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Simple Summary: Pancreatic cancer is one of the hardest-to-treat cancers. This is mainly due to
its heterogeneity, where subsets of cancer cells possess distinct properties and abilities that determine
if and how they metastasize or respond to therapy. DNA barcoding technologies have emerged
as a powerful tool to study this heterogeneity, as they allow labeling of individual tumor cells within
a cancer cell pool and follow their cellular states and fates during metastasis or upon therapy. The aim
of this review was to provide an overview of the various levels of tumor heterogeneity in pancreatic
cancer, the obstacles these levels of heterogeneity can cause for effective personalized treatment
strategies, and how different barcoding approaches can be applied to study these important questions.

Abstract: Tumor heterogeneity is a hallmark of many solid tumors, including pancreatic ductal
adenocarcinoma (PDAC), and an inherent consequence of the clonal evolution of cancers. As such,
it is considered the underlying concept of many characteristics of the disease, including the ability to
metastasize, adapt to different microenvironments, and to develop therapy resistance. Undoubtedly,
the high mortality of PDAC can be attributed to a high extent to these properties. Despite its apparent
importance, studying tumor heterogeneity has been a challenging task, mainly due to its complexity
and lack of appropriate methods. However, in recent years molecular DNA barcoding has emerged
as a sophisticated tool that allows mapping of individual cells or subpopulations in a cell pool
to study heterogeneity and thus devise new personalized treatment strategies. In this review, we
provide an overview of genetic and non-genetic inter- and intra-tumor heterogeneity and its impact
on (personalized) treatment strategies in PDAC and address how DNA barcoding technologies work
and can be applied to study this clinically highly relevant question.
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1. Introduction

Even though the 5-year survival rate of pancreatic ductal adenocarcinoma (PDAC) has
recently reached double-digit numbers at 10.8% [1], it still remains undoubtedly one of the
deadliest human malignancies with an extremely poor prognosis. Among the main reasons
that make PDAC one of the hardest-to-treat cancers are late diagnosis in advanced stages,
high metastatic capacity, intrinsic therapy resistance, and dense and immunosuppressive
desmoplastic stroma as well as multi-level heterogeneity, not only on a genetic, but also on
transcriptomic, epigenetic, and metabolic levels [2–4]. Cancer development and evolution
are dynamic events in which subsets of tumor cells gain the ability to progress, metastasize,
and become resistant to therapies. As early detection in PDAC is rare due to indolent
disease courses, most of the patients are not eligible for a surgical resection. Therapy of
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unresectable, advanced-stage metastatic PDAC is extremely challenging, characterized
by a high refractoriness to currently available therapies and either de novo or acquired
development of resistance [5,6]. Recently, Conroy et al. demonstrated the benefits of
modified 5-fluorouracil, leucovorin, irinotecan, and oxaliplatin (mFOLFIRINOX) over
gemcitabine alone, which marked a new milestone in adjuvant chemotherapeutic treatment
of pancreatic cancer [7]. Yet, apart from the EGFR (epidermal growth factor receptor)
inhibitor erlotinib [8], targeted therapeutic approaches have not resulted in a significant
improvement of disease outcome in the last decades. The fact that only a subset of patients
who develop a rash as a side effect actually benefit from erlotinib treatment already
emphasizes an underlying heterogeneity in PDAC biology, indicating an urgent need
for a more individualized treatment structure and stratifying biomarkers. However, this
requires an in-depth understanding of the (sub-)clonal dynamics and the evolution of
cellular populations that give rise to all levels of tumor heterogeneity. Here, powerful DNA
barcoding technology has developed and contributed tremendously to our understanding
of tumor heterogeneity on multiple levels.

2. Tumor Heterogeneity and Its Impact on Personalized Treatment Strategies in PDAC

On a cellular level, tumor heterogeneity is defined by phenotypical and morphological
differences between tumor cells, resulting in different gene expression or epigenetic profiles,
different metabolic dependencies, and distinct rates of proliferation or metastatic potential.
Inter-tumor heterogeneity describes diversity between tumors or tumor sites, while intra-
tumor heterogeneity refers to differences within a single tumor (site) itself (Figure 1). Tumor
heterogeneity can be also observed between different sub-regions of the tumor or the tumor
microenvironment (TME), which is of particular interest in digital pathology [9].

Figure 1. Levels of heterogeneity. Heterogeneity in tumors relies on different mechanisms within the genome, epigenome,
transcriptome, proteome, or metabolome. Based on that, there can be distinct levels of heterogeneity: intra-tumor, longitudi-
nal, and inter-tumor heterogeneity between tumor sites and between patients. Studying heterogeneity is imperative due to
its crucial role in disease progression, metastasis, and therapy resistance.

2.1. Inter-Tumor Heterogeneity

PDAC is a unique type of tumor, characterized by its high heterogeneity and a very
rich desmoplastic stroma, which can make up to 90% of the tumor volume. Single cell RNA
sequencing from PDAC patients’ biopsies showed high inter-tumor heterogeneity between
patients within the cancer cells, with stromal cells being more homogenous [10]. This type
of heterogeneity is mostly recognized as an underlying cause for symptoms in different
patients, predisposition to early metastasis, and sensitivity to treatment.



Cancers 2021, 13, 4187 3 of 21

2.1.1. Genomic Alterations and Subtypes

Multiple reviews have provided great overviews on therapeutic challenges and op-
portunities of targeting signaling pathway-related oncogenes in pancreatic cancer [11–13].
On a genomic level, PDAC is quite homogenous between patients. In most cases, there is
only a handful of driver mutation genes, including KRAS (mutated in over 90% of cases),
TP53 (60–70%), CDKN2A (40–50%), and SMAD4 (30–40%) [2,14–16]. Whole exome or
genome sequencing did not reveal any new key driver genes with prevalence higher than
20% [2,15,16]. Only a small subset of patients shows mutations in targetable oncogenes
(e.g., ERBB2) or DNA damage repair genes, in particular in mismatch repair regulators or
genes like BRCA1, BRCA2, and PALB2 [15,17]. Occurrence of a mutation, however, does
not always predict dependency and “actionability” [18,19]. In PDAC, tumor progression,
metastasis, and therapy resistance seem not to be completely relying on genetic mutations,
but rather on different mechanisms such as interaction with tumor microenvironment
(TME), epithelial-to-mesenchymal transition (EMT), epigenetic modifications, or changes
in their metabolism [20–24].

