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Acromegaly is a pathological condition that is caused by over-secretion of
growth hormone (GH) and develops primarily from a pituitary adenoma.
Excess GH exposure over a prolonged period of time leads to a wide range
of systemic manifestations and comorbidities. Studying the effect of excess
GH on the cellular level could help to understand the underlying causes of
acromegaly health complications and comorbidities. In our previous publi-
cations, we have shown that excess GH reduces body side population (SP)
stem cells and induces signs of premature ageing in an acromegaly zebrafish
model. Here, we study acromegaly ageing in greater depth at the level of
gene expression. We investigated whether acromegaly induces an ageing gen-
etic signature in different organs. Using the GenAge database, our acromegaly
model showed a significant enrichment of ageing genetic datasets in the
muscle but not in other organs. Likewise, the hierarchical clustering of wild
type (WT), acromegaly and aged RNA data from various organs revealed
the similarity of gene expression profiles between the acromegaly and the
aged muscles. We therefore identified overlapping differentially expressed
genes (DEGs) in different organs between acromegaly and aged zebrafish.
Importantly, about half of the muscle, liver and brain acromegaly DEGs over-
lapped with aged zebrafish DEGs. Interestingly, overlapping was observed in
the same way; acromegaly-up DEGs overlapped with aged zebrafish up
DEGs, not down DEGs, and vice versa. We then identified the biological func-
tions of overlapping DEGs. Enrichment database analysis and gene ontology
showed that most overlapping muscle genes were involved in ageing metab-
olism, while overlapping liver DEGs were involved in metabolic pathways,
response to hypoxia and endoplasmic reticulum stress. Thus, this study pro-
vides a full ageing genetic signature of acromegaly at the gene expression level.
1. Introduction
Acromegaly is a progressive disease resulting from excess growth hormone
(GH) levels and, subsequently, insulin-like growth factor 1 (IGF-1). Acromegaly
is usually caused by a pituitary adenoma. In fewer cases, the disease may be
caused by ectopic GH secretion or by pituitary hyperplasia [1]. Gigantism
and acromegaly are both rare disorders caused by excess GH and IGF-1
secretions; however, gigantism occurs when GH excess triggers linear develop-
ment prior to puberty, whereas acromegaly occurs after epiphyseal closure [2].

Excessive exposure to GH causes somatic disfigurement, including broad
arms, legs, thickened soft tissues, enlarged face, nose and bulging of the fore-
head. Progressive acromegaly forms are characterized by skeletal defects
leading to dorsal kyphosis and distortion of the rib cage [1,3].

In addition to abnormal soft-tissue growth and hypertrophy, patients with
acromegaly develop a number of systemic manifestations and comorbidities,
including gastrointestinal disease, reproductive disorders, arthritis, carpal
tunnel syndrome, weakness, colon polyps, diabetes mellitus, kidney disorders,
neuropathy and cardiovascular disease [4,5].

Over thepast twodecades,wehavegainedabetterunderstandingof thegenetic
aetiology of gigantism and acromegaly. Several novel gene mutations that disrupt
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Figure 1. Acromegaly muscle ageing at gene expression level. (a) GSEA results of ageing signature genes from the GenAge database in the acromegaly kidney,
muscle, liver and brain. Significant p-values less than 0.05 and FDR q-values less than 0.25 are shown in red. (b) Hierarchical cluster analysis dendrogram and
heatmap of RNA seq data from the muscle, liver and brains of WT, acromegaly model (1-year-old) and aged zebrafish (3-year-old).
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intracellular somatotrophic pathways to mediate GH hyperse-
cretion have been identified, including aryl hydrocarbon
receptor interacting protein (AIP) gene germline mutations [6]
and X-linked acrogigantism syndrome (XLAG) trait [7].
Systemic manifestations of acromegaly are widespread
throughout the body, suggesting that the pathological effect
of excess GH acts on the cellular level. The discovery of the
underlying genetic causes of acromegaly is crucial for the
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development of new diagnostic and therapeutic approaches.
Less research, however, is focused on the pathological
impact of excess GH and how GH works at the cellular
level to cause acromegaly comorbidities.

