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Abstract: This paper proposes a customized convolutional neural network for crack detection in
concrete structures. The proposed method is compared to four existing deep learning methods
based on training data size, data heterogeneity, network complexity, and the number of epochs.
The performance of the proposed convolutional neural network (CNN) model is evaluated and
compared to pretrained networks, i.e., the VGG-16, VGG-19, ResNet-50, and Inception V3 models,
on eight datasets of different sizes, created from two public datasets. For each model, the evalu-
ation considered computational time, crack localization results, and classification measures, e.g.,
accuracy, precision, recall, and F1-score. Experimental results demonstrated that training data size
and heterogeneity among data samples significantly affect model performance. All models demon-
strated promising performance on a limited number of diverse training data; however, increasing the
training data size and reducing diversity reduced generalization performance, and led to overfitting.
The proposed customized CNN and VGG-16 models outperformed the other methods in terms of
classification, localization, and computational time on a small amount of data, and the results indicate
that these two models demonstrate superior crack detection and localization for concrete structures.

Keywords: automatic inspection; convolutional neural networks; crack detection; deep learning;
transfer learning

1. Introduction

In civil infrastructure, cracks are the earliest sign of the structural deterioration that
reduces the lifespan and reliability of concrete structures, and can lead to serious envi-
ronmental damage. Assessment and monitoring of the structures is required for lifetime
maintenance and failure prediction. Concrete structure condition information can be ob-
tained manually, i.e., subjective visual inspection and assessment by human experts, or
automatically. Manual inspection techniques are labor-intensive, time-consuming, and
inspector dependent, i.e., vulnerable to the inspector’s level of perceptiveness. Auto-
matic inspection techniques offer an efficient solution, which eliminates subjectivity and
addresses other problems associated with manual inspection.

Over the last decade, advances in computer science have enabled the use of vision-
based machine learning and deep learning approaches to autonomous civil infrastructure
inspection. The development of an effective vision-based automated concrete crack de-
tection system has been a challenging research problem. These systems rely heavily on
images of the structure. Such images are often affected by various factors, such as low
contrast between the concrete surface and cracks, irregular size and random shape of
cracks, intensity variations, multiple textures, and shadowing. However, these systems
can detect, localize, and even provide orientation and width information of the cracks in
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the images. Researchers extensively studied the development of vision-based approaches
for concrete crack detection, and have proposed several widely used approaches. Early
image processing methods for crack detection include edge detection [1], thresholding
and segmentation [2], region growing [3], and peculation-based techniques [4]. Local
information-based models use various filters, such as morphological [5], statistical [6], 2D
matched [7], and median filters, as well as multi-scale line filters based on the Hessian
matrix [8]. Developments in machine learning have significantly influenced and improved
concrete crack detection. Differing from previous approaches, machine learning can learn
deep features and perform statistical inference without manually tuning parameters.

Traditional machine learning approaches for crack detection primarily comprise two
steps: feature extraction, and classification. In the feature extraction step, image processing
techniques are used to extract relevant crack information (features) from the images that
are then evaluated by various classifiers. Many crack detection studies have been based on
traditional machine learning approaches [9–15]. However, if the extracted features do not
reflect the actual cracks, the classifier may not provide accurate results. Deep learning meth-
ods have significantly extended the versatility and robustness of conventional approaches,
and have shown great performance in solving crack detection problems [15–24]. Deep
convolutional neural network (CNN) models are capable of extracting relevant features
from the input data through a multi-layer neural network [25]. Moreover, these models are
also extendable to perform crack localization by using the sliding window approach. In
the sliding window approach, a bounding box is drawn on the patch location classified as
a crack by the classifier. To construct a deep learning model, the correct network structure,
loss function, and an effective optimization algorithm must be selected.

Zhang et al. [26] proposed a six-layer convolutional neural network (CNN) architec-
ture for crack detection in pavement surfaces, and used 640 k, 160 k, and 200 k images
to train, validate, and test the network, respectively. Wang et al. [27] proposed a CNN
architecture with three convolutional and two fully connected layers for asphalt pavement
crack recognition. The authors used 640 k image patches to train, and 120 k patches to test,
the model. In [28] the authors combined CNN architecture with sliding window techniques
for crack detection and localization of cracks in concrete images using 40 images. Based on
their results, the authors recommended using more than 10 k images to train a network
from scratch. Xu et al. [29] trained a 28-layer end-to-end CNN model for concrete bridge
crack detection using 6069 images acquired from a bridge structure. The authors used the
concept of atrous spatial pyramid pooling (ASPP) to gain multiscale context information
and depth-wise convolution to reduce the number of network parameters. In [30] the
authors proposed a CNN model for crack detection in pavement structures, to investigate
the effect of network depth and image position on the performance of the model. The
results show that the network could be enhanced by increasing the network depth while
the network generalization ability decreased with changing the position of training and
testing images. Fan et al. [31] proposed an efficient automatic pavement crack detection
and measurement model using an ensemble of CNN models. The authors used a weighted
average ensemble technique to calculate the final crack probability by combining the prob-
ability score from the individual CNN models. In [32], Tong et al. designed three different
(recognition, location, and feature extraction) CNN architectures with different functionali-
ties to perform crack detection, localization, length measurement, and 3D reconstruction of
concealed cracks in ground penetrating radar (GPR) images. Yang et al. [33] proposed a
novel approach for automatic detection and measurement of pixel-level cracked concrete
structures using a deep learning approach, named fully convolutional network (FCN). The
architecture was composed of down sampling (conventional CNN layers) and up sampling
(deconvolutional layer). Zhang et al. [34] proposed CrackNet, a CNN architecture consist-
ing of five (2 convolutional, 2 fully connected, and 1 output) layers for pixel-level crack
detection on 3D asphalt surfaces. CrackNet could efficiently detect cracks at pixel level, but
the processing time of the architecture was high, and it had difficulty in detecting hairline
cracks. To overcome these problems, the authors proposed CrackNet II [35] to improve
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the processing time of the network, eliminate local noises, and detect hairline cracks in 3D
asphalt surfaces. The above-mentioned networks were trained from scratch, and require a
large amount of training data and considerable time. Training time can be minimized by
fine-tuning pretrained models that have been used for a similar task.