Even though none of the frequently mutated driver genes is correlated with a dis-
tinctive subtype, Waddell et al. were able to classify PDAC into four subtypes based on
structural variation of chromosomes. These are the stable subtype (in 20% of samples) with
less than 50 structural variations, the locally rearranged subtype (30%) with significant focal
events located on one or two chromosomes, the scattered subtype (36%) with moderate
range of nonrandom chromosomal damage, and the unstable subtype (14%) with a large
number of structural variation events [15].

2.1.2. Transcriptomic Subtypes

Collisson et al. defined three PDAC subtypes based on transcriptional profiles: quasi-
mesenchymal (30% prevalence), exocrine-like (35%), and classical (35%) [25]. Bailey et al.
proposed an overlapping classification into four groups: squamous (similar to quasi-
mesenchymal), aberrantly differentiated endocrine exocrine (ADEX; exocrine-like), pancre-
atic progenitor (classical), and immunogenic (classical) [2]. A simpler separation into two
subtypes was suggested by Moffit et al.: basal-like and classical [26]. According to a TCGA
study, squamous samples showed a significant overlap with basal-like samples, whereas
classical samples from Moffit et al. and Collisson et al. largely overlapped with progenitor
samples from Bailey et al. [27]. In general, the quasi-mesenchymal/squamous/basal-like
subtype demonstrates worse prognosis and is more aggressive, due to its resistance to
chemotherapy and a more mesenchymal gene expression. The progenitor or classical sub-
type, on the other hand, is associated with epithelial gene expression and responds better
to chemotherapy. The ADEX or exocrine-like subtype is enriched for gene programs in
endocrine and exocrine development, while the immunogenic subtype shows enrichment
of pathways involved in immune cell infiltration and immune signaling [2]. These last two
subtypes, however, display a high similarity to the classical subtype, which might imply
that they could be assigned as a subtype of the classical/progenitor group. Moreover, the
TCGA study indicated a strong association of these subtypes with low purity samples,
suggesting contamination from other cell types [27]. Importantly, however, Porter et al.
recently demonstrated that the epithelial and quasi-mesenchymal subtypes are inducible
by different therapies, further contributing to their heterogeneity, plasticity, and, therefore,
resistance to therapy [28].

The transcriptomic landscape of PDAC is not completely controlled by genomic
changes, but rather by epigenetic modifications—a system that is highly dysregulated in
PDAC [4,29–31]. The transcriptomic PDAC subtypes described above can be explained
in part by the epigenetic landscape, in particular, DNA methylation [29]. Unlike genetic
modifications, epigenetic changes and, therefore, transcriptomic programs are reversible,
thus suggesting that the subtype states are not permanent and underlie a certain degree of
plasticity [32]. Targeting common epigenetic modifications, such as DNA methylation with
DNA methyltransferase (DNTM) inhibitors or histone post-translational modifications



Cancers 2021, 13, 4187 4 of 21

with, e.g., HDAC inhibitors, is currently in the spotlight of epigenetic therapy. A com-
prehensive overview about recent advancements in the field of epigenetics in pancreatic
cancer is provided, for example, by Paradise et al. [33]. To this date, however, none of the
epigenetic therapies in PDAC has been successful. This is caused mainly by a lack of pre-
dictive biomarkers in these very heterogeneous tumors, which makes patient stratification
almost impossible. In addition, the current generation of epigenetic drugs is simply not
specific enough to combat the heterogeneity of PDAC.

2.1.3. Metabolic Subtypes

Metabolic characterization of 38 pancreatic cancer cell lines by Daemen et al. revealed
three subtypes with distinctive metabolic profiles: slow proliferative (in 34% of the cases),
glycolytic (27%), and lipogenic (39%) [3]. The slow proliferative subtype showed a reduced
proliferative capacity with a low level of carbohydrates and amino acids. The other two
subtypes—glycolytic and lipogenic—demonstrated similar doubling times, yet had unique
metabolic profiles. The glycolytic subtype displayed enrichment of glycolytic and serine
pathways with reduced oxidative phosphorylation (OXPHOS), while the lipogenic subtype
was enriched for various lipids as well as OXPHOS metabolites [3]. Interestingly, metabolic
subtypes also revealed a strong correlation with transcriptomic subtypes. All cell lines
with a glycolytic subtype presented association with the quasi-mesenchymal subtype,
whereas most lipogenic cell lines overlapped with the classical subtype [3]. Of particular
significance in this aspect is the identification of OXPHOS as an important target in cancer
therapy. Consequently, cells with high OXPHOS dependency were susceptible to treatment
with OXPHOS inhibitors metformin or oligomycin [34,35]. In line with this, various in vitro
as well as in vivo studies suggested an anti-tumoral effect of metformin [36–40] (Table 1).
However, addition of metformin to standard systemic therapy proved to be disappointing
in advanced-stage pancreatic cancer [41,42]. More potent biguanide inhibitors, such as
phenformin, could potentially be more effective in targeting mitochondrial metabolism.
Phenformin demonstrates a more rapid entrance to the cell and mitochondria without trans-
porters, resulting in an enhanced anti-neoplastic effect in OXPHOS high pancreatic cancer
as well as other cancer entities [43–48] (Table 1). Consistent with these findings, Chuang
et al. recently demonstrated a cell autonomous effect of phenformin on metastatic ability in
murine lung cancer cells by specifically targeting dysfunctional mitochondria [49]. Other
studies focused on inhibiting mitochondrial uptake of glutamine by targeting glutaminase
1 (GLS), which showed anti-proliferative effects in vitro but only minor effects on tumor
growth in preclinical cancer models due to the metabolic adaptability of PDAC [50–52].
Moreover, the compound CPI-613 or devimistat that incorporates a dual inhibitory function
by targeting α-ketoglutarate dehydrogenase (KGDH) and pyruvate dehydrogenase (PDH),
two intermediates of the TCA-cycle, attained particular interest [53–56]. Recent findings
encourage a potential clinical effectiveness of CPI-613 in treatment of metastatic PDAC,
as the majority of patients treated with a combination of CPI-613 and mFOLFIRINOX
demonstrated an objective response [57] (Tables 1 and 2).