In our previous publications, we developed a GH overse-
creting zebrafish model of acromegaly to investigate the
pathological effects of excess GH on cell biology. Many dis-
rupted parameters have been identified in acromegaly
somatic and stem cells, such as increased DNA damage and
impaired DNA repair pathways [3,8]. Among the major dis-
orders in our acromegaly model owing to excess GH include
a progressive decrease in the number of side population (SP)
stem cells in the body and an increase in oxidative stress in
stem cells. In addition, we have observed signs of premature
ageing [8]. Here, therefore, we study acromegaly ageing
more deeply at the level of gene expression by examining
whether acromegaly exhibits enrichment of ageing genetic sig-
natures in various organs. In addition, we investigate whether
there is an overlap between acromegaly and ageing differen-
tially expressed genes (DEGs) and identify shared biological
themes between acromegaly and ageing.
genes: WT brain versus acromegaly brain genes: AGED brain versus WT brain
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Figure 2. Volcano plots of acromegaly and aged muscle genes versus WT
muscle. Y-axis, −log10 ( p-value); X-axis, log2 (fold change). Orange coloured
genes are considered significant (n = 3).
2. Results
2.1. Acromegaly muscle ageing at gene expression level
In our previous publications, a tilapia-GH overexpressing zeb-
rafish acromegaly model [3] was produced to study the
pathological effects of excess GH on cell biology. We have
identified many disrupted signalling pathways and biological
processes at the cellular level. Among the main findings was a
decline in the number of stem cells and premature signs of
ageing in our model [3,8]. In order to investigate ageing in
acromegaly at the level of gene expression, we used the
GenAge database (https://genomics.senescence.info/genes/
index.html), which was developed from meta-analysis studies
to identify the common genetic signature of ageing in different
organs. We used our previously published RNA seq data of
mRNA extracted from the liver, muscle, kidney and brain of
wild type (WT) (1-year-old), acromegaly (1-year-old) and
aged zebrafish (3-year-old) (RNA seq data available at Gene
expression omnibus (GEO) accession no. GSE113169 [9]).
Gene set enrichment analysis (GSEA) was then performed
using acromegaly RNA seq data from the liver, muscle,
kidney and brain to test for enrichment of GenAge genetic sig-
nature genes in corresponding organs.

As we can see in figure 1a, the enrichment scores of
ageing genetic datasets were positive in all the acromegaly
organs, indicating upregulation of the GenAge gene sets in
the respective organs; however, the enrichment was signifi-
cant only in the acromegaly muscles ( p-value < 0.01 and
false discovery rate (FDR) q-value = 0.08).

In order to confirm these results, we investigated acrome-
galy ageing at the level of gene expression using a different
approach. We generated a hierarchical cluster analysis dendro-
gram of RNA seq data from the muscle, liver and brains of
WT, acromegaly model (1-year-old) and aged zebrafish (3-
year-old) (figure 1b). Importantly, the hierarchical clustering
yielded the same results and showed similarities in patterns of
gene expression between acromegaly and aged zebrafish only
in the muscle, but not in the liver or brain (figure 1b) [8].
2.2. Overlaping differentially expressed genes between
acromegaly and aged zebrafish

Adj p-value was used to identify the DEGs of acromegaly (1-
year-old) and aged zebrafish (3-year-old) in different organs
relative to WT samples (alpha = adj p-value < 0.05).

Figure 2 displays the volcano plots of the RNA seq genes
of the acromegaly and the aged muscle, liver and brain.

Since our acromegaly model showed signs of premature
ageing and similar patterns of gene expression to the aged
muscle [3], we investigatedwhether acromegaly DEGs overlap
withDEGs of aged zebrafish.We establishedVenn diagrams of
up and down DEGs from acromegaly and aged muscle, liver
and brain.

https://genomics.senescence.info/genes/index.html
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Figure 3. Acromegaly overlap DEGs. (a) Venn diagrams of up-and-down DEGs of acromegaly and aged zebrafish muscle, brain and liver. (b) Bar chart showing the
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Although the number of DEGs in aged zebrafish was
higher, most of the acromegaly DEGs overlapped with aged
DEGs (figures 2 and 3a). It is important to note that overlap-
ping has been observed in the same way; acromegaly-up
DEGs overlapped with aged-up DEGs, not down DEGs, and
vice versa (figure 3a).

More than 50 per cent of acromegaly-down DEGs over-
lapped with aged-down DEGs in the muscle, while about
40 per cent of up DEGs overlapped with aged-up DEGs
(figure 3b). Importantly, there was almost no overlap between
acromegaly-down DEGs and aged-up DEGs or between acro-
megaly-up DEGs and aged-down DEGs in the muscle
(figure 3a). These results support our previous observation
that the acromegaly muscles show similarity in the patterns
of gene expression to aged zebrafish.

Although hierarchical clustering and GSEA results (figure 1)
did not show ageing in the acromegaly brain, the Venn diagram
revealed that 65% of acromegaly-down DEGs overlapped with
aged-down DEGs in the brain. And about 40% of up DEGs
overlapped in aged DEGs (figure 3). Interestingly, the same
results were observed in the liver (figure 3).

