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Abstract: The different niches through which bacteria move during their life cycle require a fast
response to the many environmental queues they encounter. The sensing of these stimuli and their
correct response is driven primarily by transcriptional regulators. This kind of protein is involved in
sensing a wide array of chemical species, a process that ultimately leads to the regulation of gene
transcription. The allosteric-coupling mechanism of sensing and regulation is a central aspect of
biological systems and has become an important field of research during the last decades. In this
review, we summarize the state-of-the-art techniques applied to unravel these complex mechanisms.
We introduce a roadmap that may serve for experimental design, depending on the answers we
seek and the initial information we have about the system of study. We also provide information on
databases containing available structural information on each family of transcriptional regulators.
Finally, we discuss the recent results of research about the allosteric mechanisms of sensing and
regulation involving many transcriptional regulators of interest, highlighting multipronged strategies
and novel experimental techniques. The aim of the experiments discussed here was to provide a
better understanding at a molecular level of how bacteria adapt to the different environmental threats
they face.

Keywords: bacteria; transcriptional regulators; structural biology; allosteric coupling

1. Introduction

Bacteria have colonized essentially every type of niche, regardless of how harsh
a particular environment might be. A single bacterium often moves through several
niches during its life cycle; thus, a rapid response to the environmental changes and
presence of stressor molecules is critical. For this to occur, bacteria must correctly sense
and transduce various environmental signals by using complex signaling pathways that
ultimately lead to the transcription of specific genes required for survival in each situation.
This response is orchestrated by transcriptional regulators (TRs) that can function as single-
component systems, as DNA-binding proteins with the ability to modulate function as
a response to the presence of some specific chemical species [1], or as part of a more
complex signaling pathway [2,3]. Recently, structural details of small molecule and metal
ion sensing riboswitches have also appeared [4,5], making it clear that both protein and
RNA have the level of specificity necessary to regulate transcription outcomes in response
to small molecules. Generally, TRs have two domains or motifs—one that harnesses the
residues involved in the specific interactions with the operator region of the DNA (namely,
DNA-binding domain or site) and another one that is involved in inducer recognition
(namely, regulatory domain or site). With some TRs, the regulatory domain might have
more tasks beyond the modulation of the DNA-binding affinity, including ligand binding,
protein–protein interaction, and enzymatic activity.

TRs can act as repressors or activators. Generally, the transcriptional repressor bound
to DNA represses transcription by blocking the activity of RNA polymerase, and in the
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presence of the inducer, the TR dissociates from DNA and initiates transcription. On the
contrary, transcriptional activators enhance transcription by binding to DNA, for example,
by recruiting RNA polymerase for the activation of gene transcription [6].

The process by which the binding event at the regulatory domain influences DNA
binding at the DNA-binding domain, and thus, the regulation over gene expression, is
termed allostery. Allostery consists of a fundamental thermodynamic phenomenon in
which the binding of one ligand influences the binding of a second ligand or activity at a
physically distinct site. Allosteric communication between two ligand-binding sites in a
protein is a central aspect of biological regulation. Identifying what physical features poise
a certain conformational state for ligand binding remains an important goal in efforts to
understand biological regulation.

The structural biology revolution experienced during the last two decades has served
not only to provide invaluable experimental and predicted structural details of various
states of proteins and nucleotide complexes [7–9] but has also made clear that proteins exist
as dynamic conformational ensembles, interconverting between different conformations
with varying energies [10–13]. This distribution of ensembles is not static, as the populations
shift upon the formation of a covalent bond, noncovalent binding, temperature changes, or
other phenomena [14]. The population shift is a consequence of a change in the relative
stabilities of the conformations and is indeed the origin of the allosteric effect. In these
ensemble models of protein function, allostery can be considered a change in the affinity
for a ligand by the shift in the accessible conformations upon another ligand binding
at a different location in the macromolecule [10,13,15,16] rather than a structural change
between two static conformations. The experimental results that support these models in
the context of allostery in TRs are discussed in Section 5 of this review.

TRs are classified in protein families based on sequence similarities, particularly in
the DNA-binding region. Moreover, members of the same family are characterized by a
certain degree of conservation in the overall molecular architecture and structural motifs.
The chemical species eliciting a transcriptional response may be metal ions, metalloids,
small organic molecules, or even lipids. To some extent, the magnitude of the structural
changes derived from the inducer binding event in a particular TR can be predicted based on
previous knowledge of other members in its protein family. This prior knowledge can define
the techniques that will provide valuable information on the allosteric mechanism as well
as the transcriptional outcome. Here, we aimed to organize the current structural, dynamic,
and functional knowledge of the members of various protein families to provide the reader
a framework for the characterization of TRs responsible for new biological outcomes, as
well as a previously characterized regulatory network that involves uncharacterized TRs.

In this review, we highlight the state-of-the-art techniques used to elucidate bacterial
allosteric TRs’ functions, diversity, and molecular mechanisms. We present a roadmap
that serves as a guide to discuss key experiments, based on our initial understanding
of the systems studied. This is accompanied by brief descriptions of the advantages
and disadvantages of the common approaches, through experimental or bioinformatic
techniques. We also present information on a series of databases related to bacterial TRs,
alongside a discussion about the available structural information for each protein family.
This review closes with a discussion of the multipronged strategies used to study the
ensemble models of allostery, as well as the structural and functional characterization
in the cellular environment. Taken together, the data obtained from these experiments
may provide insight into the highly complex systems that bacteria use to orchestrate
transcriptional responses to environmental queues.

2. Identifying the Biological Role and the Cognate Inducer

Typically, the main motivation for the characterization of a single-component system
is prior knowledge of its participation in a resistance mechanism of interest or adaptative
response (i.e., adaptation to a stringent environment, antibiotic resistance, host immune
response resistance) (Figure 1A). This prior information is key to defining the experiments
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that will allow for the identification of the regulon responsible for that adaptative response.
The goal was to understand which processes regulate a response that allows for the bacterial
adaptation to a stressor molecule. In this section, we discuss the different experimental and
computational approaches to identify the regulator, promoter, regulated genes, and inducer.

