 set, underlining
its superior potential to tackle problems with important static
correlation effects.
We would like to emphasize that the SCC15 model was

devised to eliminate the residual errors adapted for R-xDH7 in

Figure 4. Performance comparison of various methods on a specialized validation set of 17 reactions where the SCC15 model exhibits a substantial
improvement (>3 kcal/mol). Each reaction is filtered out from the GMTKN55, MGDC84, or MG23 databases and identified by its corresponding
subset name and original index. Details of these 17 reactions are presented in Supplementary Table S2.
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the treatment of the static correlation. This point was
substantiated by our findings: 4 out of 23 reactions in the
MG23 test set exhibit SCCep, SCCmb, or SCC15 values
exceeding 3.0 kcal/mol. Extending this threshold across more
than 6400 data points from GMTKN55, MGCDB84, and
MG23 altogether, we identified and filtered out 17 specific
chemical reactions which were detailed in Supplementary
Table S2 in the Supporting Information. Figure 4 and
Supplementary Table S2 show that R-xDH7 yields an MAE
of 3.82 kcal/mol, which closely parallels the performance of the
CCSD(T) method and significantly surpassed other DFAs.
Significantly, none of these 17 reactions are part of training sets
for the SCC15 model, yet R-xDH7-SCC15 achieves an
outstanding performance with an MAE of only 1.73 kcal/
mol, demonstrating again its remarkable robustness and
transferability across a diverse spectrum of chemical scenarios.
When applying only the electron-pair correction (i.e., R-xDH7-
SCCep), the accuracy is inferior (MAE = 4.87 kcal/mol),
highlighting the crucial interplay between electron-pair and
many-body corrections in achieving optimal results. The
success of the SCC15 model is rooted in its developing
strategy that effectively tackled both types of static correlation
errors, thereby providing strong evidence for the validity and
effectiveness of our systematic approaches.
The linear hydrogen chain model holds a profound position

within the realm of computational materials science,71 as it
provides a pivotal means to mimic strong electron correlation
effects, prevalent in many complex materials. Unlike the
Hubbard model that simplifies interactions to one-dimensional
lattice sites, the linear H chain model offers a more authentic

depiction of molecular bonding inherent to condensed matter
systems. Figure 5a presents the energy profile that dissociates
all bonds simultaneously in a finite hydrogen chain consisting
of ten atoms (H10), while Supplementary Table S5 provides
the calculated energies per atom at the thermodynamic limit
(TDL). This specific model system presents a stringent test, as
it involves multiple bond dissociations simultaneously, being a
far more challenging task compared to those usually
encountered in typical molecules as in MBD23−594. R-
xDH7-SCC15 demonstrates its robustness by providing a
balanced and accurate description for the whole dissociation
curve. As showcased in Figure 5b. the overall MAEs of R-
xDH7-SCC15 in the middle range and dissociation limit are
4.5 and 1.3 kcal/mol, respectively, which are notably close to
its performance in the equilibrium region (MAE = 1.0 kcal/
mol), where the dynamic correction is dominant.
As a practical case study, we examined here the dissociative

chemisorption of methanol (CH3OH) on the Cu(111) surface,
where three primary reaction channels are involved with the
cleavage of O−H, C−H, and C−O bonds, respectively. The
control of the product branching ratios via vibrational mode
excitation has been proposed.72,73 A proper description of
these product branching ratios necessitates accurate molecular
dynamics simulations, where constructing precise potential
energy surfaces is essential. Until now, however, these surfaces
have primarily been constructed at the GGA level.72

First, we calculated the dissociation curves of methanol in
the gas phase (Figure 6a,c, and e). Among the methods tested,
R-xDH7-SCC15 performs significantly better with an MAE of
only 1.91 kcal/mol against reference curves, outperforming