Transfer learning models facilitate the applicability of CNNs without incurring high
computational costs or requiring knowledge about how CNN’s operate. Transfer learning
models that use image data as input include Google models, i.e., the Visual Geometry
Group’s VGGNet [36], Microsoft’s ResNet [37] and Inception-V3 [38]. Gopalakrishnan
et al. [39] used pre-trained VGG-16 architecture for pavement crack detection. Here, the
authors used a comparatively small size of data, i.e., training data, 760 images; validation
data, 84 images; and test data, 212 images. Compared to previous CNN models, the
proposed transfer learning model was reliable, fast, and easily implementable. Zhang and
Cheng [40] used an ImageNet-based pre-trained model to identify cracks and seal cracks
in pavement images. In that study, the training dataset consisted of 30 k crack patches, and
30 k non-crack patches. In the test set, 20 k patches were assigned to each class. In [41]
the authors used the VGGNet model with 2000 labeled images (4:1 training to test data) to
detect various types of structural damage. Bang et al. [42] trained a deep residual network
with transfer learning for road crack detection using 118 images. Wilson and Diogo [43]
performed robust training of the VGG-16 model for concrete crack detection using 3.5 k
unmanned aerial vehicle (UAV) acquired crack and non-crack images; here, the data was
split 80/20 for training and test data. Gopalakrishnan et al. [44] proposed an automatic
crack detection system based on the VGG-16 model using images acquired by a drone.
Feng and Zhang [45] modified the architecture of the Inception V3 model, and trained it
using transfer learning to detect structural damage in concrete water pipes.

All the above-mentioned deep learning approaches have shown promising perfor-
mance for crack detection problems which motivated us to explore the performance of
different state-of-the-art DCNN architectures, focusing on the significance of data design
in the architecture. The previous studies were performed by considering various factors,
e.g., data selection, filter choice, and the number of layers used in the architecture of the
models. However, no information has been provided about the effect of data size, variance
in the data, the number of required epochs, and network depth on the performance of these
architectures. It is difficult for the researchers working in the field to select an appropriate
deep learning architecture and dataset size for their problems. The main advantage of
selecting an appropriate deep learning architecture and data size is that it ensures better
generalization of the model and prevents it from overfitting. Moreover, by keeping a
balance between the amount of training data, complexity of the model, and number of
model parameters, the computational and time complexity of the model is also reduced.
Hence, we herein present a study to evaluate the performance of five deep neural network
architectures for crack detection and localization in concrete structures. The evaluation of
each model is based on how the number of training samples, diversity in training samples,
number of epochs, network complexity, number of layers, and parameter tuning affect the
performance of these models. The evaluation metrics include the accuracy, precision, recall,
receiver operating characteristic (ROC) curve, and localization results of the models. The
main contributions of the proposed research work are the following:

1. We proposed a customized CNN architecture for crack detection and localization
in concrete structures. The proposed model was compared with various existing
models based on various factors, e.g., training data size, heterogeneity among the
data samples, computational time, and number of epochs, and the results demonstrate
that the customized CNN model achieved a good balance between accuracy, network
complexity, and training time. The results also show that a promising level of accuracy
can be achieved by reducing data collection efforts and optimizing the model’s
computational complexity.

2. We investigated the effect of network complexity, data size, and variance among data
samples on the performance of the models. The results clearly show that network
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complexity and variance in the data sample have the greatest influence on the model
performance and are more important than the size of the data.

3. Based on the experimental results, a discussion was undertaken which provides the
significance of the deep learning models for crack detection in a concrete structure. In
general, the discussion provides a reference for researchers working in the field of
crack detection and localization using deep learning techniques.

The remainder of this paper is organized as follows. Section 2 provides an overview of
the proposed system. The CNN and various pre-trained models are described in Section 3,
and Section 4 discusses our experiments and presents the experimental results, and an
overall discussion is given in Section 5. Finally, conclusions are presented in Section 6.

2. Overview of the Proposed System

A flowchart of the proposed system is shown in Figure 1. The first module repre-
sents the database preparation step, and the second module shows the architecture and
implementation of deep learning algorithms for crack detection in concrete structures. The
evaluation and comparison of the models based on various metrics are explained in the
last module.
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Dataset Preparation

In the proposed system, the dataset was created from publicly available datasets
by [46,47]. The size and variance in a dataset have a significant effect on the generalization
of deep learning models [48]. Therefore, to provide heterogeneity or variance among
the data samples, the above-mentioned two datasets were combined, and a base image
classification dataset of 25 k images was created. The data samples from both datasets were
selected equally, with the ratio of 0.5, and the variance was provided based on the type of
concrete surface, illumination shadowing, and crack patterns. In addition, seven image
classification datasets containing 20.8 k, 15.6 k, 13.4 k, 10.4 k, 8.4 k, 5.6 k, and 2.0 k images
with a resolution of 224 × 224 were created from the base dataset (Table 1). The patches
were selected randomly from the datasets, and the split ratio for the training, validation,
and testing sets was 60:20:20. Manual labeling was performed for crack and non-crack
classes, where each class contained an equal number of image patches (Figure 1). The idea
behind the creation of various datasets was to evaluate how model performance varies
with changes in dataset size
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Table 1. Number of training, validation, and testing images in all datasets.

Dataset

Training Data Validation Data Testing Data

Crack
Patches

Non-Crack
Patches

Crack
Patches

Non-Crack
Patches

Crack
Patches

Non-Crack
Patches

2.8 k 840 840 280 280 280 280

5.6 k 1680 1680 560 560 560 560

8.4 k 2520 2520 840 840 840 840

10.4 k 3120 3120 1040 1040 1040 1040

13.4 k 4020 4020 1340 1340 1340 1340

15.6 k 4680 4680 1560 1560 1560 1560

20.8 k 6240 6240 2080 2080 2080 2080

25 k 7500 7500 2500 2500 2500 2500

3. Training Models

The performance of five CNN models, i.e., the customized CNN, VGG-16, VGG-19,
ResNet-50, and Inception-v3, was evaluated. All the pretrained models were trained on
the ImageNet dataset, and each model is explained in detail below.