Table 1. Novel therapeutic targets discovered in preclinical trials considering tumor heterogeneity for patient stratification.

Compound of Interest Putative Molecular Target Subtype Specificity Pubmed-ID & Year of
Publication

Metformin HNF4G via AMPK
COX6B2

SMAD4-deficiency
High levels of COX6B2

32737864; 2021 [36]
32415061; 2020 [38]

Phenformin Mitochondrial Complex I High OXPHOS 33294863; 2020 [45]

CB-839+-ß-lapachone GLS 1/NQO1 Mutant KRAS + NQO1
overexpression 26462257; 2015 [50]

CD40 ligand CD40 Immune-poor/high levels of M2
macrophages 27906162; 2017 [58]
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Table 1. Cont.

Compound of Interest Putative Molecular Target Subtype Specificity Pubmed-ID & Year of
Publication

Chimeric antigen
receptor-engineered T

cells

Human epidermal growth factor receptor 2
(HER2)

CEACAM7 (Carcinoembryonic
antigen-related cell adhesion molecule 7)

Immune Checkpoint Inhibitors PD-1/PD-L1
Mesothelin

HER-2 positive tumors
Exclusive expression in

PDAC tumors
PD-1/PD-L1

overexpression
Mesothelin high PDAC

33742099; 2021 [59]
30121627; 2019 [60]
33479048; 2021 [61]
32637575; 2020 [62]
29859625; 2018 [63]
28929447; 2017 [64]

Table 2. Current ongoing clinical trials evaluating the efficacy of promising compounds for treatment of pancreatic cancer.

Compound Treatment Regime Subtype Specific
Patient Stratification Clinical Phase NCT-Number

CPI-613 (Devimistat) FOLFIRINOX No Phase 1/2
Recruiting NCT03699319

Mitazalimab (CD40
agonist) mFOLFIRINOX No Phase1b/2

Not yet recruiting NCT04888312

LOAd703 (oncolytic
adenovirus encoding

TMZ-CD40L)

Gemcitabine+nab-
paclitaxel+/-atezolizumab

(anti PD-L1)
No Phase 1/2a

Recruiting NCT02705196

CART-meso cells
/ No Not applicable NCT03638193

/ No Phase 1 NCT03323944

Anti-CEA CAR-T cells

Systemic chemotherapy
regimens

CEA-expressing PDAC
with livermet

Phase 2b
Recruiting NCT04037241

/ CEA expressing tumors Phase1/2
Recruiting NCT04348643

GVAX
Nivolumab, Ipilimumab,

Cyclophosphamide, CRS-207 No Phase 2
Recruiting NCT03190265

Epacadostat, Pembrolizumab,
CRS-207, Cyclophosphamide No Phase 2

Recruiting NCT03006302

To date, targeting key metabolic factors has shown limited clinical impact, yet progress
in the basic understanding of metabolic biology in pancreatic cancer is evident. Particularly,
the identification of treatment-susceptible metabolic subtypes and stratification of metabolic
biomarkers could serve as relevant tools to understand metabolic heterogeneity and refine
the avenue of individualized therapy in pancreatic cancer.

2.1.4. Immune-Landscape Heterogeneity

Based on the molecular subtypes in PDAC, it became obvious that these also contribute
or even determine heterogeneity in the immune landscape found in pancreatic cancer. The
presence of tumor-associated macrophages (TAM) and T-cells in the microenvironment or
neoantigen levels in cancer cells can be very heterogeneous and determines response to
(targeted) therapies and immune therapies. Consequently, there are three defined subtypes:
the immune-escape phenotype, the immune-rich phenotype, and the mixed scenarios
(reviewed by Karamitopoulou 2019) [65]. As implied by the name, the immune-escape
phenotype is characterized by high levels of Tregs and M2 macrophages and low levels
of effector T cells, which cause a poor host immune response and lead to an aggressive
phenotype with poor prognosis [66]. The immune-rich phenotype on the other hand, is
rich in effector CD4+ and CD8+ T cells and M1 macrophages and shows very low levels of
Tregs and M2 macrophages. Tumors with this subtype display a high mutational frequency
in genes involved in the intrinsic DNA damage response or the upregulation of the antigen
presentation machinery and interferon signaling [67]. They are also more congruent with
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the classical subtype defined by Collison et al. or Moffit et al. [25,26]. Interestingly, a
small subset of PDAC tumors that are arising mainly from IPMN (intrapapillary mucinous
neoplasm) preneoplastic lesions display high microsatellite instability [68], mutations in
mismatch repair (MMR), and are susceptible to immune checkpoint inhibitors [17]. To
stimulate T-cell recruitment and tumor infiltration in the majority of immune-evasive
PDAC, several strategies are being tested. One of these is the development and use of
GVAX, which is a cancer vaccine composed of whole tumor cells that are genetically
modified to secrete the immune-stimulatory cytokine GM-CSF (granulocyte-macrophage-
colony stimulating factor). GVAX vaccination strongly correlates with an enhanced T-
cell activity and corresponding tumor infiltration, enabling successful treatment with
immune checkpoint inhibitors [69–73]. Others are examining the effects of live-attenuated
Listeria monocytogenes bacterial strains (i.e., CRS-207) or CD-40 ligand therapy as tools
to stimulate immune response in pancreatic cancer [58,74–78]. Currently, CAR (chimeric
antigen receptor) T-cell technology is among the most intriguing immunotherapies. In
PDAC, CAR-T cell therapy has been applied to target mesothelin, a tumor-associated
antigen that is selectively expressed in malignant cells in various tumor entities [79].
Studies demonstrate that mesothelin is a promising candidate for a prognostic biomarker,
with strong effects in vitro and in vivo [63,64]. A phase I clinical trial evaluated the activity
of adoptive cell therapy by designing autologous mesothelin-specific CAR-T cells and
testing them in a chemotherapy-resistant metastatic PDAC cohort, where it revealed strong
anti-tumoral effects on liver metastasis in one patient with biopsy-proven mesothelin
expression [80]. Additional promising targets are human epidermal growth factor receptor
2 (HER2), carcinoembryonic antigens such as CEACAM7, and PD-1/PD-L1, providing a
novel and innovative option for CAR-T cell immunotherapy [59–62,81].