Bioinformatics is a powerful tool to find genes associated with a function or involved
in a regulatory network (Figure 1B, left). In the case of paradigmatic organisms, such as
E. coli, databases contain the up-to-date description of regulatory networks, including the
organization of the genes in transcription units, operons, and entire regulons based on
experimental data [17–21]. Additionally, curated databases containing exclusively func-
tional information on TRs [22] or their putative DNA-binding sites [23–25] are constantly
expanded. Hence, finding the annotated genes corresponding to a TR of interest linked to
the regulated genes can be a direct task. In other bacteria, gene annotation is often not as
complete; thus, new regulatory networks must be established to find regulons of interest.
There is a constant effort to improve regulon prediction with bioinformatics tools [26–28]
to address the limits set by the degeneracy and variability of the conserved regulatory
motifs in operons around their promoter regions. Thanks to this effort, the accuracy of
bioinformatic algorithms that combine transcriptomic and other “-omics” data to their
pipeline has greatly increased in the last decade [29,30].

When there is not enough data to benefit from bioinformatics, as in the case of
pathogens causing neglected diseases [31], “-omics” experiment analyses are generally
necessary (Figure 1B, right). A possible starting point is to define which transcription
units are affected after exposure to the environmental change of interest, as this type of
experiment does not require prior knowledge of the regulatory networks in the organisms,
albeit information about the growing conditions and media is required. In recent years,
the analysis of the transcriptomic data from prokaryotes has become widely used [32]
in the form of RNA-seq [33] and tiling array [34] experiments that are capable of quanti-
fying variations in gene expression with changes in the media. More recent techniques
include proteomics experiments to correlate the effects in translation with an observed
phenotype [35].

After the transcriptional response is defined, a common strategy is to determine the
relevant TR (Figure 1C) and the DNA sequences where it binds (Figure 1D). A widely used
technique to find the TR of a gene of interest is suppressive mutations, which consist of
treating the cells with a mutagenic agent and sequencing the genome in search of disrupted
genes that correlate with the transcription level of the gene of interest [36] (Figure 1C, right).
More current and powerful strategies can even allow capturing at the genome-level protein–
DNA binding, identifying TRs bound to a particular DNA sequence without necessarily
linking them directly to an operon, which can be done later bioinformatically [37,38].
Once a TR has been identified, a variety of techniques allow for the identification of the
transcriptional regulatory elements that interact with it, namely the operator (Figure 1D,
right). In vitro protein–DNA binding methods include EMSA, protein-binding microarrays
(PBMs), chromatin immunoprecipitation-based methods (ChIP), and DNase footprinting
assays that can provide detailed information about promoter sequences that contain the
operator [39,40]. Nonetheless, these methods can be time consuming if there is no prior
knowledge of the promoter sequence. They are not a good approach if the length or degree
of conservation of the putative operator sequences impairs a robust bioinformatic search.
Higher throughput methods are constantly being developed and usually take advantage of
deep sequencing coupled with machine learning algorithms to predict promoter sequences.
Some of these techniques may not even require prior knowledge of the TR and are based
on in vivo massive parallel reporter assays [41–43].
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Figure 1. A possible workflow for the biological characterization of an adaptative response.
(A) Identify the growth defect or resistance mechanism that constitutes the adaptative response
of interest. (B) Consult the existing databases or employ available bioinformatics tools to collect
the necessary data to characterize the components of the regulatory network (i.e., regulator and
regulon). If the available information is insufficient or the organism is too novel, transcriptomics,
proteomics, and genomic experiments are the most efficient strategy to identify the regulon. (C) The
existing databases and the “-omics” experiments generally allow for the identification of the TR;
when this is not the case, suppressor mutations enable the discovery of the putative TR. (D) The
identification of the promoter often comes from prior characterization of the regulon; however, it
can also be obtained through DNA-binding experiments that can be performed either in vivo or
in vitro. (E) Some regulated genes are, in most cases, known, as these are the main players in the
adaptative response; however, to characterize the complete regulon transcriptomics and proteomics
of the deletion are ultimately necessary. (F) Once the regulon and the promoter regions are identified,
the correct inducer is crucial to allow for further biophysical characterization of the system and can
be performed by low through-put reporter assays.
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Identifying the complete regulon of a given TR is a key step in the characterization of
an adaptative response; its difficulty is often related to how broad its metabolic footprint
is (Figure 1E, left). Once the TR has been identified it might be possible to infer the
regulon simply by genomic context. If that is not the case, the prior knowledge of the
inducer can be used to conduct a set of parallel RNA-seq transcriptomic analyses over
WT cells and over mutants where the TR has been deleted (Figure 1E, right). The genes
whose transcription levels change significantly could be regulated by the TR (also called
transcription factor, TF) under study. This study also provides key information about the
repression or activation mechanism, as there are multiple ways in which a transcriptional
regulator can act [1]. If the transcription factor functions as a repressor by, for example,
occluding access of RNA polymerase (RNAP), the regulated genes will show higher levels
of transcripts when comparing the deletion to the wild type (Figure 1E, red dots). On
the contrary, if the transcription factor acts as an activator, for example, by binding to a
region that is upstream of their target promoters and recruiting the RNAP, the regulated
genes will show a lower level of transcripts when comparing the deletion to the wild type
(Figure 1E, blue dots). There are many other alternative mechanisms of regulation that
are compatible with these two opposite results, and one cannot infer direct interaction of
the TR with the promoter just based on the results of RNA-seq analysis. In many cases,
indirect regulation has been observed [44]. In others, deletion of the TR can induce a global
metabolic change, particularly when it is a global regulator, as was the case in the study by
Fur [45]. These issues are often partially addressed by complementing the experiment with
parallel RNA-seq analysis in the presence and absence of the cognate inducers, where the
result will depend also on the inducer being an allosteric activator or inhibitor. In addition,
if the inducer recognition site is known, single-point mutants of the TR-inducer binding
site are often a good validation if the results match those in the absence of the inducer.
However, even with those complementary experiments, the identity of the regulated genes
needs to be verified by in vitro direct DNA binding experiments to rule out the possibility
of having the transcriptional profile being affected by the presence of a regulatory network
where the TR has a regulatory effect other than direct regulation.