2.3. Enriched biological themes and signalling
pathways of overlapping DEGs in muscle.

We therefore performed enrichment analysis of overlapping
DEGs to identify the common signalling pathways and bio-
logical processes between acromegaly and ageing. Gene
ontology (GO) analysis of overlapping DEGs between acro-
megaly and aged muscle revealed enrichment of metabolic
pathways such as ethanol, oxoacid and steroid metabolism
in biological processes (figure 4a), and enrichment of enzy-
matic activities for molecular function (figure 4a). We used
the KEGG database (https://www.genome.jp/kegg/) to
classify the roles of enriched enzymatic activities. The analy-
sis showed that most of the enriched enzymatic activities
are related to metabolic processes (table 1), while cellular
component analysis revealed enrichment of the haptoglobin–
haemoglobin complex (figure 4a).

Interestingly, pathway analysis has shown that most of
the enriched signalling pathways are also related to metab-
olism (figure 4b). Reactome database analysis (https://
reactome.org/) revealed enrichment of metabolic pathways
of lipids, phospholipids, fatty acid and triglycerides, while
KEGG and BioPlanet database analysis (https://tripod.nih.
gov/bioplanet/) showed enrichment of fatty acids, glycoly-
sis, nitrogen and various amino acid metabolic pathways.

In order to investigate the percentage of overlapping
DEGs involved in ageing muscle metabolism, we quantified
the metabolic-related genes as a total number of overlapping
genes. We have found that most of the metabolic-related
overlapping DEGs are downregulated. Approximately 50%
of the down overlapping DEGs and 20% of the up-overlapping
DEGs are related to metabolism (figure 5).

2.4. Enriched biological themes and signalling
pathways of overlapping DEGs in liver

The Venn diagram showed that about 40% of acromegaly
liver DEGs overlapped with aged DEGs (figure 3). We
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therefore investigated the biological functions of these
overlapping genes.

GO analysis of overlapping DEGs in the liver revealed
enrichment of three main categories: metabolic pathways,
response to hypoxia and ER stress. Response to hypoxia,
fatty acid metabolic process, regulation of transcription,
protein kinase R (PKR)-like endoplasmic reticulum kinase
(PERK)-mediated unfolded protein response and ER were
among the enriched biological themes (figure 6a). Consist-
ently, we have previously shown that ER stress induction is
one of the main features of acromegaly (under publication).

Similarly, pathway analysis from Reactome, Elsevier
pathway (http://www.transgene.ru/disease-pathways/),
Wikipathways (https://www.wikipathways.org/index.php/
WikiPathways), NCI-Nature (http://pid.nci.nih.gov/) and Bio-
Planet databases showed enrichment of pathways related to
hypoxia and metabolism (figure 6b). Importantly GSEA
showed significant downregulation of response to hypoxia
in the liver of acromegaly (1-year-old) and aged zebrafish
(3-year-old) (figure 7a).

We therefore quantified overlapping genes related to
metabolism, hypoxia response and ER stress as a total
number of overlapping genes in the liver. We found that
most overlapping genes in the liver are related to these
three categories (figure 7b).
2.5. Enriched biological themes and signalling
pathways of overlapping DEGs in brain

Similar to the muscle and liver, the Venn diagram showed
that most acromegaly brain DEGs overlapped with the

http://www.transgene.ru/disease-pathways/
https://www.wikipathways.org/index.php/WikiPathways
https://www.wikipathways.org/index.php/WikiPathways
http://pid.nci.nih.gov/


Table 1. KEGG pathways of enriched enzymatic activities in figure 4a.

enriched metabolic function related KEGG pathway

hydro-lyase activity methane metabolism

metabolic pathways

microbial metabolism in diverse environments

carbonate dehydratase activity nitrogen metabolism

metabolic pathways

oxidoreductase activity glycolysis/gluconeogenesis

citrate cycle (TCA cycle)

pyruvate metabolism

nitrotoluene degradation

propanoate metabolism

butanoate metabolism

methane metabolism

carbon fixation pathways in prokaryotes

metabolic pathways

biosynthesis of secondary metabolites

microbial metabolism in diverse environments

aldehyde dehydrogenase (NAD) activity glycolysis/gluconeogenesis

ascorbate and aldarate metabolism

fatty acid degradation

valine, leucine and isoleucine degradation, lysine degradation, arginine and proline metabolism

histidine metabolism

tryptophan metabolism

beta-alanine metabolism

glycerolipid metabolism

pyruvate metabolism

chloroalkane and chloroalkene degradation

limonene and pinene degradation

insect hormone biosynthesis

metabolic pathways

biosynthesis of secondary metabolites

microbial metabolism in diverse environments

overlap_up

othersmetabolism othersmetabolism

overlap_down(a) (b)