On the other hand, antibody-mediated blockade of PD-L1, which has led to remark-
able success in many malignancies, has proven unsuccessful in pancreatic cancer [82,83].
A complex interplay of malignant cells and abundant tumor microenvironment (TME),
strengthened by tumor heterogeneity aggravates successful therapy. Similar staggering
results are delineated for CTLA-4 antagonists and even combinational efforts with stan-
dard chemotherapeutics proved disappointing so far [84,85]. The lack of efficacy seen with
immune checkpoint inhibitors is conditional to the decisive processes of antigenicity and
immunogenicity, as recently reviewed by Kabacaoglu and colleagues [86]. Consequently,
novel approaches are being studied in order to overcome the highly immunosuppressive
nature of PDAC tumor microenvironment. In this regard, Zhao and colleagues demon-
strated an effective modulation of PDAC stroma by applying irreversible electroporation
(IRE) to induce immunogenic cell death by membrane lysis or loss of hemostasis. By
applying IRE in combination with anti-PD1 immune checkpoint blockade, Zhao et al.
significantly suppressed tumor growth and prolonged survival in a murine orthotropic
PDAC model [87]. Since both anti-PD1 and IRE are approved therapies, clinical trials inves-
tigating the effect of a combination of both approaches in patients are an attractive prospect
to further enhance treatment efficacy in PDAC patients. In addition, other combination
therapies together with checkpoint blockade might prove beneficial in the future.

2.1.5. Inter-Tumor Heterogeneity between Tumor Sites

Within the same patient, PDAC primary tumor and metastasis sites are known to be
rather homogenous regarding their gene expression, particularly of driver genes [26]. Anal-
ysis of sequencing data from various cancer types, including PDAC, revealed that within
individual patients, the majority of driver gene mutations are shared between different
tumor sites [88]. In PDAC, most genetic events, such as chromosomal rearrangements or
genomic mutations occur rather early during cancer development, in the primary tumor
itself [89,90]. That being said, metastatic sites do often possess different passenger or
progression-associated gene mutations in comparison to the primary tumor [90]. Clonal
populations that give rise to metastatic lesions are present within the primary tumor;
however, these clones are genetically evolved from their original clone, which fits the
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clonal evolution model proposed by Peter Nowell [12,91]. Phylogenetic analyses suggested
that metastatic lesions originate from different subclones within the primary tumor, im-
plying significant evolution in order to achieve the optimal survival advantage [90,92].
Khoshchehreh et al. found that resetting epigenetic profiles of PDAC cells by using epi-
somal vectors leads to reduced sphere formation in vitro and tumorigenicity in vivo [93].
Therefore, most likely it is epigenetic reprogramming, e.g., chromatin modifications, that
promotes tumor progression as well as metastasis formation in PDAC [94].

Comparison of metastatic PDAC lesions seems to show that there is also significant
heterogeneity between different metastatic sites: Peritoneal metastases (local dissemination)
differ from liver and lung metastases (hematogenous dissemination). Even though the
genomic landscape of those sites is almost identical, they may have distinct epigenetic
programs, which cause differences in metabolism [94]. Comparative proteomic profiling of
cells, isolated from different metastatic sites from one patient, showed that lung and liver
metastases are more similar to each other than peritoneal metastasis [95].

2.1.6. Inter-Tumor Heterogeneity in the Stroma

Stroma in PDAC is of utmost importance, as it makes up for most of the tumor’s
volume and creates a very desmoplastic and hypoxic tumor microenvironment, which
can promote proliferation, survival, and invasion of cancer cells [96]. Utilizing global
transcriptomic profiling of stroma, Moffit et al. were able to define two types of stromata:
“normal” and “activated” [26]. The “normal” stroma showed a relatively high expression
of pancreatic stellate genes, while the “activated” stroma had a more inflammatory sig-
nature and was characterized by a diverse set of genes, including those associated with
macrophages [26]. Moreover, patients with “activated” stroma typically have a worse
prognosis and survival in comparison to patients with “normal” stroma. Indeed, multiple
strategies were and are being tested to selectively target the heterogeneous stroma in PDAC,
which are excellently reviewed by Jiang et al. [97]. So far, however, no stroma-targeting
treatment has been successful in clinical trials. Future therapy approaches have to consider
the stroma, the TME, and PDAC’s heterogeneity and improve the patient stratification
process for potential trials. Moreover, the complex role of PDAC stroma is still mostly
unclear. Further studying and understanding of its functions are very crucial in order to
identify and validate potential therapeutic targets.

2.2. Intra-Tumor Heterogeneity
2.2.1. Intra-Tumor Heterogeneity among Tumor Cells

Intra-tumor heterogeneity can be spatial—defined by the existence of multiple subclones
within one tumor site, with distinctive driver or passenger mutations—or longitudinal—induced
by therapies through clonal selection pressure over time, leading to or being cause by
subclonal mutations [89,92,98].