Finally, determining the inducer that triggers a specific transcriptional response, and
thus, the observed phenotype, is typically performed in vivo [46] (Figure 1F). A library
of putative inducers can be assembled by comparing the growth of a wild-type organism
with one lacking the TR of interest in the presence of inducers. Then, transcription of a
specific gene is quantified with qRT-PCR, relative to the wild-type organism to a library
of putative chemical inducers or by a reporter assay (e.g., β-galactosidase), where the
promoter region is genetically engineered in a plasmid upstream a reporter gene (i.e., GPF),
such that it regulates its expression. The library of putative inducers is generally small and
restricted to what can be inferred by the function of the genes that belong to the regulon.
For example, in transition metal homeostasis, the specificity of the transporter genes that
are part of the regulon generally coincides with the inducer. However, in many cases,
this initial screening for the inducer needs to be complemented by more detailed in vitro
experiments that determine the binding constant and/or the chemical modification that
results from the presence of the cognate inducer in the TR. There are many examples where
the transcriptional response is built by indirectly sensing the chemical inducer; thus, this
initial screening will yield results that are ultimately not the cognate inducer but chemical
species that give rise to other downstream products in the cellular context. This challenge
has been clearly depicted in the characterization of E. coli MarR, where the cognate inducer
was thought to be a weak binder like salicylic acid [47] until more experiments were
performed in vitro and in vivo, and Cu(II) was identified as the cognate inducer [48]. An
in-depth study of the binding selectivity of a TR to its inducer and promoter [49] can lead
to a more profound understanding of their roles in the cellular response.
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3. DNA Binding and Inducer Recognition

The biological function of a TR that constitutes a single-component system is to elicit a
transcriptional outcome in response to a change in the concentration of the cognate inducer.
According to this definition, when the inducer modulates the DNA-binding affinity, the
function of the TR is defined by the connection between the inducer recognition site and
the DNA-binding site, namely the allosteric connection. The biochemical study of binding
equilibria in different ligation states allows for the determination of the affinity and selec-
tivity that a particular TR has for its cognate inducer and DNA operator. This ultimately
leads to the quantitative determination of the allosteric connection, namely the coupling
free energy (Figure 2A–D). This thermodynamic parameter characterizes the function of
the transcriptional regulator in charge of responding to exogenous and endogenous stress
conditions by inducing gene expression. This framework applies mainly for repressors [50]
since, in the case of activators, inducer recognition does not necessarily affect DNA-binding
affinity but polymerase recruitment and/or promoter architecture [51,52]. Regardless of
the role of allosteric linkage on transcriptional regulation, determining the affinities for
each ligand as well as the selectivity is key to gaining a deeper understanding of how
bacteria build adaptive responses through TRs. Many TRs function as part of a regulatory
network so it is not enough to determine these parameters for a single regulator but for
the suite of TRs charged with maintaining cell homeostasis in response to chemical insults
from its environment [53,54]. In this section, we introduce the different methodologies that
are generally used for describing the different molecular recognition events that define
the transcription regulator’s function, namely DNA binding, inducer recognition, and
allosteric coupling (Figure 2E–J).

As discussed in Section 2, in many cases beyond the functional characterization
in vivo, it is useful to identify the operator region within the promoters of the regulated
genes that interact directly with the TR. The benchmark technique to define the actual
operator within a promoter is the DNAse footprinting assay [55], which is used to detect the
regions of protein–DNA interaction even across the whole genome [56], taking advantage
of the fact that a DNA sequence bound to a regulatory protein is protected from nuclease
attack relative to flanking exposed nucleotides [57]. DNAse footprinting can provide
precise information on the binding site and, in some cases, on the effect of TR binding
to promoter conformation. Alternatively, a series of electrophoretic mobility shift assays
(EMSAs) can be performed either starting with the whole promoter region or with shorter
oligonucleotides that are expected to contain the operator region [58,59]. Prior to DNA
incubation, the TR can be treated with the cognate inducer molecule or relevant competing
molecules to also test the TR’s specificity [36]. Even though these assays are often used
for qualitative purposes, the conditions of these experiments can be optimized and have
provided quantitative information on binding stoichiometries or affinities [60,61] of both
promoter and inducer binding. This technique provides information about the mechanism
underlying the regulation by comparing the affinities of the TR in its apo and inducer-
bound state to the DNA and obtaining an estimate of the allosteric coupling (Figure 2H).
In cases where the cognate inducer leads to null coupling, the effect of the inducer is not
limited to an allosteric effect on the TR, and it is generally linked to the recruitment of
other biomolecules, sometimes by solely affecting the DNA geometry (Figure 2C). Another
advantage of EMSA is that the quantities needed for the experiments are usually very low,
in the range of nM, allowing for numerous experiments. Once the promoter is identified
and the preliminary EMSA results are obtained, a more quantitative understanding of the
problem is often achieved with other techniques.

In many cases, fluorescence anisotropy (FA) is carried out after or in parallel with
EMSA experiments, often giving comparable results [60] (Figure 2G). The main advantage
of this is that it is an authentic equilibrium technique that does not involve the separation
of the components of the mixture during the measurement, such as the separation that
occurs in electrophoresis [62], enabling the study of temperature and salt concentration
dependences that inform on the sequence selectivity and affinities in relevant cellular
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conditions [63]. If FA experiments can be performed for an apoprotein vs. ligand–protein
complex, it can ultimately quantify the allosteric regulation in the form of allosteric cou-
pling free energy (Figure 2D). As this technique relies on changes in the hydrodynamic
radius of the DNA molecule upon binding to the TF, it is critical that the oligomer has a
smaller molecular weight than the TR. So generally, the DNA operator sequence must be
determined beforehand to carry out the experiment. On the other side, the experiment
is sensitive to protein aggregation; thus, it is not easy to perform with challenging pro-
tein complexes [64]. Binding affinities and stoichiometries determined by fluorescence
anisotropy have been shown to be useful for modeling actual cellular responses in combi-
nation with mass spectrometry-based strategies to accurately determine the intracellular
concentration of the TR [52].