3.1. Customized CNN Model

In the proposed work, a CNN architecture was constructed from scratch by fine-tuning
various hyperparameters in the architecture, such as the number of convolutional and fully
connected layers, the number of filters, stride, pooling locations, sizes, and the number of
units in fully connected layers. The selection of hyperparameters was performed manually
on a trial-and-error basis, as there is no mathematical formulation for the calculation of
appropriate parameters for a specific dataset. The overall computational architecture
of the proposed customized CNN is shown in Figure 2. The architecture consists of
five convolutional, three activation, three max-pooling, and two fully connected layers,
and a softmax layer. The main role of these layers is to increase model performance by
extracting useful features, reducing data dimensionality, and introducing nonlinearity [49].
The convolutional layers were used in blocks to improve the spatial invariance property,
which helps in the recognition of important features in the input crack images. A CNN
architecture depends on spatial or sequential features of the data to learn. If the input data
to the network is highly sparse, the learning ability of the network is highly degraded.
Solutions for this problem have been reported in the available literature [50,51]. However,
in the proposed work, an Adam optimizer was used as an adaptive learning-rate method
to handle sparse input data [52]. Although RMSprop, Adadelta, and Adam are very similar
algorithms, the idea of using Adam was that it performs well at the end of optimization as
the gradients become sparser.
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Here, the first layer takes an image of h × w × c pixels as input and passes it through
various convolutional and max pooling layers to reduce its spatial size. (where h, w, and c
represent the image height, width, and the number of channels). After passing through
several convolutional and max-pooling layers, the final feature vector is obtained at the
fully connected layer, and is input into the classifier for class prediction.

3.1.1. Convolutional Layer

The convolutional layer’s main task is to extract relevant features by finding local
connections among the data samples coming from the input layer (Equation (1)).

Feature Vector = ∑(Inputk×k + Weightsk×k) + B (1)

Here, Inputk×k represents the input local receptive field on which the convolutional
operation is performed. Weightsk×k, k, and b are filter weights, kernel size, and filter bias
of the convolutional layer operation, respectively. In the convolutional layer, the feature
vector is obtained by convolving the filter over the image pixels, and adding the pixels
together. Note that the obtained feature maps vary with different convolutional kernels.
The final feature vector obtained is then inputted into the activation layer (ReLU).

3.1.2. Activation Layer

The rectified linear unit (ReLU) was introduced by Nair et al. [53]. The ReLU sets
the nonnegative values obtained from the convolutional layer to zero, by performing an
elementwise operation (Equation (2)). This layer guarantees the usability of the feature
maps obtained from the convolutional layer by introducing nonlinearity. The activation
layer (i.e., the ReLU) is commonly used due to its faster computational capabilities than
other activation functions, e.g., sigmoid and tanh. The mathematical operations of the
activation layer are shown in Figure 3.

σ(I) = max(0, I) (2)
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Here, I represents the elements in the input vector.

3.1.3. Max-Pooling Layer

The max-pooling layer divides the prior feature map into small nonoverlapping
pooling kernels. Here, the maximum value of each kernel is considered and forwarded to
the next layer. The main tasks performed in the max-pooling layers are: (1) down sampling
the data obtained from the previous layer to reduce the dimensionality of the data; and (2)
reducing the number of model parameters, reducing computational time, and improving
the model generalizability.
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3.1.4. Fully Connected Layer

The fully connected layer can be considered a traditional neural network that performs
logical inference. In the proposed system, the fully connected layer converts the three-
dimensional matrix obtained from the previous layers to a one-dimensional vector using
a full convolution operation. The mathematical operation of the fully connected layer is
expressed as follows.

ZVo×1 = WeightVo×Vi IVi×1· BiasVo×1 (3)

Here, Vi and Vo represent the input and output vector size, and Z represents the
output of the fully connected layer. Moreover, the weights and bias matrix are represented
by Weight and Bias, respectively.

3.1.5. Softmax Layer

The final layer in the CNN architecture is the softmax layer, which is used to calculate
normalized class probabilities P

(
y(i) = n(i)

∣∣∣x(i) ; W
)

for each class n(i), in n classes, using
Equation (4).

(
y(i) = n(i)

∣∣∣x(i) ; W
)
=


y(i) = 1

∣∣∣x(i) ; W

y(i) = 2
∣∣∣x(i) ; W
...

y(i) = n
∣∣∣x(i) ; W

 =
1

∑n
j=1 eWT

j x(i)


eWT

1 x(i)

eWT
2 x(i)

...
eWT

n x(i)

 (4)

Here, m is the total number of data samples, where i = 1 . . . m. W represents the
weights, and the input to the classifier is denoted eWT

n x(i) . Equation (4) takes a vector with
arbitrary real-valued scores as input, and outputs a vector with values between 0 and 1.

3.2. Pre-Trained VGG-16 Model

VGG-16 is an open-source CNN model proposed by [36]. This model was submitted
to the ImageNet Large Scale Visual Recognition Challenge (ILSVRC-2014). The VGG-16
model comprises 16 layers (13 convolutional layers and three fully connected layers with a
filter size of 3 × 3), as shown in Figure 4. The 13 convolutional layers are divided into five
groups, and a max-pooling layer follows each group. The input to the VGG-16 architecture
is a 224 × 224-pixel RGB image. The input passes through a stack of convolutional and
max-pooling layers, and, in the end, a (7, 7, 512) feature map is received, which is then
flattened into a (1, 25088) size feature vector. The flattened feature is then input to the
three fully connected layers with the same configurations, and a (14,096) feature vector is
obtained. The output of the fully connected layers is then inputted into the softmax layer
for classification.
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3.3. Pre-Trained VGG-19 Model