Figure 5. Pie chart showing the percentage of up- and down-regulated over-
lapping DEGs that are related to metabolic processes in muscle.
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aged brain. As we can see in figure 3, approximately 65% of
acromegaly-down DEGs overlapped with aged-down DEGs
in the brain.
GO analysis of overlapping DEGs in the brain has
shown that positive regulation of transcription, DNA
binding, neurotrophins binding and regulation of neurotrans-
mitter transport were enriched for biological process and
molecular function. Troponin, ruffle membrane and cell pro-
jection were enriched for cellular components (figure 8a).

Pathway analysis from Reactome, KEGG and BioPlanet
databases showed the enrichment of developmental biology,
gap junction, circadian entrainment, long-term potentiation
and MAPK signalling pathway (figure 8b).

2.6. Growth hormone-cultured human oocytes showing
ageing at gene expression level

In this study and our previous publications, we have shown
that excess GH influenced ageing and stem cell number and
integrity in our acromegaly zebrafish model. It is therefore
important to investigate whether excess GH could have the
same effect on human cells. Here, we have tried to study
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the ageing signature of GH-treated human cells available at
GEO (gene expression omnibus). We retrieved single-cell
RNA seq data of human oocyte cultured by GH (GEO acces-
sion no. GSE133161).

We used GSEA analysis to investigate whether GH
oocytes enrich ageing signatures. Interestingly, this gene set
and a dataset for the premature ageing disorder (Werner Syn-
drome, MSigDB no. M1996) were significantly upregulated in
GH-cultured human oocytes (figure 9).
3. Discussion
Zebrafish are a promising model for the study of human gen-
etic diseases owing to the availability of a fully sequenced
genome, ease of genetic manipulation, transparency of
larvae, short life cycle and low housing costs. In addition,
zebrafish are physiologically similar to mammals [10].
In an attempt to identify the molecular mechanisms
underlying acromegaly comorbidities, a tilapia-GH overex-
pressing zebrafish was developed as an acromegaly
model. We have shown that excess GH influences cellular
integrity throughout the body [3,8]. Furthermore, we ident-
ified many disrupted biological parameters in acromegaly
somatic and stem cells. Interestingly, our zebrafish model
showed signs of premature ageing and reduced SP stem
cells in the kidneys, muscles and brains [3,8]. That encour-
aged us to study acromegaly ageing more deeply at the
level of gene expression.

GenAge is a human and model animal database for
ageing and longevity. GenAge datasets used in this research
were derived from meta-analysis studies to detect the ageing
genetic signature of every organ [11]. Importantly, both the
GSEA analysis against GenAge sets and the hierarchical
clustering of RNA seq genes showed enrichment of ageing
in acromegaly muscles.
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Figure 9. GH-cultured human oocytes showing ageing at gene expression level. (a) Illustration of statistically significant GSEA results against a geneset that consistently
overexpressed with age, based on meta-analysis of microarray data (MSigDB no. M2144) and (b) premature ageing disorder dataset (Werner syndrome, MSigDB no.
M1996). Significant p-values < 0.05 and FDR q-values < 0.25 are written in red. The reported p-value of 0.0 indicates an actual p-value of less than 0.01.
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It is important to mention that the aged zebrafish used in
this study are very aged zebrafish (3 years old).

Although the enrichment of the GSEA analysis in other
organs was not significant (by p-value), the enrichment
scores were positive for all the acromegaly organs tested,
indicating the upregulation of the ageing gene sets in the
respective organs.

The association of acromegaly gene expression pattern
towards ageing was more prevalent in the results of the
Venn diagram between aged and acromegaly DEGs.
Approximately half of the acromegaly DEGs have been
enriched in aged zebrafish. Interestingly, DEGs overlapping
has been observed in the same way in all organs tested;
acromegaly-up DEGs overlapped with aged-up DEGs, not
aged-down DEGs, and vice versa. It is important to note
that most overlapping DEGs were downregulated in the
muscle and upregulated in the liver.

Using overlapping DEGs, we identified the Shared bio-
logical themes between acromegaly and ageing in each
organ. In the liver, acromegaly shared three main categories:
response to hypoxia, ER stress and some metabolic pathways,
while in the muscle, most overlapping DEGs were involved
in ageing metabolism. Consistently, we have previously
shown that both acromegaly and ageing trigger ER stress
(under publication).