Microscale thermophoresis (MST) is a relatively recent and powerful technique that
can be used to quantify biomolecular interactions [65,66] (Figure 2I). MST is based on
the directed movement of molecules along temperature gradients, an effect termed ther-
mophoresis. Upon the binding of a protein to a DNA or inducer molecule, either the size,
charge, and/or hydration shell of a fluorescent molecule within any of the binding partners
is changed, resulting in distinct thermophoretic movements of the unbound and bound
states. Thus, it has the potential to give essentially identical information to FA experiments,
with the main advantage of a minimal requirement of a sample volume (~20 µL) and
complex samples, such as plasma and cell lysates [65,67]. MST strongly depends on a
variety of molecular properties, which may be advantageous for measuring the binding
equilibria associated with minimal molecular changes, such as the ones that may occur on
a protein upon inducer recognition. This, however, can also complicate the interpretation,
as saturable curves are not always the only result [67]. MST has been extensively applied
for drug screening in various proteins, many of them nucleotide-binding proteins [66,68];
however, its application for the characterization of the biophysical properties of allostery in
TR remains to be explored more thoroughly. Both FA and MST are reliable techniques to
obtain the solution binding constants of TR with DNA, as they minimize artifacts when
compared to separation techniques, such as EMSA, or even immobilization techniques, such
as surface plasmon resonance (SPR) [69–71] (Figure 2J). These low throughput methods all
require previous knowledge of the promoter. In recent years, next-generation sequencing
techniques have led to methods that can achieve in vitro quantitative determination of
affinity together with high binding sequence accuracy by measuring hundreds of thousands
of individual binding events as high-throughput insertion tracking by deep sequencing
(HiTS) [72].

Depending on the nature of the regulatory mechanism, the inducer recognition may
well be as informative as the DNA-binding characterization discussed above. In the case of
regulators of metal ion uptake or efflux (namely metalloregulators), a carefully performed
but simple colorimetric assay can provide a quantitative measure of the coupling free energy
by measuring the metal binding affinities in the presence and absence of DNA [73,74]
(Figure 2F). If the metal or ligand of interest induces a spectroscopic change, a direct
titration can provide the binding data given that the binding constant is sufficiently low [75].
Alternatively, competition assays can be performed either with non-cognate metals that
can replace the cognate inducer [51,76] or with a metal chelator of known affinity [77,78].
These colorimetric assays can provide insight into the regulation mechanism of a TR [79,80]
and can be adapted to any system where the inducer provides a spectroscopic signal.

The first step into a more detailed description of the mechanism of an allosteric system
is to obtain the thermodynamic parameters that drive the allosteric connection between
sites. The benchmark technique for this characterization is isothermal titration calorimetry
(ITC), where the heat released after a binding process is measured as the ligand is titrated
(Figure 2E). ITC not only allows for the determination of the binding constant but also the
enthalpic and entropic contribution in a single experiment. It can be used to determine the
cognate ligand of a certain biomolecule and its affinity [81], not only in the case of proteins
but also for other one-component systems, such as riboswitches [4,5]. This also allows for
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quantifying the cooperativity between two inducer binding sites that recognize the same
ligand (i.e., homotropic cooperativity) [80]. Of course, that level of detail comes at a cost of
the amount of biological material, as it can typically need above micromolar concentration
solutions [82], making it expensive and sometimes unpractical to be done if the main
question can be answered by a simpler binding assay. The technique is also limited by the
range of affinities it can measure (typically between micrometers and millimeters) but it
can be extended with competition assays where a moderate affinity ligand is displaced by a
high affinity one [83,84]. In combination with other structural techniques, ITC may provide
further insight into the thermodynamic parameters of protein binding to DNA, and thus,
the mechanism of transcriptional regulation [85].

The abundance of analytical techniques and binding assays available to quantify the
affinities of TRs to DNA and inducers allows for choosing based on the system, the informa-
tion already known, and the question to be answered. In vitro characterization of a novel
TR as molecular recognition defines its function. As with all allosteric proteins, the function
of TRs cannot be defined by a single-equilibrium process (Figure 2A–D), and to obtain the
full characterization of a repressor, we need at least two binding constants (Figure 2D). On
the other hand, for activators, we generally need functional in vivo characterization as well
as more holistic structural work, as is described in the following sections. Moreover, as
TRs are tuned to the intracellular availability of their cognate inducer, the binding assays
performed in vitro in diluted solutions of purified proteins should be interpreted as a proxy
to understand the protein function rather than a prediction of the biological outcome in the
intracellular milieux [53].
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states of a TR, where the TR is represented as a dimer drawing in white and blue with the DNA-
binding motif in red (apo, top left; ligand-bound, top right; DNA-bound, bottom left; ternary
complex, bottom right). The three possible heterotopic coupling schemes are depicted in each panel—
allosteric inhibition (A), activation (B), and no coupling (C). (D) The overall coupling free energy
(∆Gc, which stands for ∆GDNA,Ligand − ∆GDNA,apo) can be determined by measuring either of the pair
of equilibrium constants (i.e., vertical or horizontal), and its expression is exemplified by the vertical
constant. The allosteric coupling provides insight into the role of a given TR in gene regulatory
logic [84]. (E–J) Summary of the most popular techniques for determining the binding affinities
and other parameters for the binding process between the TR and the allosteric ligand or DNA.
(E) Isothermal titration calorimetry (ITC) is a powerful technique that provides both equilibria and
thermodynamic information. Its main limiting factor is the need for mg amounts of protein in high
concentrations, around µM, because all measurements are done near the equilibrium (Kd). Direct
titration of DNA (blue shading) has a tight binding limit at nM, meaning that equilibria with tighter
binding cannot be measured accurately. In competition experiments (green shading), the addition of a
competitor that forces the dissociation of the TR–DNA complex allows for the accurate determination
of tighter binding equilibrium with Kd even approaching the fM. The different traces (from green
to blue) define relative Kds with respect to the competitor, while in the case of direct titrations, the
Kd can be generally modeled by the 50% occupancy of the labeled ligand (blue). ITC measures the
heat released by each addition of titrant (TR or DNA). The binding enthalpy is obtained from the
total heat released in the first addition, and then the integration of that curve (indicated as a black
arrow) provides the function from which the Kd is derived [81,84]. (F) Absorption spectroscopy is
a practical way to follow a binding event if the system allows it because it does not require special
equipment beyond a spectrophotometer. The technique’s drawbacks come from its relatively low
sensibility, needing large amounts of protein, and being capable of obtaining only µM Kds accurately
by direct titration (blue traces). Again, the addition of a competitor allows for reaching even tighter
binding constants (green traces) with the correct choice of competitor. This is depicted by the change
of probe response graphs compatible with extracting a Kd value [74,78]. (G) Fluorescence anisotropy
(FA) is based on the change of rotational correlation times of differently sized particles; a DNA
fragment with a fluorescent probe rotates slower after binding to a protein. Fluorescence experiments
have intrinsically higher sensitivity than absorption experiments, requiring smaller amounts of
protein and determining tighter binding Kds. Once more, the addition of a competitor, such as an
unmarked DNA fragment, permits the determination of Kds reaching the fM [62]. (H) Electrophoretic
mobility shift assay (EMSA) follows the formation of a protein–DNA complex in electrophoresis
under native conditions. The accuracy of the determined Kd depends on the correct quantification
of the complex formed on the gel, so extracting quantitative information is not an easy task and
it is usually correct to confirm it through another of the mentioned techniques. EMSA excels at
giving a quick path to observe the formation of the complex, needing low amounts of both DNA and
protein. Ethidium bromide (EB) is commonly used to tag the DNA and reach 100 nM Kds. Fluorescent
probes allow for reaching even lower Kds (around 1 nM), and radiolabeling (32P) is useful for the
tighter binding complexes, with Kds reaching pM [61]. (I) Microscale thermophoresis (MST) is based
on the differential movement of differently sized/charged particles along a temperature gradient.
The normalized signal of a sequence of time traces from tubes containing different concentrations
of unlabeled TR in the presence of DNA typically with a fluorescent probe are plotted against the
concentration of TR to obtain the Kd. Even if each tube needs a high concentration of protein (µM),
the low volume needed means that a relatively small total amount of protein is needed [86]. (J) In
surface plasmon resonance (SPR), one of the components (usually the DNA) is immobilized on a
chip’s surface, while the other component is injected in varying concentrations on the chip’s surface,
registering the real-time response. The real-time response allows for the determination of the amount
and rate of formation of the complex, giving access to both the binding and kinetic information koff.
SPR usually requires only nanomolar or even picomolar amounts of material, very little compared
to other analytical techniques [87]. The protein concentrations were estimated for the experiments
where the ligand is labeled, and the protein is in excess with respect to the ligand.