So far, little is known about spatial intra-tumor heterogeneity in the epithelial com-
partment. Single-cell transcriptomic analyses of epithelial cells from different classical
PDAC patients identified one cluster, which corresponded to a basal-like phenotype [99].
This suggests not only that basal-like cells might be more widespread, but also that intra-
tumor heterogeneity in PDAC may be more complex than expected before. Sequencing of
multiple primary tumor samples from different locations within a single tumor showed
presence of geographically distinct subclones, each containing an independently expanded
large number of cells [12]. In addition, single-cell RNA sequencing of primary PDAC
tumors identified several subpopulations with different migratory and proliferative poten-
tials within heterogeneous malignant ductal cells [98]. In mice carrying patient-derived
xenografts, comparison of gene expression patterns between central and peripheral zones
revealed significant differences [100]. Genes associated with motility and cytoskeleton were
upregulated in the periphery, whereas genes involved in cell proliferation, transcription
regulation, stress response, and carbohydrate metabolism were found in the center [100].
Since clonal development of cancer cells continues in metastases, the majority of lung and



Cancers 2021, 13, 4187 8 of 21

liver metastases are also characterized by polyclonality [101]. That being said, metastases
are quite different in their mechanism and treatment sensitivity to the primary tumor [2,26].

Longitudinal intra-tumor heterogeneity plays a crucial role in developing resistance
to cancer therapies [91]. Although cancer therapeutics, in particular chemotherapy, in-
deed eliminate most tumor cells, they also contribute to genomic instability in other cells.
This creates therapeutic selection pressure, which favors the emergence of subclonal mu-
tations, causing acquisition of resistance mutations and, therefore, a change in tumor
phenotype [102]. This process is referred to as acquired resistance. In contrast, cells that are
initially resistant possess the inherent ability to endure therapies. For therapy selection, it
is important to recognize whether the detected acquired mutation is clonal, i.e., present in
all the subclones, or not. Indeed, Seth et al. recently uncovered a multitude of functionally
heterogeneous subpopulations of cells with differential degrees of drug sensitivity in pan-
creatic cancer, emphasizing the importance of understanding intra-tumor heterogeneity for
successful therapy and targeting of resistant subclones [103].

2.2.2. Intra-Tumor Heterogeneity in Stroma

Cancer-associated fibroblasts (CAFs) are key players within the stroma, as they pro-
duce components of extracellular matrix (ECM), which can then facilitate tumor growth
and progression [96]. Elyada et al. were able to characterize the heterogeneity of PDAC
stroma and define three different CAF subtypes by using single-cell RNA sequencing of
human and mouse PDAC tumors: myofibroblastic, inflammatory, and antigen-presenting
CAFs [96]. Myofibroblastic CAFs are typically found near the cancer cells and express
high levels of smooth muscle actin (αSMA), while inflammatory CAFs are present in more
desmoplastic areas of the tumor with low expression of αSMA [96]. The antigen-presenting
CAFs, on the other hand, express MHC class II-related genes and induce T-cell receptor
ligation [96]. Interestingly, CAF populations seem to be very dynamic: Their phenotype
depends on their proximity to paracrine factors released by tumor cells or on their proxim-
ity to tumor cells themselves [104]. Using defined culture conditions, antigen-presenting
CAFs can be converted into myofibroblastic CAFs [96]. Different CAF subtypes can have
distinct effects on the tumor microenvironment and the immune response in PDAC. For
example, genetic ablation of myofibroblastic CAFs resulted in more aggressive tumors with
increased resistance to chemotherapy and stronger immune evasion as well as induction
of EMT and stem-cell like phenotypes, highlighting the tumor-suppressive function of
myofibroblastic CAFs [105]. Inflammatory CAFs, on the other hand, promote tumor pro-
gression by creating a tolerogenic microenvironment. That opens new avenues for therapy
as inhibition of IL-6, produced by this CAF subtype, resulted in increased response rates to
anti-PD-L1 immune checkpoint inhibitors in pancreatic tumors [106].

3. Novel Personalized Treatment Advancements in PDAC

Overall, it remains to be elucidated in which way targeting heterogeneity can be effec-
tively translated in the clinic. The promise of future strategies to pursue individualized
therapy relies on the precise selection of patients. Recent updates of the National Compre-
hensive Cancer Network (NCCN) in April 2021 endorse routine molecular subtyping and
germline testing for pancreatic cancer patients [107]. This reasoning is based on a better
understanding of the molecular basis of pancreatic tumors and positive findings in clinical
trials. This described progress is evident in patients testing positive for mismatch repair
deficiency (dMMR), who are—as in any cancer entities with this mutation—susceptible
to the immune checkpoint inhibitor agent pembrolizumab, which demonstrated durable
responses and has now been recommended as a second-line therapy for this PDAC sub-
type [17,108–110]. Another example are patients with a germline BRCA1/2 mutation that
can be treated with the poly (adenosine diphosphate-ribose) polymerase (PARP) inhibitor
olaparib, the treatment with which resulted in strong progression-free survival rates and,
consequently, has been approved as maintenance therapy in metastatic PDAC [109,111].
In addition, high overall response rates and markedly improved overall survival were
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also achieved in the same patient subset by applying platinum-based chemotherapy regi-
mens [112–114].

While there are many preclinical studies that suggest subtype stratification markers for
more tailored therapy approaches (Table 1), ongoing clinical trials often do not implement
them (Table 2). This is likely due to lack of feasible markers, missing marker validation,
impracticable testing, or any combination thereof. However, the abovementioned examples
demonstrate the need for both predictive as well as prognostic biomarkers and both are
under intense investigation. While there are no reliable predictive markers available for
PDAC, carbohydrate antigen 19-9 (CA19-9) is currently the only FDA-approved prognostic
biomarker for clinical PDAC diagnosis. However, CA19-9 is also only partially reliable, as
it has a sensitivity of only 50–75% and specificity of 83%, which can lead to misdiagnosis or
false-positive and false-negative results (reviewed in [115]). To overcome these limitations,
panels were investigated that include CA19-9 in combination with other markers to exceed
the diagnostic value of CA19-9 alone [116–119]. In addition, non-coding RNAs, including
microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), showed prognostic value
but the reproducibility of the results is controversial and the individual prognostic value of
single non-coding RNAs is often too weak (reviewed in [115,120]). Consequently, panels
consisting of multiple miRNAs or lncRNAs are under investigation [121,122].