The VGG-19 transfer learning model was proposed by [36]. This model comprises
19 layers (16 convolutional and three fully connected layers with a filter size of 3 × 3, and a
stride and pad size of 1 pixel). The small kernel size reduces the number of parameters,
and enables them to cover the entire image. In the VGG-19 model, a 2 × 2 max pooling
operation with stride 2 is performed. This model ranked second in classification and first in
positioning at the 2014 ILSVRC, with a total of 138 million parameters. VGGNet reinforced
the concept that CNNs must have a deep layer network, such that visual data can be
interpreted hierarchically. The block model of VGG-19 is shown in Figure 5.
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3.4. ResNet-50 Model

He et al. [37] proposed the residual neural network (ResNet), which took first place at
the ImageNet Large Scale Visual Recognition Challenge (ILSVRC 2015). ResNet introduced
residual connections between layers, which helps reduce loss, preserve knowledge gain,
and boosts performance during the training phase. A residual connection in a layer means
that the output of a layer is a convolution of its input plus its input. A block diagram of the
ResNet model’s architecture is shown in Figure 6.
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3.5. Inception-V3 Model

The Inception-V3 pre-trained model was proposed by [38]. This model comprises over
20 million parameters, and has been trained by one of the industry’s top hardware experts.
The model itself comprises symmetrical and asymmetrical building blocks, where each
block consists of various convolutional, average, and max pooling, concats, dropouts, and
fully connected layers. In addition, batch normalization is commonly used and applied to
the activation layer input into this model. Classification is performed using Softmax. A
schematic diagram of the Inception-V3 model is shown in Figure 7.
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4. Experiments and Results

The performance of five deep learning models for concrete crack detection was eval-
uated based on input data size, model complexity, convergence rate, accuracy, precision,
recall, and F1 score. The experiments were conducted using eight datasets of different
sizes (25 k, 20.8 k, 15.6 k, 13.4 k, 10.4 k, 8.4 k, 5.6 k, and 2.8 k (as shown in Table 1)) made
from two publicly available datasets. The experiments were conducted using Python
programming on an Alienware Arura R8 core i9-9900k CPU @3.60 GHz desktop system
with 32 GB RAM and an NVIDIA GeForce RTX 2080 GPU. The number of convolutional
layers and the parameters of each model are shown in Table 2. It can be seen from the
table that the proposed CNN model possesses a minimal number of convolutional layers
and network parameters compared with the other pretrained models. The VGG models
are three to four times deeper than the proposed model, and have 53 times more network
parameters than the proposed model. The architecture of ResNet is like VGG models, but
deeper than VGG models. The complexity of the ResNet model is lower than VGG models
in terms of its number of parameters. VGG models have a five-times greater number of
parameters than ResNet 50. Moreover, the depth and number of network parameters
of the ResNet-50 and Inception-V3 models are approximately the same. In the previous
CNN-based crack detection approaches [26,46,54–56] various numbers of epochs have been
taken during the training phase, ranging from 10 to 100. In the proposed work, the number
of epochs in the experiments for all the models (either trained from scratch or fine-tuned
from pre-trained models) was chosen as 20. The loss of the models reached a minimum
level at the 20th epoch, and there was no further increase in the accuracy of the models, as
shown in Figure 8. The minimum number of epochs helps in reducing the computational
time of the model [57]. Moreover, a greater number of epochs may sometimes lead to
overfitting of the models [58].

Table 2. Deep Learning Models, with the Number of Convolutional Layers and Parameters.

Deep Learning Model Number of Convolutional Layers Number of Parameters
(Millions)

Customized CNN 5 2.70

VGG-16 16 138

VGG-19 19 143.67

ResNet-50 50 23.78

Inception V3 48 21.80
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4.1. Evaluation Metrics

In the proposed work, various evaluation metrics such as accuracy, precision, recall,
and F1 score were considered for a fair comparison of the experimental results. Accuracy
can be defined as the ratio of correctly identified crack and non-crack patches to the total
number of input patches, as shown in Equation (5).

Accuracy =
TP + TN

TP + FP + TN + FN
(5)

where TP (True Positive) and TN (True Negative) represent the correctly identified crack
and non-crack patches, while FP (False Positive) and FN (False Negative) represent the
incorrectly identified crack and non-crack patches. Precision is the ratio of correctly
identified crack patches and the total number of crack patches identified by the classifier as
shown in Equation (6).

Precision =
TP

TP + FP
(6)

Recall can be defined as the number of correctly identified crack patches and the total
number of crack patches as depicted in Equation (7).

Recall =
TP

TP + FN
(7)

Similarly, the F1 score is defined as the harmonic mean of the model’s precision and
recall. The F1 score can be formulated in Equation (8):

F1 score = 2 × Precision·Recall
Precision + Recall

(8)

4.2. Classification Results

The experiments were conducted by comparing the results obtained by the customized
CNN, VGG-16, VGG-19, ResNet-50, and Inception-V3 models. Note that five models were
trained with eight different varying datasets for 20 epochs, and a total of 8000 trained
networks were obtained. For simplicity, the best performing trained network for each
model was selected, based on its accuracy, precision, recall and F1 score, as shown in
Table 3. The performance of each model was also evaluated by giving a new set of test
images. For all 40 trained networks, it was evident from the results that the performance
metrics of all models were compatible with each other. The accuracy, precision, recall,
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and F1 score of all models were greater than 0.90. The customized CNN model, VGG-16,
and Inception-V3 model performed well with smaller datasets, while the VGG-19 model
benefited from larger datasets. The ResNet-50 and Inception-V3 models demonstrated a
slight change in performance after increasing the size of the training data. The accuracy at
the first and twentieth epochs for all models is summarized in Table 4 to provide insight
into the convergence rate of each model. All models demonstrated fast convergence at a
smaller numbers of epochs (except ResNet-50, which required a high number of epochs to
achieve better test results compared to the other models).

Table 3. Experimental results of all models.