Int. J. Mol. Sci. 2022, 23, 2179 10 of 25

4. Structural Characterization of the Different Allosteric States

Given the importance of TRs in gene regulation and considering the abundance of
these “sensor proteins”, structural and functional databases are key for the understanding
and prediction of uncharacterized ones. X-ray crystallography as well as high-throughput
sequencing methods have allowed for the building of extensive databases of the more
than 20 structural classes of so-called one-component transcriptional regulatory systems
in prokaryotes. Altogether, the structural and sequence information available has the
potential to elucidate key details of the allosteric mechanisms, determine the binding
motifs, and more recently, to predict the structure of uncharacterized regulators [7,88].
However, as with any allosteric system, TRs bring an additional challenge, as at least
two of the four allosteric states must be described to begin understanding the molecular
basis of their function. In this section, we discuss how different structural families of TRs
have been interrogated and what is known in terms of the sequence–structure–function in
these systems.

The prokaryote TR databases discussed in Section 2 of this review condense most of
the structural and functional data available to date. Beyond manually curated databases
that contain mostly functional data from a handful of organisms (Corynebacterium genus [20],
Bacillus subtilis [21], Escherichia coli K-12 [17,19], and Mycobacterium tuberculosis H37Rv [20]),
for E. coli, computational structural prediction methods can be used to infer the putative
DNA-binding sites given a TR’s sequence, as implemented in the TF2DNA database [24].
Structural databases that work based on the domain architecture and sequence similarity
(such as P2TF [89]) are useful to establish the evolutionary relationships, conservation of
residues, and visualization of the genomic context. Alternatively, information about the
TR’s structural family can be predicted using homology models based on profile hidden
Markov models, as it has been implemented in the DBD transcription factor database [90].
These and other homology models also provide structural predictions for apoprotein states
for most TRs. However, these strategies have been clearly surpassed by the introduction
of highly accurate deep learning algorithm models, such as AlphaFold [7,91,92]. Beyond
the possibility of using databases to identify the protein family and obtain good struc-
tural predictions of a single allosteric state [88], these recent developments face different
challenges when predicting structural changes upon ligand binding. Thus, to predict the
holo form of a TR with its cognate ligand, it may be more insightful to use traditional
homology modeling (template-based) using templates that contain the ligand coordinates
since more accurate deep learning algorithm models of the apo form would be missing
the ligand information entirely. This complication, currently present in the most recent
models released by AlphaFold [7,91,92], will likely be solved once user selection of the
appropriate ligand-bound template is allowed [93,94] or docking tools are incorporated
into deep learning algorithm models [95]. Additionally, sequence similarity networks are a
useful tool to provide multiple sequence alignments that would inform better structural
predictions, as they have been shown to define isofunctional clusters in TR families [96].

For many TRs, determining its structure in at least two of the four allosteric states
has proven to be a challenge (Figure 3A–J, bar charts from most families are missing at
least one state). Particularly when considering that the crystallization of DNA-bound
complexes requires the optimization of additional parameters, such as engineering DNA
fragments to promote crystallization [97,98], and optimizing the buffer conditions and
protein–DNA ratios, as DNA excess may impact the homogeneity [99,100]. Therefore, it
is not unexpected that by 2007, there were only three protein–DNA operator complexes
deposited from a single protein family [101–103] (Figure 3E,F). Since then, considerable
progress has been made on structural studies of the bacterial transcription factors, as there
has been an improvement in the number of crystal structures of TRs forming a ternary
protein–DNA–ligand complex.