Over the last decade, germline and somatic testing has been included in a clinical rou-
tine, accounting for inter-tumor heterogeneity on a genetic level. This lays the foundation
for future targetable subtype specific alterations, which can be integrated into decision
making for treatment of metastatic PDAC. Still, an expansion of these subtype-specific
testings to metabolic, epigenetic, and transcriptomic levels and identification of reliable
biomarkers for enhanced patient stratification are needed in order to further improve ther-
apeutic strategies and patient survival and define the requirements for future preclinical
investigations.

4. Studying Heterogeneity and Cell Fate

Initially, lineage tracing was used in classical developmental biology and subsequently
applied in stem cell research [123–127]. In cancer research, lineage tracing is also increas-
ingly shifting in focus, as intra- and inter-tumor heterogeneity, which can be attributed
to the clonal evolution of the disease, are limiting factors for efficacious cancer therapy
and contribute to poor prognosis [128–130]. In lineage tracing, target cells are uniquely
labeled with heritable markers, which, in turn, allow cell lineages to be tracked through
space and time. In the beginning, non-toxic dyes, which are, therefore, referred to as
vital, were used to label and track cells and create “fate maps” based on this information.
Initially, water-soluble dyes were used, which were later replaced by lipophilic dyes, as
they can prevent diffusion to surrounding cells [131–133]. Following the discovery and
cloning of the green fluorescent protein (GFP), fluorescent proteins were also widely to
label cells [134,135]. The highest resolution is achieved with multicolor systems such as
Brainbow [136,137]. These systems are based on several fluorescent markers, which are
stochastically expressed and mediated by Cre recombinase and extensively utilized for
neural fate mapping. Although dozens of color shades can be generated by combining
different fluorescent proteins, the number of unique cellular identifiers is limited by the
finite number of fluorescent reporters and their respective detection methods. Since the
generation of the individual color code of the cells is based on Cre recombinase, the method
can also only be used in transgenic organisms or cell systems derived thereof (reviewed
in [138]).

4.1. Molecular Barcoding

Due to the need for a method that can individually label an increasing number of
cells and driven by the ever-decreasing sequencing costs, molecular barcoding (also called
cellular, DNA, or clonal barcoding) has emerged over the last 30 years as a versatile tool
to study cellular heterogeneity, clonal lineages, and cell fate biomarker-free. In molecular
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barcoding, individual cells are labeled with unique and inheritable DNA sequences, so-
called barcodes. Since the barcodes are stably integrated into the genome of the target cell,
they also enable permanent tracking of cells, in contrast to earlier lineage tracing methods.
A barcoding approach was first used by Walsh et al. in 1992 [139] to track neocortical rat
cells and the term cellular barcoding was later coined by Schepers et al. [140]. The number
of possible unique barcodes is basically unlimited and correlates with the length of the
barcode sequence. Assuming a random arrangement of the four bases, there are 4N unique
combinations for a barcode sequence of length N. Thus, a six-nucleotide sequence yields
4096 unique barcodes, a nine-nucleotide sequence yields 262,144 and a 30-base pair barcode
sequence is more than sufficient to theoretically uniquely mark every single cell in the
human body [141]. In addition to the use of random barcode sequences [142], semi-random
sequences can also be chosen, in which certain positions in the sequence are designated
for specific bases (for instance, to ensure a balanced GC content [143]). Furthermore,
barcodes can be generated enzymatically from an initially pristine sequence present in all
cells, e.g., by shuffling specific sequences with recombinases [144,145] or by generating
random mutations in the target sequence using CRISPR-Cas9 [146,147]. The traditional and
most widely used approach to molecular barcoding is based on in vitro-generated barcode
libraries, generally in the form of plasmids (exemplary shown in Figure 2A), which are
then introduced into the target cells at a low copy number. Usually, viral vectors (mostly
retroviruses [139] and lentiviruses [143]) are used, but other methods of gene transfer, such
as microinjection of barcode constructs [148], are also possible. Most protocols aim for a
low transduction efficiency to prevent cells from being labeled with multiple barcodes or
from the same barcode being integrated into several different cells, since this could interfere
with data quantification and potentially corrupt the lineage reconstruction [126,143]. From
a methodological point of view, this approach is comparatively simple and based on
established technologies. Moreover, the highest barcode diversities could thus far be
achieved with in vitro-generated barcode libraries. For example, using a 30-nucleotide-
long, semi-random DNA barcode, Bhang et al. [143] were able to create a barcode library
with more than 107 unique barcodes that could be used to track the fate of more than
1 million individual cancer cells. In addition, the in vitro-generated barcode libraries are
characterized by high compactness, which results from the circumstance that the random
arrangement of the four bases in even short barcodes generates tens of thousands of unique
sequences. Another advantage resulting from the shortness of the sequences is that the
barcodes can also be identified by short-read sequencing.

Figure 2. Molecular barcoding in cancer research. (A) Schematic of a barcoding construct exemplary with a short, six-
nucleotide, random barcode sequence (BC). Often, fluorescent proteins such as GFP are also part of the construct to facilitate
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the tracking of barcoded cells. In addition, selection markers are often used to exclude unlabeled cells. (B) Overview of the
applications of molecular barcoding in cancer research. Barcodes can serve as heritable tags that allow biomarker-free clone
tracking and cellular lineage reconstruction. In addition, they can be used to determine whether certain phenotypes or
characteristics in a population, e.g., therapy resistance or metastatic ability, are acquired or inherent. Furthermore, barcodes
can be used to identify new molecular drug targets and simplify multiplexed drug screenings.