In this study and our previous publications, we have
shown that excess GH influenced both ageing and stem cell
number and integrity in a zebrafish acromegaly model. How-
ever, these are preclinical studies and therefore it is important
to study the ageing and integrity of the stem cells in the
different tissues of acromegaly patients. Although we have
shown that GH-cultured human oocytes enrich ageing gen-
etic signatures, clinical studies in acromegaly patients are
required to investigate the effects of excess GH on ageing
and stem cells in all organs.

GH effects are mainly mediated by the GH/IGF-1 axis,
which is the main controller of somatic growth. IGF-1 level
is used more often for routine diagnosis of acromegaly as it
is stable during the day [5]. In our previous publication, it
has been shown that the IGF-1 acromegaly model is compar-
able to the IGF-1 acromegaly level [3]. Additionally, our
acromegaly model and patients with acromegaly exhibited
DNA damage induction. Previous studies have reported the
induction of DNA damage to peripheral lymphocytes in
acromegaly [12,13], while our model has induced DNA
damage in various organs [3]. Thus, our acromegaly
zebrafish model showed similarities in many biological
parameters with acromegaly patients.

Moreover, similar to acromegaly patients, GH transgenic
rats and GH transgenic salmon, our model showed substan-
tial induction of oxidative stress [3,8,12,14,15].

Oxidative stress and DNA damage are major players in
ageing and age-related diseases [16].

Acromegaly patients develop some age-related health
complications such as muscle weakness, diabetes mellitus,
neuropathy, reproductive disorders, arthritis, kidney dis-
orders, neuropathy and cardiovascular disease. According to
this study and our previous studies, these health complications
could be attributed, at least in part, to the contribution of
ageing in acromegaly.

The contribution of ageing to acromegaly health compli-
cations can provide a deeper understanding of acromegaly
systemic manifestations, the pathological effects of excess GH
couldhelp identifypotential targets for therapeutic interventions.

According to our analysis, the only difference identified
between our model and acromegaly patients is the ubiquitous
expression of GH in the zebrafish acromegaly model,
whereas, in acromegaly patients, GH is primarily secreted
from a pituitary adenoma [3].
4. Methods
4.1. Data
We used our RNA seq data available at Gene expression
omnibus (GEO) accession nos. GSE113169, GSE153755. We
used RNA seq data of acromegaly, WT (1-year-old) and
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aged zebrafish (3-year-old) from muscle, brain, liver and
kidney. DEGs were detected previously [3,8] using cummer-
bund r package (https://www.bioconductor.org/packages/
release/bioc/html/cummeRbund.html) (α = adj, p-value <
0.05).

4.2. Data analysis

4.2.1. Hierarchical clustering and heatmap

Hierarchical clustering of RNA seq data from muscle, liver
and kidney of acromegaly, WT and aged zebrafish was con-
ducted using the heatmap.2 function of gplots r package.
(https://rdrr.io/cran/gplots/) [9]

4.2.2. Gene set enrichment analysis

First, we used Biomart (http://www.ensembl.org/biomart/
martview) to convert the differentially expressed genes to
their human orthologues, then we tested GSEA [17] for enrich-
ment against the ageing genetic signature of the GenAge gene
sets (https://genomics.senescence.info/genes/), Reactome
cellular response to hypoxia (R-HAS-2262749), demagalhaes
ageing UP (MSigDB no. M2144) and KYNGWerner syndrome
(MSigDB no. M1996).

Gene sets were considered significant according to
p-value < 0.05.

4.2.3. Volcano plot

Volcano plots of acromegaly and aged muscle genes versus
WT muscle were conducted using Microsoft Excel software.
Y-axis, −log10 ( p-value); X-axis, log2 (fold change).

4.2.4. Venn diagram

We used the VennDiagram R software package to construct
a Venn diagram to identify overlapping genes between
acromegaly muscle DEGs and aged muscle DEGs.

4.2.5. Enriched pathway analysis

After converting the overlapping genes between acromegaly
and aged zebrafish muscle to their human orthologues
using the BioMart platform [18], we used the ENRICHR
database to identify enriched signalling pathways.

ENRICHR pathways were considered significant
according to p-value < 0.05

4.2.6. Gene ontology

We used GO platform (http://geneontology.org/) to detect
enriched biological themes of overlapping genes.

GO biological themes were considered significant accord-
ing to p-value < 0.05

4.3. Statistical analysis
All experiments were performed on biological replicates. The
size of the sample is reported in the relevant figure legends.
Data were considered statistically significant if p-value < 0.05.
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