An analysis of the structures deposited on the PDB for ten different protein families
suggests that the number of structures and the preference for a particular technique for its
resolution is not uniform across these families [104] (Figure 3A–J). As expected, X-ray crys-
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tallography is by far the most frequently used technique for the structural characterization
of proteins, notably surpassing NMR and Cryo-EM in the total number of structures solved
by these techniques. It is important to note, however, that the number of structures solved
using Cryo-EM has increased exponentially in recent years, and it has made a dramatic
change in our understanding of transcriptional activation, as discussed below. While it is
true that larger families have more reported structures (for example, there are 44 structures
of the 3000-member ArsR family, while there are 198 structures of the 200,000-member TetR
family [105]; Figure 3A,B), the number of structures and type of ligation states reported
cannot simply be inferred from the number of available sequences. For all the protein
families that are transcriptional repressors that release DNA upon inducer recognition,
there are no structures reported of the proteins along with its inducer and DNA-binding
operator sequence (Figure 3A–C,I,J). This is strictly the case for ArsR proteins (Figure 3A)
and there is only one exception per family in TetR, and two in MarR, as these are subfam-
ilies that are known to have corepressors [106–108], and therefore, the structures of the
ternary protein complexes have been solved (Figure 3B,C). Similarly, there are no reported
structures of apoprotein–DNA complexes when the ligand is a corepressor acting as an
allosteric activator (Figure 3D–F). In the case of CopY family members, the inducer can act
as an allosteric activator or as an inhibitor of DNA binding, and the structures are mostly
for the apoprotein state of different family members, except for a few structures of the
DNA-bound state where only the DNA-binding domain is resolved (Figure 3J). Probably,
the only family that has a comparable number of structures solved in each of the four
ligation states is MerR, as its complex with DNA is stable in the presence and absence of the
inducer (Figure 3G). Finally, newer families, such as CsoR (Figure 3H) and Rrf2 (Figure 3I),
have only a few solved structures. The limited information about DNA recognition in
CsoR and the changes upon inducer binding in Rrf2 has limited our understanding of these
families; thus, the mechanism of allosteric regulation remains speculative.

From these ten protein families, the ArsR family is unique in that full-length structures
have been reported by using NMR, which accounts for their high solubility, a particular
requisite of this technique (Figure 3A). One remarkable aspect of the ArsR is that the dimer
architecture changes upon DNA binding; however, inducer recognition creates only minor
structural perturbations [105,109,110] (Figure 3K). These two features have elicited interest
in the NMR community, and these proteins have been more extensively looked at in terms
of the internal protein dynamics, which are discussed in Section 5.

On the other hand, Cryo-EM has allowed for the determination of large protein–DNA
complexes, and at the same time, provides an excellent resolution of these complexes, as it
has been recently reported for CueR and BmrR, transcriptional activators from the MerR
family [111,112] (Figure 3L,M). One aspect of this family relies on the lack of coupling
free energy, meaning that the inducer binding does not affect the affinity for the DNA
(Figures 2C and 3L). Instead, inducer binding changes the protein and DNA conformation,
eliciting a transcriptional response based on polymerase recruitment [111,112] (Figure 3L).
Thus, the unraveling of the structural details of this mechanism of transcriptional activa-
tion (Figure 3M) has markedly benefited from the recent advances in structural biology.
Changes in DNA topology, such as the ones MerR is known to introduce, are likely more
widespread among TRs, and we expect that the resolution revolution from Cryo-EM along
with improvement in prediction algorithms will continue to shed light on the structural
and functional relationships in these allosteric systems.
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bar charts show the total number of protein structures deposited for each protein family in the
Protein Data Bank to date, grouped by allosteric state (namely: apoprotein, in complex with DNA,
bound to inducers, and ternary protein–DNA–inducer complex). The bars are colored according
to the technique used for structural determination (X-ray in red, Cryo-EM in blue, NMR in green).
Right, ribbon representations of representative models of each TR family are shown with individual
protomers colored white and blue in each case, with the DNA-binding motif shaded red on both
protomers. Metal ions are colored black. (A) Rhodobacter capsulatus C9S apo and reduced SqrR
(6o8l) [109], a member of the ArsR family of proteins, which possess a DNA-binding, winged helix–
turn–helix domain. (B) Lactococcus lactis apo HrtR (3vox) [113], a member of the TetR family of
homodimeric repressors, in which each subunit harbors an N-terminal three-helix DNA-binding
domain, followed by a much larger C-terminal regulatory domain that incorporates a number of
independently evolved ligand-binding cavities. (C) Staphylococcus aureus apo MgrA (2bv6) [114]
belongs to the MarR family of TR, which shares the same winged-helical DNA-binding fold of ArsRs
but harbors an additional C-terminal helix in the dimer interface, which leads to a more triangular
shape. (D) Magnetospirillum gryphiswaldense MSR-1 Fur bound to Mn (II) (4raz) [115] is a member
of the Fur family of proteins, and therefore, harbors an N-terminal winged-helix DNA-binding
domain, with the regulatory and structural metal-binding sites found in the carboxy domain of the
protein. (E) Streptococcus mutans SloR bound to Zn (II) (5cvi) as a representative member of the DtxR
family, with homodimers consisting of an N-terminal winged-helical DNA-binding domain and
C-terminal domain harboring often two structurally distinct, yet conserved metal-binding sites per
protomer. (F) Escherichia coli NikR in the Ni (II) form (2hza) [103], a member of the ribbon–helix–helix
superfamily of proteins, NikR. (G) Escherichia coli Cu(I) sensor CueR, bound to inducer (1q05) [116],
a model for MerR proteins, which possess an N-terminal winged-helical domain composed of a
canonical winged-helix-β hairpin structure, followed by a long dimerization helix that forms an
antiparallel coiled coil in the homodimer. (H) Streptococcus pneumoniae C9A N55A CstR in the reduced
state (7mq3) [96] belongs to the CsoR family of TR, characterized by a disc-shaped D2-symmetric or
pseudosymmetric tetrameric architecture. (I) Escherichia coli apo IscR (4hf0) [117], a member of the Rrf2
family of TR, which possesses a DNA-binding, winged helix–turn–helix domain. (J) Staphylococcus
aureus apo MecI (1okr) [118] as a representative member of the CopY family, characterized by a
winged helix-like DNA-binding domain. (K) ArsR family members, as transcriptional repressors,
account for an allosteric inhibition type of thermodynamic cycle (Figure 2A). Rhodobacter capsulatus
C9S SqrR is resolved both in its apo (reduced) (6o8l) [109] and tetrasulfide (oxidized) (6o8n) [109]
forms, but has not been resolved bound to DNA, unlike DNA-bound Sinorhizobium fredii NolR
(4omy) [119], the individual protomers of which are colored pink and purple, and its DNA-binding
motif is shaded dark red, as it is a different structure from SqrR. (L) MerR family members, which
present null allosteric coupling (Figure 2C), have been resolved in all 4 states of the thermodynamic
cycle—Pseudomonas putida apo CadR (6jgv) [120] (pink and purple), DNA-bound Escherichia coli
CueR (4wls) [52], Escherichia coli CueR, bound to Ag (I) (1q06) [116], and Pseudomonas putida CueR
transcription activation complex (7c17) [112]. (M) As a ternary protein–DNA–ligand complex, the
Cryo-EM structure for the transcription activation complex is shown in detail, comprising Escherichia
coli CueR, RNAP holoenzyme, and promoter DNA. The color key for the RNAP subunits is presented
in the figure.