4.2. Applications of Molecular Barcoding
4.2.1. Lineage Tracing and Fate Mapping

Once a barcode is introduced into a progenitor cell, it is then stably passed on to
the progeny, rendering molecular barcoding a powerful tool to trace and reconstruct the
development of cell lineages in a biomarker-free manner. As a result, barcoding has
enabled the study of the clonal evolution of the hematopoietic system and helped to trace
subclones that drive hematopoiesis after transplantation [127,149]. In addition, barcoding
has been used extensively to elucidate the behavior of T cells; for example, to track the
migration of T cells [140], the fate of naive T cells [150], and the kinship between T cell
subpopulations [151].

Although the in vitro generation of barcodes is a simple technique and has so far
achieved the highest diversity in available barcodes, it has some pitfalls. Barcoding of
the target cells follows Poisson statistics, leaving a certain proportion of cells unlabeled.
Furthermore, the applicability of such an approach is limited to biological questions and
systems that are accessible for gene transfer. For example, in situ barcoding of hematopoi-
etic stem cells is still not possible, which means that the cells must be labeled in vitro
first and only then they can be transplanted into a recipient organism [144]. In order to
overcome the limitations of in vitro-generated barcoding libraries and to label all cells in
the biological system under investigation, the barcodes can also be derived from an initially
pristine sequence, present in all cells. For this, a certain target sequence is continuously
altered, either by shuffling the sequence with recombinases or by targeted introduction of
mutations through Cas9. Thereby, different barcodes emerge from mutations and changes
in the original sequence, which are also passed on to the progeny and serve as unique mark-
ers. However, this approach is technically more demanding and comes with a potentially
lower barcode diversity.

Notably, Pei et al. have developed an artificial locus based on the Cre-loxP recombi-
nation system (called Polylox), which is used for in situ barcode generation, by applying
a concept similar to Brainbow. The Polylox DNA cassette is composed of 10 loxP sites
in alternating orientations, each separated by 178 base pairs. Expression of inducible
Cre recombinase in specific cells or at certain time points induces shuffling of the Poly-
lox sequence through excisions and inversions. This results in a multitude of unique
combinations, which was used for barcoding of hematopoietic stem cells in vivo [144].

Similarly, the number of methods developed using the CRISPR/Cas9 system to gener-
ate barcodes that progressively evolve from a common origin sequence as cellular develop-
ment constantly increases. GESTALT (genome editing of synthetic target array for lineage
tracing) was the first reported approach that utilized evolving barcode sequences [147]. In
GESTALT, barcodes consist of a series of continuously targeted CRISPR/Cas9 sites. The
cells are identified by the unique combination of barcode marks (insertions and deletions
caused by Cas9), which are also passed on to the progeny and, in turn, accumulate progres-
sively more mutations. The authors of the study applied GESTALT for whole-organism
lineage tracing in zebrafish and demonstrated that most cells in adult organs are derived
from only a few embryonic precursor cells. Likewise, another Cas9-based barcoding
method for single-cell, whole-organism lineage tracing was developed by Alemany et al.
and coined the name ScarTrace [152]. ScarTrace is based on short insertions and deletions
(“scars”) induced by Cas9 in multiple, targeted, histone-GFP transgene loci in zebrafish.
Scarring can be induced by injecting the zygote either with Cas9 RNA or protein and a
single-guide RNA (sgRNA) directed against GFP. The insertions and deletions caused at the
targeted genomic site were then sequenced in order to reconstruct cell lineages. Using this
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approach, it could, for instance, be demonstrated that a small set of multipotent embryonic
progenitors give rise to hematopoietic cells in the kidney marrow. In addition to that, fin
regeneration in adult zebrafish could also be studied. In recent years, a number of other
CRISPR/Cas9-based barcoding methods have been developed [146,153–156].

4.2.2. Molecular Barcoding in Cancer Research

As previously described, tumor heterogeneity arises from mutations and clonal selec-
tion during cancer progression and, thus, is a hallmark of most cancers. Since it poses a
significant challenge for diagnosis and clinical therapy, the investigation of tumor evolution
has increasingly been shifting into focus [128,129,157,158]. While the past several decades
of cancer research have led to a vastly increased understanding of cancer biology, the
failure rate of novel oncology drugs in clinical use is still quite high. In this context, molec-
ular barcoding can help to elucidate the causes of therapy failure and, thus, support the
development of novel therapies (Figure 2B). Although it is known that therapy resistance
is promoted by tumor heterogeneity, it is usually unclear whether the resistance is mainly
mediated by pre-existing resistance mechanisms or whether it develops through a selective
process throughout therapy [158–161].

To address this, Bhang et al. developed a highly complex barcode library that enabled
high-resolution tracking of more than 1 million non-small cell lung cancer cells under drug
treatment, called ClonTracer. In this study, they were able to show that resistance to the
EGFR inhibitor erlotinib was inherent to a small, pre-existing subpopulation. Therefore,
they concluded that combination therapies with different targets could challenge resistance
and that ClonTracer could be used to optimize treatment regimens [143]. Similarly, barcod-
ing was also used to investigate cancer cell populations in local recurrences after surgical
removal of head and neck squamous cell carcinoma (HNSCC). Applying barcoding in a
surgical in vivo model, Roh et al. observed a clonal substitution and massive reduction of
clonal heterogeneity in local recurrence. Clones that were enriched in recurrences likely
originated from ancestors shared with clones dominating in primary tumors. Those clones
were found to be characterized by an epithelial-to-mesenchymal transition (EMT) program
and displayed increased invasiveness. Consequently, the EMT-phenotype was targeted
and the recurrence-free survival of tumor-bearing mice was significantly improved [162].