Models

Dataset
Size

Customized CNN Model

Confusion Matrices Validation
Accuracy

Testing
Accuracy Precision Recall F Score

2.8 k
Class Crack (0) Non-Crack (1)

0.991 0.985 1.000 0.973 0.986Crack (0)
Non-Crack (1)

297 0
8 255

5.6 k
Crack (0) 530 2

0.981 0.978 0.996 0.960 0.977Non-Crack (1) 22 566

8.4 k
Crack (0) 828 8

0.982 0.980 0.990 0.971 0.981Non-Crack (1) 24 820

10.4 k
Crack (0) 1020 17

0.964 0.952 0.983 0.925 0.953Non-Crack (1) 82 961

13.4 k
Crack (0) 1309 4

0.984 0.958 0.997 0.925 0.959Non-Crack (1) 106 1261

15.6 k
Crack (0) 1568 3

0.975 0.890 0.998 0.822 0.901Non-Crack (1) 339 1210

20.8 k
Crack (0) 2133 5

0.957 0.908 0.997 0.850 0.918Non-Crack (1) 374 1648

25 k
Crack (0) 2449 16

0.967 0.958 0.997 0.850 0.918Non-Crack (1) 192 2343

VGG-16 Model

2.8 k
Class Crack Non-Crack

0.997 0.998 1.000 0.996 0.998Crack (0) 297 0
Non-Crack (1) 1 262

5.6 k
Crack (0) 531 1

0.999 0.999 0.998 1.000 0.999Non-Crack (1) 0 588

8.4 k
Crack (0) 832 4

0.999 0.997 0.995 0.998 0.997Non-Crack (1) 1 843

10.4 k
Crack (0) 1030 7

0.994 0.992 0.993 0.992 0.992Non-Crack (1) 8 1035

13.4 k
Crack (0) 1312 1

0.998 0.998 0.999 0.997 0.998Non-Crack (1) 3 1364

15.6 k
Crack (0) 1555 16

0.997 0.994 0.989 0.998 0.994Non-Crack (1) 2 1547

20.8 k
Crack (0) 2117 21

0.994 0.992 0.990 0.994 0.992Non-Crack (1) 11 2011

25 k
Crack (0) 2450 60

0.987 0.986 0.976 0.996 0.986Non-Crack (1) 9 2481
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Table 3. Cont.

Models

Dataset
Size

Customized CNN Model

Confusion Matrices Validation
Accuracy

Testing
Accuracy Precision Recall F Score

VGG-19 Model

2.8 k
Class Crack Non-Crack

0.900 0.899 0.976 0.855 0.911Crack (0) 290 7
Non-Crack (1) 49 214

5.6 k
Crack (0) 519 13

0.917 0.916 0.975 0.866 0.917Non-Crack (1) 80 508

8.4 k
Crack (0) 810 26

0.944 0.937 0.968 0.911 0.939Non-Crack (1) 79 765

10.4 k
Crack (0) 1009 28

0.929 0.929 0.973 0.894 0.932Non-Crack (1) 119 924

13.4 k
Crack (0) 1278 35

0.955 0.951 0.973 0.930 0.951Non-Crack (1) 95 1272

15.6 k
Crack (0) 1527 44

0.954 0.951 0.972 0.934 0.952Non-Crack (1) 107 1442

20.8 k
Crack (0) 2068 70

0.952 0.952 0.967 0.941 0.954Non-Crack (1) 129 1893

25 k
Crack (0) 2396 69

0.960 0.960 0.972 0.949 0.960Non-Crack (1) 128 2407

ResNet-50 Model

2.8 k
class Crack Non-Crack

0.994 0.994 0.988 1.000 0.994Crack (0) 260 3
Non-Crack (1) 0 297

5.6 k
Crack (0) 578 10

0.992 0.983 0.983 0.991 0.987Non-Crack (1) 8 524

8.4 k
Crack (0) 823 20

0.994 0.987 0.976 0.998 0.987Non-Crack (1) 1 836

10.4 k
Crack (0) 1027 16

0.990 0.986 0.984 0.987 0.986Non-Crack (1) 13 1024

13.4 k
Crack (0) 1358 9

0.995 0.995 0.993 0.998 0.996Non-Crack (1) 2 1311

15.6 k
Crack (0) 1526 23

0.990 0.990 0.985 0.996 0.990Non-Crack (1) 6 1565

20.8 k
Crack (0) 1985 37

0.990 0.988 0.981 0.995 0.988Non-Crack (1) 10 2128

25 k
Crack (0) 2433 369

0.994 0.994 0.984 0.991 0.987Non-Crack (1) 50 2148

Inception V3 Model

2.8 k
class Crack Non-Crack

0.996 0.973 0.943 1.000 0.970Crack (0) 248 15
Non-Crack (1) 0 297

5.6 k
Crack (0) 588 0

0.998 0.952 1.000 0.931 0.964Non-Crack (1) 53 479
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Table 3. Cont.

Models

Dataset
Size

Customized CNN Model

Confusion Matrices Validation
Accuracy

Testing
Accuracy Precision Recall F Score

8.4 k
Crack (0) 838 5

0.995 0.994 0.994 0.994 0.994Non-Crack (1) 5 832

10.4 k
Crack (0) 1031 12

0.990 0.987 0.988 0.986 0.987Non-Crack (1) 14 1023

13.4 k
Crack (0) 1288 79

0.997 0.970 0.942 1.000 0.970Non-Crack (1) 0 1313

15.6 k
Crack (0) 691 858

0.991 0.725 0.446 1.000 0.617Non-Crack (1) 0 1571

20.8 k
Crack (0) 1622 400

0.979 0.899 0.802 0.987 0.885Non-Crack (1) 20 2118

25 k
Crack (0) 2463 71

0.985 0.982 0.972 0.992 0.982Non-Crack (1) 18 2448

Table 4. Accuracy of the models at the 1st and 20th epoch.