Figure 5. Relative potential energy curve of H10. Energies per atom were evaluated by E EH H1
10 10[ ] [ ] (a) and Mean Absolute Errors (MAEs) of

various methods across three critical regions: equilibrium, middle, and the dissociation limit (b). All calculations were performed employing the
def2-QZVPP basis set. For benchmarking, accurate reference data were taken from ref 71. ‘NaN’ denotes failure of SCF convergence for PBE or
non-convergence of coupled-cluster iteration for CCSD(T).
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traditional single-reference based methods such as conven-
tional DFAs and even CCSD(T). We then extended our
analysis to the bond dissociation curves of methanol on the
Cu(111) surface by employing the XO-PBC strategy recently
developed (See the Supporting Information for the detail of
XO-PBC).74−76 Using R-xDH7-SCC15 results as the bench-
mark, we identified that the widely used GGA methods, in
particular PBE-D3BJ,52,54 have a strong tendency to over-
estimate the adsorption energies, while significantly under-
estimating reaction barriers. Figure 6b,d, and f show an
improvement when utilizing the hybrid B3LYP-D3BJ method.
For O−H and C−H bond dissociation pathways, the errors in
B3LYP-D3BJ reaction barriers are less than 1 kcal/mol.
However, the error exceeds 6 kcal/mol for C−O bond
dissociation. Such discrepancies in predicted reaction barriers
of different pathways are critical, as they have a direct impact
on the determination of the product branching ratios,
highlighting the need for more advanced computational
approaches in an unbiased modeling of the complex surface
reactions.

In summary, we have developed the R-xDH7 functional that
stands at the apex of Jacob’s Ladder of KS-DFT. This
renormalized xDH method, containing seven empirical
parameters, excels in capturing a significant portion of the
static correlation, while preserving the generally good perform-
ance of xDH methods for a wide range of systems with the
dynamic correlation. A pivotal achievement lies in the
successful development of the SCC15 model through symbolic
and parameter regressions to eliminate the residual static
correlation errors associated with R-xDH7. The resultant R-
xDH7-SCC15 method achieves an extraordinary balance in
representing dynamic and static correlation effects over
conventional DFAs, as well as the “gold standard” CCSD(T)
in wave function theory. This superiority has been confirmed
by extensive benchmarking over a diverse array of 6400 main-
group chemical reactions sourced from GMTKN55,
MGDCB84, and MG23 data sets, as well as 594 data points
associated with 23 molecular dissociation curves. Applications
of R-xDH7-SCC15 to the dissociative chemisorption of
methanol on copper surfaces have showcased the inadequacies

Figure 6. Comparative analysis of the performance of various methods in calculating the dissociation processes of methanol (CH3OH) in the gas
phase (a,c, and e) and on the Cu(111) surface (b,d, and f).
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of the widely used GGAs, as well as hybrid DFAs, in accurately
describing complex reaction energetics and kinetics. We
anticipate that the R-xDH7-SCC15 method, integrating
superior accuracy, high computational efficiency and black-
box-like accessibility all-in-one, will significantly boost the
predictive power of computational chemistry, particularly in
elucidating intricate reaction mechanisms when both static and
dynamic correlation effects are crucial.

■ METHODS
The electronic calculations for R-xDH7-SCC15 were conducted using
our in-house Rust-based Electronic Structure Toolkits (REST).28

Unless specified otherwise, the def2-QZVPP basis set was employed.
The resolution-of-identity approach was introduced in conjunction
with the def2-SV(P)-JKFIT auxiliary basis set to enhance the
computational efficiency. Only valence electrons from the outer
shell were considered in the post self-consistent field (post-SCF)
calculations. For the molecular dissociation curves, the calculations
were performed without breaking spin symmetry. A detailed account
of the computational parameters and methodology is provided in the
SI. It is worth noting that the computational scaling of R-xDH7-
SCC15 is on part with standard PT2-based doubly hybrid
approximations. This is attributed to the advanced correlation models
introduced, which exhibit the same or even lower computational
scaling than the PT2 term. As illustrated in Table S8 in Supporting
Information, the consumption cost of evaluating the PT2 correlations
in XYG7 is comparable to a single B3LYP SCF iteration. This
efficiency is particularly notable for large systems, as demonstrated by
our calculations on systems comprising up to 80 atoms and over 3000
basis functions. Furthermore, the many-body renormalization of the
PT2 evaluation and the SCC15 correction are cost-effective, similar to
the standard PT2 term. This highlights the practicality of the R-
xDH7-SCC15 method within the REST package for complex systems.
While the REST package currently supports numerical evaluation of
energy gradients for R-xDH7-SCC15, the development of analytic
energy gradients is underway and will be a significant enhancement in
the forthcoming versions of the package.
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(19) Brémond, É.; Sancho-García, J. C.; Pérez-Jiménez, Á. J.;
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