5. Ensemble Models of Allostery

Allosteric concepts have departed from structure-based allosteric models by taking
advantage of the improvement in experimental technologies to study what is effectively
an ensemble of rapidly interconverting configurational states in solution [13]. The prob-
lem of allostery in bacterial transcriptional regulators has not been an exception to this
process [121]. Recent discoveries emphasize how rigid body movements [122], folded yet
dynamic structures [110,123], and disordered regions act to facilitate allosteric connection
in TRs [60,115,124]. In this section, we place particular emphasis on the conformational
changes that occur in both sub-nanosecond as well as microsecond to millisecond time
scales (Figure 4A,B).
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The initial motivation for studying the dynamic changes within transcriptional regula-
tors was derived from the extensive conformational changes observed in different ligation
states [103,125], such as the ones observed in NikR upon DNA binding, where the two
external domains that contain the DNA-binding beta strands bend to fit onto the DNA [103]
(Figure 3F). The main goal was to determine if these changes are the result of a preestab-
lished equilibrium or a ligand-induced fit [126]. Most of the early studies were conducted
computationally, as capturing conformational transition events of long time scales remains
an experimentally challenging task. The main conclusion was that in most cases, ligand
binding had a remarkable effect on the conformational spread of the unligated state of the
TR, and that the impact on the internal dynamics had a dramatic effect on the DNA-binding
affinity and/or complex conformation (Figure 4D, assuming conformational coordinates
of larger amplitude). These large-amplitude and long time scale motions are certainly
characteristic of multidomain transcriptional regulators [126,127]. In many cases, they are
coupled or obscured by changes in the oligomerization state of the protein that is derived
from intermolecular interactions between the sensory domains or even the DNA-binding
domains [128–130]. Overall, when extensive conformational changes occur upon inducer
binding, it is still a challenge to obtain direct experimental information about dynamic
changes. Generally, multipronged strategies are successful in providing information about
the conformational spread of ensembles in a solution [60]. For example, in the case of NikR,
a combination of molecular dynamics, small-angle X-ray scattering (SAXS) experiments,
and analysis of the available crystal structures validated the initial hypothesis derived
from molecular dynamics [122]. A more recent example was derived from the CopY–BlaI
family of proteins (Figure 3J), which includes a Cu(I)-sensing metalloregulatory repres-
sor in S. pneumoniae that has a unique mechanism of allosteric activation by Zn(II) and
allosteric inhibition by the Cu(I) of DNA binding [60]. The SAXS data were combined
with EXAFS and NMR data and cysteine reactivity experiments to show that Cu(I) binding
has a particular ligand geometry that induces protein aggregation, while Zn(II) binding
favors a conformation more compatible with DNA binding. The conformational ensembles
of the apo-state, the Zn(II)- and Cu(I)-bound states, were further interrogated with ion
mobility–mass spectrometry (IMS-MS), which informs on the changes in the population of
conformations with different cross-sections. Ion mobility–mass spectrometry has emerged
as a very powerful experimental strategy to interrogate the conformational spread of a
particular ligation state in solution, as new ionization strategies are continuously being
developed to allow native-like conformations to be stable in the gas phase [131]. Other tech-
niques that are generally used for studying large-amplitude motion changes upon ligand
binding are based on performing dynamics experiments on fluorescent or spin labels. Spin
labels were successfully introduced in a MerR family protein (Figure 3G), CueR, and double
electron–electron resonance experiments confirmed changes in the distance distribution
of the probed-upon inducer binding [132]. The more traditional Förster resonance energy
transfer (FRET) [133] with fluorescent probes has been used to track DNA binding [134]
as well as the conformational ensemble of RNA-based transcriptional regulation (namely
riboswitches [135]); however, these have not been popular choices when it comes to the
conformational ensemble of bacterial TRs [136,137]. In conclusion, the state-of-the-art for
studying large conformational changes in TRs involves multipronged strategies that can
validate hypotheses derived from MD with techniques that inform about the conforma-
tional spread in solution and not necessarily site-specific details or precise characteristic
times of the equilibrium motions.

For many transcriptional factors, the changes inferred from the crystal structure are
of shorter amplitude, such as helix reorientation [124,138], or even so minimal that it
is hard to infer allosteric mechanisms from the crystal structures of solely two states of
the protein [139], thus suggesting that the allosteric mechanism can be better reflected by
measuring the equilibrium dynamics in solution. Possibly, the first folded TRs, where it was
shown that internal dynamic equilibrium fluctuations in proteins can contribute to allosteric
signal transduction, were the tetracycline repressor (TetR) [140] and the transcriptional
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activator catabolite activator protein (CAP) [141]. The allosteric mechanism of TetR has been
studied by characterizing changes in the unfolding process upon single-point mutations as
well as ligation to the inducer (namely, tetracycline). The study suggested that tetracycline
binding results in a rigidification of the DNA-binding domains into a conformation that is
incompatible with DNA binding [140]. This was one of the first experiments that suggested
that internal dynamics could play a role in DNA recognition, which contrasted with the
well-known mechanisms where ligand-induced folding was critical for correpression [140].
In the case of CAP, the initial structural information [138] was later complemented by
NMR experiments that provided the basis of more extensive use of these techniques in
determining the dynamically driven allostery (Figure 4). This ultimately led to a mechanism
where the allosteric ligand cAMP quenches both slow- and fast-time scale dynamics and
activates DNA binding through a mechanism where conformational selection plays a
major role [142] (Figure 4D), superimposed onto changes in conformational entropy [123]
(Figure 4C).