Dataset
Size

Models

CNN Model VGG-16 VGG-19 ResNet-50 Inception v3

Accuracy

1st 20th 1st 20th 1st 20th 1st 20th 1st 20th

2.8 k 0.976 0.983 0.980 0.998 0.894 0.900 0.673 0.954 0.976 0.973

5.6 k 0.958 0.970 0.965 0.996 0.867 0.917 0.475 0.983 0.975 0.952

8.4 k 0.963 0.977 0.969 0.994 0.944 0.937 0.498 0.987 0.972 0.994

10.4 k 0.935 0.933 0.968 0.990 0.857 0.929 0.550 0.986 0.957 0.987

13.4 k 0.977 0.980 0.992 0.989 0.898 0.951 0.935 0.995 0.957 0.970

15.6 k 0.962 0.899 0.984 0.995 0.952 0.951 0.980 0.990 0.936 0.725

20.8 k 0.942 0.937 0.975 0.993 0.926 0.952 0.984 0.988 0.970 0.899

25 k 0.946 0.941 0.982 0.986 0.9412 0.960 0.980 0.994 0.977 0.982

The customized CNN model performed well, and achieve an accuracy of greater than
0.95 on all datasets. However, the performance of this model decreased gradually with
increasing data size. The best validation and testing scores (0.99 and 0.98, respectively)
were obtained when using a 2.8 k dataset. The accuracy and loss graphs (training and
validation) of the proposed model are shown in Figure 8, while a ROC curve is shown in
Figure 9. There was slight divergence between the training and validation accuracy of the
proposed model, which shows that the model was not subjected to overfitting. We found
that the validation and testing score of the model decreased slightly with an increasing
training data size. Using a 25 k dataset, training and testing scores of 0.96 and 0.95 were
achieved, respectively. When the model was trained using a small amount of training data,
the model converged faster at lower epochs and did not require higher epochs to achieve
the best score. Moreover, the performance of this model decreased gradually and was
subject to overfitting as the size of the training data increased from 8.4 k to 10.4 k, 13.4 k,
15.6 k, 20.8 k, and 25 k. The higher accuracy and stability of the proposed model on smaller
dataset sizes and a lower number of epochs shows the significance of hyperparameter
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optimization for the model. The model skipped unwanted features at lower epochs due to
the use of an activation function along with a dropout function.
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The VGG-16 model obtained better performance relative to accuracy, precision, recall,
and F1 score for all training data sizes. However, there was a barely noticeable decrease in
the validation and testing accuracy as the training data size increased. The convergence
rate of the VGG-16 model was significant at lower epochs compared to the other trained
networks. The best training and validation accuracies (0.99 and 0.99, respectively) obtained
by the VGG-16 model were achieved using a data size of 13.4 k. VGG-16 outperformed all
40 trained networks. Overall, the accuracy and loss curves (training and validation) for the
VGG-16 model did not demonstrate divergence, which indicates that this model was not
subject to overfitting. Additionally, as shown in Table 3, the VGG-16 model demonstrated
better performance relative to accuracy, precision, recall, and F1 score for all training data
sizes. This feature learned by the VGG-16 can be easily transferred to other materials at
high performance.

The VGG-19 did not outperform the customized CNN and VGG-16 models with a
small number of training samples. The model showed a tendency to overfit with the 2.8 k
dataset, as the model is deeper than VGG-16. As the size of the training data increased,
the performance of the model increased gradually, and the best performance was achieved
using larger datasets. The best validation and testing accuracy (0.95 and 0.95, respectively)
was achieved using a dataset containing 25 k images. The model VGG-19 converged faster
with a larger dataset, and required more epochs to achieve better performance for larger
datasets. As shown in Table 4, the accuracy of the VGG-19 model differed noticeably at the
first and twentieth epochs.

The training and testing accuracies of the ResNet-50 model in all scenarios were
promising, regardless of the training data size. However, the convergence rate of the
ResNet-50 was less than that of the VGG-16 and Inception-V3 models. This model obtained
a low score at the first epoch and achieved a prominent test score at the 20th epoch. The
ResNet-50 model also demonstrated a tendency to overfit on smaller datasets, e.g., 2.8 k,
5.6 k, and 8.4 k, at earlier epochs. The best testing accuracy obtained by the ResNet-50
model (0.99) was obtained using data sizes of 13.4 k, 15.6 k, and 25 k. As shown in Table 4,
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it converged faster on larger datasets and obtained a high-test score of 0.9974 at the 20th
epoch. The ResNet-50 model was not able to obtain a high score at lower epochs, due to
the concept of identity mapping, which make the architecture more complex.

With the Inception-V3 model, the best validation and testing scores (0.99 and 0.99,
respectively) were obtained using a dataset size of 8.4 k. By increasing the data size, the
accuracy and loss (training and accuracy) of this model experienced divergence, which
indicates that this model is subject to overfitting with larger datasets. In addition, the
Inception-V3 model did not require a high number of epochs to achieve high test scores. In
addition to the size of the training data, variance in the training data also had a significant
effect on the performance of all the models. In most of the models, such as the Customized
CNN model, VGG-16, Resnet-50, and Inception-V3, the smaller dataset had sufficient
variance amongst samples, and achieved the best score as compared to larger datasets. An
increase in the number of samples from a single concrete structure keeps the factors such
as concrete surface, intensity variation, shadowing the same, so increasing data size will
just increase the computational time. The models analyzed similar features at every epoch,
which minimized the test score of the system. The average time required by the models for
classification of a single patch is summarized in Table 5.

Table 5. Comparison of models computational time and size.