Another not yet fully understood process that contributes decisively not only to
the lethality of cancer, but also to failure of therapies, is metastasis [163]. To study the
molecular basis of metastasis that is driven by tumor heterogeneity and to probe the
ability of subpopulations to contribute to various aspects of the disease, Wagenblast et al.
have developed a barcoding-based mouse model of breast cancer heterogeneity [164]. To
this end, mammary carcinoma cells were labeled with a molecular barcode via retroviral
infection and injected orthotopically into immunocompromised recipient mice. After
metastatic spread to brachial lymph nodes, blood, lungs, livers, and brains, tumor cells
were harvested and barcode populations within each tissue were quantified. As a result,
it was possible to demonstrate that distinct populations contributed to lymph node and
hematogenous metastases. Moreover, a clear overlap between abundant clones in the
hematogenous metastases and in circulating tumor cells was discovered. It was also
possible to reconstruct the evolution of circulating tumor cells from underrepresented
subpopulations in the primary tumor. From these cells, only a subset had the additional
capacity to colonize secondary sites. It could be further explained that the emergence of
circulating tumor cells and their ability to form metastases was directly linked to vascular
mimicry (a process in which tumor cells form tubular structures for blood and nutrient
transportation independent of classical angiogenesis) driven by increased expression of
two secreted proteins: Serpine2 and Slpi. In addition, they elucidated that Serpine2 and
Slpi act as anticoagulants to sustain perfusion. By these means, Serpine2 and Slpi promote
tumors by enhancing the blood supply and, at the same time, providing new opportunities
to metastasize [164].
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Similarly, molecular barcoding in combination with unbiased genomic analysis and
a small-scale in vivo functional screen was used by Chuang et al. in order to identify
pharmaceutically susceptible targets for the inhibition of metastatic ability [165]. Tumor
formation and barcoding were initiated in a mouse model of human lung adenocarcinoma
(KrasLSL-G12D/+;Trp53flox/flox mice that also contained a Rosa26LSL-tdTomato) with a pool of
barcoded lentiviral vectors that expressed Cre recombinase. After tumor formation, cancer
cells were isolated from individual primary tumors as well as metastases from multiple
sites. Barcoding then allowed distinguishing between nonmetastatic primary tumors
(TnonMet) and primary tumors that give rise to macrometastases (TMet). Subsequently, RNA
sequencing-based gene expression profiling, performed on TnonMet primary tumors, TMet
primary tumors, and macrometastases revealed distinct molecular states. Based on this, a
pharmaceutically targetable pro-metastatic CD109-Jak-Stat3 axis was identified through an
in vivo, small-scale screening and molecular analyses.

To shed further light on whether drug resistance is inherent to subpopulations of
cancer cells or acquired through selection under therapy, Umkehrer et al. developed [156]
CaTCH, a technique combining sophisticated clone tracing with the ability to isolate specific
clones. The isolation of such clones is not only possible at any time point, but also from
complex cell populations. In CaTCH, cells are first transduced with a dCas9 construct and
subsequently labeled with DNA barcodes that are fused with an inducible (activatable by
barcode-specific sgRNAs) green fluorescent protein (GFP) reporter. After experimental
selection under therapy, barcode representation is identified by next-generation sequencing.
This enables the design of single-guide RNAs that are complementary to the clone of
interest. Afterwards, the sgRNA constructs are transduced into the heterogeneous cell
population, specifically activating GFP expression in the desired clone. This enables
isolation of the clone of interest by fluorescence-activated cell sorting. Furthermore, if
cells are preserved prior to the selection process, specific clones can be isolated from the
pool, which will ultimately give rise to resistant clones. Consequently, the isolation of the
clonal pair of cells is still possible, no matter if the clonal pair of cells is in the treatment-
naive, intermediate, or therapy-resistant state. By comparing the therapy response of
the cells acquired at different stages of resistance, it can be investigated if drug tolerance
was inherent or acquired. By applying CaTCH in an in vivo melanoma mouse model,
Umkehrer et al. could show that RAFi/MEKi resistance is mostly acquired and that the
majority of clones are capable of achieving this state.

4.2.3. High Throughput Screens

Molecular barcoding can not only be used to identify new therapeutic targets by
identifying pathophysiological processes, but also by being applied in advanced drug
screenings [166]. Large-scale screening of drugs is typically only performed in vitro and,
although one-by-one drug screening of large drug libraries in vivo is potentially possible,
it is also labor intensive, often costly, and ethically problematic. To overcome these lim-
itations and enable the analysis of numerous compounds in parallel in the same mouse,
we developed a multiplexed, small-molecule, in vivo screening platform. This platform
utilizes molecular barcoding to screen for modulators of metastatic seeding in PDAC [142].
Due to barcoding, a multitude of drugs can be screened simultaneously while reducing
experimental time, costs, and resources. Pooled screening is enabled by labeling the same
(polyclonal) cells with individual barcodes to generate 96 uniquely barcoded cell variants
of a metastatic pancreatic cancer cell line so that individual variants can be tracked in a cell
pool. Each cell variant can then be pretreated with an individual compound in vitro. Fol-
lowing the treatment, the treated cells are pooled and injected into a recipient mouse. The
effect of each drug on metastatic seeding ability can then be analyzed by determining the
barcode representation in postseeding samples in relation to the preinjection samples with
Next Generation Sequencing (NGS). Using this platform to screen over 700 compounds
and 300 internal controls, the lipase ABHD6 was identified as a novel regulator of cancer
cell adhesion [142]. Instead of using thousands of mice, this experimental setup required
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only 36 mice, thus demonstrating the power of using barcodes as a screening approach.
Barcoding can not only reduce the technical variability that is inherently linked to in vivo
assays but it also identifies novel regulators of metastatic ability that are unlikely to be
identified with conventional approaches.

5. Conclusions

Tumor heterogeneity and clonal evolution during cancer progression as well as under
therapy are major obstacles for improved treatment options in advanced stage PDAC. DNA
barcoding technologies provide a powerful tool to identify targetable (sub-)populations
and resistant cell clones. This method will most likely be one of the keys to advanced
personalized treatment strategies in this devastating cancer. With many novel and exciting
developments in the field of single-cell analysis, it will be interesting to see how these
strategies will be deployed alongside conventional methods to further investigate cancer
heterogeneity in the future.
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