Model Patch Size
Single Patch

Computation Time
(Seconds)

Total Image (2240 × 2240)
Computation Time (Seconds) Model Size

Customized CNN Model 224 × 224 0.0048 0.48 10.3 MB

VGG-16 Model [36] 224 × 224 0.1995 19.95 528 MB

VGG-19 Model [36] 224 × 224 0.2093 20.93 549 MB

ResNet-50 Model [37] 224 × 224 0.0662 6.62 98 MB

Inception-V3 Model [38] 229 × 229 0.0385 3.85 92 MB

For the customized CNN, VGG-16, VGG-19, and ResNet-50 models, a 2240 × 2240-
pixel test image was taken. This image had 100 patches of size 224 × 224. With the
Inception-V3 model, a test image of size 2290 × 2290 was selected, and this image also
contained 100 patches of 229 × 229 size. The computational time required to process the test
images for all models was divided by 100 to calculate the computational time for a single
patch. The customized CNN model performed the fastest, requiring 0.0048 s to classify
a 224 × 224 image. The time required by the VGG-16 model to classify a single image
patch was 0.1995 s, which is approximately 40 times faster than that of the customized
CNN model. By comparing both models, the proposed CNN model was 40 times faster
than the VGG-16 model. The VGG-19 model obtained a single patch classification time
of 0.2093 s, which is similar to the VGG-16 model. The time required by the ResNet-50
model for single patch testing was 0.0662 s, which is longer than the Inception V3 and
customized CNN models, but less than the VGG-16 and VGG-19 models. Similarly, the
single patch classification time of the Inception-V3 model was greater than the customized
CNN, but less than that of the VGG-16, VGG-19, and ResNet-50 models. The VGG-19
model required the most time to classify a single 224 × 224 patch, i.e., 0.2093 s. Overall,
the inference time of the entire image for the proposed CNN model was 0.48 s, while
for the state-of-the-art VGG-16, VGG-19, Resnet-50, and inception-V3 the entire image
classification times were 19.95, 20.93, 6.62, and 3.85 s, respectively. The proposed method
achieved the lowest inference time in comparison to the other methods. Additionally, the
proposed method had the smallest number of model parameters, computational time, and
complexity among all the models. The model size of the proposed method is ten times
smaller than the ResNet-50 and Inception-V3 models. Moreover, the proposed method is
50 times smaller in model size than the VGG-16 and VGG-19 models.
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The proposed work was compared with other CNN-based state-of-the-art
methods [26,46,54–56] based on the datasets SDNET [46] and CCIC [47], which were also
used in the proposed work. Table 6 clearly shows that the proposed work outperformed the
existing approaches in terms of accuracy, precision, recall, and F1 score. In [26], the authors
trained a CNN consisting of four convolutional and two fully connected layers by using the
CICC dataset (1000 k images) and achieved precision, recall, and F1 scores of 0.8696, 0.9251,
and 0.8965, respectively. In [46,56], the author trained an Alex Net architecture on 56 k and
18 k images and achieved an accuracy of 0.9045 for the bridge deck, 0.8745 for walls, 0.9486
for pavement, and 0.97 for concrete structures, respectively. Słoński et al. [54] used part of
the SDNET dataset (5.4 k images) and achieved an accuracy of 0.85 by training a CNN from
scratch, consisting of four convolutional and three fully connected layers. Fang et al. [55]
first trained a DCNN by using SDNET and CCIC datasets, and then retrained the architec-
ture by using a self-created dataset of 184 k images to achieve precision, recall, and F1 scores
of 0.184, 0.943, and 0.307, respectively. On the other hand, the proposed model utilizes a
subset of CCIC and SDNET (8.4 k images), and achieved accuracy, precision, recall, and F1
scoreof 0.980, 0.990, 0.971, and 0.981, respectively. The proposed model achieved promising
results on a 25 k dataset in comparison with the state-of-the-art approaches.

Table 6. Comparison of the proposed work with other CNN works.

Reference Dataset
No. of
Conv

Layers

No. of Fully
Connected

Layers

No. of
Epochs

No. of
Images Accuracy Precision Recall F1 Score

Zhang
et al. [26] CCIC [47] 4 2 <20 1000 k NA 0.8696 0.9251 0.8965

Sattar
et al. [46]

SDNET
[46] 5 3

B = 32
W = 30
P = 30

56 k

B = 0.9045
W =

0.8745
P = 0.
9486

NA NA NA

Sattar
et al. [56]

SDNET
[46] 5 3 30 18 k 0.97 NA NA 0.80

Słoński
et al. [54]

SDNET
[46] 4 3 100 5.2 k 0.85 NA NA NA

Fang et al.
[55]

CCIC [47]
+SDNET

[46] +
Dataset

from [56]

3 2 20 184 k NA 0.184 0.943 0.307

Proposed
Method

CCIC [47]
+SDNET

[46]
4 2 20 25 k 0.967 0.997 0.850 0.918

NA = Not Available, B = Bridge, W = Wall, P = Pavement, Conv = Convolutional, FRCNN = Faster Recurrent CNN.

4.3. Localization Results

In this study, crack localization was performed using the sliding window technique,
as shown in Figure 10. The crack localization results of all the models used in the proposed
work are shown in Figure 10. The model’s crack localization performance was tested by
inputting a new set of images not used in the training and validation processes. The test
images were taken from various online sources. Figure 11a shows the original images
input to the models for crack localization, and Figure 11b,d,f,h,j show the crack localization
results obtained by the CNN, VGG-16, VGG-19, ResNet-50, and Inception-V3 models,
respectively. Crack localization was performed using the sliding window approach, where
a window size of 224 × 224 was used for customized CNN, VGG-16, VGG-19, and ResNet-
50 models, while it was 229 × 229 for the Inception-V3 model. The window slid over the
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test image to perform crack localization, and the patch was classified by the trained models.
The window moved by 112 pixels from left to right and top to bottom until the entire image
was scanned (Figure 10). In Figure 10, the patch classified as a crack is highlighted by the
red box on the borders of the patch. The part of the image inside the red bounding boxes
represents the crack region. For all test images, most of the crack regions were correctly
localized. The scanning results for false positives (FP) and false-negative (FN) for different
images obtained by the customized CNN, VGG-16, VGG-19, ResNet-50, and Inception-V3
models are shown in Figure 11c,e,g,i,k, respectively.
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Figure 11. (a) Original images. (b) Crack localization using VGG-16. (c) Screening for false positives (FP) and false negatives
(FN) using VGG-16. (d) Crack Localization using VGG-19. (e) Screening for FP and FN using VGG-19. (f) Crack localization
using ResNet-50. (g) Screening for FP and FN using ResNet-50. (h) Crack localization using Inception-V3. (i) Screening for
FP and FN using Inception-V3. (j) Crack localization using CNN. (k) Screening for FP and FN using CNN (8.4 k Dataset).

The dark blue boxes represent the FN, and red boxes represent the FP regions. Each
box in the localization represents a single patch in the test images. We found that the
number of FP and FN patches varied in the localization results of all models. The proposed
CNN model and VGG-16 models outperformed the other models in terms of localization,
as the number of FP and FN patches was less than the other models. The crack localization
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performance of the customized CNN model was comparable with VGG-16. However,
customized CNN could localize cracks in the test images five times faster than the VGG-16
model. In the VGG-16 model, the number of FP patches was greater than the number of
FN patches. The FP patches mostly occurred at the edges of the image and regions that
resembled a crack. With the proposed CNN model, both FP and FN patches were present.
The FN patches were present in hairline crack regions, where the crack was very thin,
and FP patches primarily occurred at the corner of the test image. The number of FP and
FN patches in VGG-19 was greater than all the models, which is also evident from the
classification accuracy of the model.

5. Discussion

This paper evaluated the performance of five deep learning models based on various
factors, e.g., training data size, heterogeneity among data samples, number of epochs
required to achieve desired test scores, and network complexity. We found that the models’
performance with a small amount of training data was comparable to the performance
obtained on larger datasets. It was also found that variance among training data sam-
ples is directly related to model performance, and has a greater importance than data
size. In addition, it is evident (Table 3) that the models can achieve high test scores on
small training datasets if enough variance is provided among the data samples used for
model training. Note that most of the deep learning models, e.g., the customized CNN,
VGG-16, VGG-19, and Inception-V3 models, converged faster at earlier epochs, and did
not require more epochs to obtain high test scores. However, the ResNet-50 model achieve
the best performance at higher epochs. It was found that network complexity has the most
significant influence on model accuracy because the best accuracy was obtained using
the customized CNN and VGG-16 models, which have five and 16 convolutional layers,
respectively. This is less than the number of convolutional layers in the other compared
models, which reduces the computational and operational time of the proposed model.
Note that the proposed model can learn features using a limited number of convolutional
layers, as compared to the other pretrained models.

In addition, the Inception V3 and Resnet 50 models have a greater number of convolu-
tional layers, and these models are also subject to overfitting. The number of parameters
affects the classification time of each model, i.e., more parameters result in increased clas-
sification time (and vice versa). The customized CNN model showed the lowest patch
classification time, while the VGG-19 model demonstrated the highest single patch classifi-
cation time. However, the number of parameters had no impact on model performance.
The results also showed that the customized CNN and Inception V-3 models tended to
overfit when the number of training samples was increased gradually from 8.4 k. In con-
trast, the VGG-19 and ResNet-50 models suffered overfitting on smaller datasets (2.8 k,
5.6 k, and 8.4 k) at earlier epochs. Nevertheless, the results reveal that using the proposed
CNN model with the sliding window technique for crack detection in concrete structures
guarantees high performance. All the models showed promising performance when the
dataset size was 8.4 k. Therefore, 8.4 k is sufficient for learning the dataset features. How-
ever, the optimum size of the training dataset depends on the testing images and image
capturing conditions.

The proposed method enables automatic crack detection, which is very useful when
inspecting concrete structures. The proposed research also demonstrates the usefulness
of various deep learning models in inspecting concrete surfaces. These models ensure
frequent and automatic inspection of concrete structures by providing condition infor-
mation from the data they stores. In general, the proposed work provides a reference
for researchers working in the field of crack detection using deep learning techniques to
achieve a promising level of accuracy by reducing data collection efforts, and optimizing
the model’s computational complexity. The main advantage of the proposed system is
its ability to automatically detect and localize cracks using a small amount of input data,
and with the minimum computation. The system can be updated by providing additional
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data from different structures, which can be used to detect several other types of defects
in concrete structures. Despite these advantages, the proposed system is not capable of
detecting and localizing cracks in real time; however, we consider that the proposed model
can be used as a prototype for a real-time robotic video inspection system by integrating
it with IoT devices [59]. Moreover, the proposed system is not able to analyze various
characteristic of cracks, such as crack width, length, and orientation.

6. Conclusions

In this paper, the performance of five deep learning models, including a proposed
customized CNN model, were evaluated for crack detection and localization in concrete
structures using eight datasets. The dataset was generated from two publicly available
datasets. Experiments were conducted by gradually increasing various factors, e.g., training
data size, number of epochs, parameters, and network complexity, to investigate their
effect on the performance of the compared models. It can be concluded that there is a
direct relationship between model accuracy and the number of samples (training size) used
for network training. The customized CNN and VGG-16 model required an optimum
amount of training samples with significant variations (based on type of concrete surface,
illumination shadowing, and crack patterns). However, increasing the number of training
samples without sufficient variation degraded the performance of both the models, as
similar image features are analyzed at each epoch. It can also be concluded that promising
levels of accuracy can be achieved by using a smaller number of epochs and an optimum
number of convolutional layers, by fine tuning hyperparameters of the models for the
crack classification task. The number of learnable parameters had a significant effect on the
computational time of the models.

The customized CNN and pre-trained models (e.g., VGG-16) can be used for auto-
matic concrete crack detection and localization. The performance of both the models was
comparable, however, the computational time and complexity of the proposed CNN model
was less than the VGG-16 model. The proposed model showed better accuracy in the train-
ing, validation, and testing phases, and the features learned by this model guarantee high
performance. It can also be concluded that increasing the number of layers, parameters,
and training samples with minimum heterogeneity did not have a significant effect on
the crack detection performance of the proposed model. However, these factors increase
computational time and cause model overfitting. In conclusion, training a customized CNN
model with a small amount of data and high performance is the best option for practical
crack detection in concrete surfaces. In the future, we plan to explore new strategies [60] for
the development of a concrete crack geometry and width estimation system at a pixel level.
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