The power of NMR as the primary experimental tool for interrogating the role of
dynamics in allostery, particularly in the sub-nanosecond and sub-millisecond time scales,
became clear with these and other earlier studies (Figure 4) [13,123,142]. However, NMR as
a structural technique is inherently limited by concentration, protein size, and the existence
of highly disordered regions. In this context, the development of new NMR methodologies
continues to drive the field of functional dynamics forward, with contributions to new
isotope labeling strategies [143] and pulse sequences [144]. The field has taken advantage
of a combination of deuteration and TROSY-based [145] triple resonance experiments [146],
which has allowed for the measurement of good-quality NMR spectra from other TRs in
different ligation states by avoiding fast relaxation. Thus, these technical advances have
enabled the departure from initial ideas from TetR proteins and CAP to the study of other
families of TRs, which has ultimately led to different hypotheses on the role of internal
dynamics in the molecular evolution of allosteric connections [147]. In MarR family proteins
(Figure 3C), molecular dynamics [148] and NMR experiments [142] have identified how, on
the same molecular scaffold, internal dynamics can be tuned to allow for allosteric inhibition
as well as allosteric activation. In this family of proteins, the orientation of the DNA-binding
helices is determined by the internal flexibility of the dimer, which is affected by the inducer.
In the case of allosteric activation, the inducer leads to a selection of a conformation
compatible with DNA binding by restricting the flexibility of an interdomain loop that
impairs DNA binding [142], while allosteric inhibition is induced by locking an unfavorable
conformation for DNA binding [148] (Figure 4D). These NMR- and MD-based approaches
to study low-amplitude changes in internal motions have also been applied to a model
system in the ArsR family of proteins (Figure 3A), namely CzrA, a Zn-responsive TR [110].
In this case, it was shown that the inducer (Zn(II)) binding quenched the millisecond
time scale dynamics, abrogating conformational exchange and locking the protein in
a conformation where it was structurally incompatible with DNA binding. Moreover,
upon DNA binding, some sidechains showed more flexibility, with a net increase in the
conformational entropy of the protein (Figure 4C). The Zn(II) binding not only abrogates the
chemical exchange (Figure 4B) but also eliminates this favorable entropic contribution and
increases the surface water degrees of freedom [149], locking the protein in a conformation
that is not compatible with DNA binding (Figure 4D). These findings reveal that distinct
sites in a protein can communicate with one another exclusively through differences in
the relative populations of rotameric states of the sidechains, without the need to invoke
a defined molecular pathway or significant structural rearrangements. This hypothesis
makes the prediction that a new sensing site could then arise simply by exploiting these
delocalized dynamical connections. There is still a lot of technical development enhancing
our ability to obtain the appropriate resolution for large complexes between TRs and DNA;
one recent example consists of using a labeled protein expressed with equal amounts of
2-13C and 3-13C pyruvate as carbon sources, facilitating the assignment of sidechains that
are critical for studying small-amplitude dynamic changes, such as the ones discussed
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here [150]. Other strategies of selective labeling involve not only protein production, as
having DNA labeled in only some selected nucleotides avoids the complete methylation of
the DNA and enables the study of the dynamics of large protein complexes [151].
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Figure 4. Time scale of the dynamic processes in proteins and the experimental methods that can
determine small-amplitude conformational changes in different time scales are represented by the
bar on the top. (A) ps–ns equilibrium dynamics (shaded red on the time scale bar and illustrated
by the protein cartoon on the left) can be studied with relaxation experiments that involve NMR
probes that experience forbidden transitions (double quantum, DQ, depicted by purple cross peaks at
different delays) performed in parallel to the allowed (single quantum, SQ, depicted by orange cross
peaks at different delays). The amplitude of these motions (illustrated by a sidechain drawing on
the right panel) is reflected by order parameters obtained from the fit intensity ratio (black trace on
the right panel). This ultimately allows for the estimation of conformational entropy changes upon
binding, as the sidechain order parameter is a proxy for the number of conformations a protein visits
in the sub-nanosecond time scale [152] (left). (B) Free energy diagram differences are introduced by
a ligand-binding event, such as the one depicted in panel (A) (left), which reduces conformational
entropy by decreasing the amplitude for a particular coordinate. (C) Micro- and millisecond time
scale equilibrium dynamics (shaded green on the time scale bar and illustrated by the protein drawing
on the left) can be studied with CPMG relaxation dispersion NMR experiments. If the molecule
interconverts between two conformational states denoted by open (green) and closed (orange), the
intensity of the cross peaks for the NMR reporters will increase their intensity when increasing
the frequency of the CPMG pulse (middle panel, cross peaks in green). In these experiments, the
dependence of R2eff (proportional to -ln(intensity)) with the frequency of pulses directly reports on the
degree of chemical exchange of a particular probe, as the protein visits different conformations [153].
(D) Free energy diagrams for an allosteric mechanism that relies on conformational selection and
can be studied by CPMG based experiments; here, it is exemplified by a simplified version of the
CzrA landscape [110]. Apo state shown in black, DNA-bound state shown in orange, and Zn-bound
state shown in blue. The apoprotein can visit open and closed conformations in the µs–ms scale,
while DNA binding selects the closed conformation, and the allosteric inhibitor selects the DNA
incompatible conformation. All the spectra are exemplified with methyl sidechains as reporters, as
these are particularly well suited for TR DNA complexes based on their increased sensitivity [153].
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6. Simultaneous Functional and Structural Characterization on Cellular Environments

It has been generally assumed that bacterial TRs perform their function by freely
diffusing in the bacterial cytoplasm and that in vitro solution experiments are a minimal
but robust model of their function. Although that view is still supported by our ability
to model cell behaviors on the parameters obtained from in vitro experiments [53], in-cell
techniques, such as single-molecule fluorescence, have enabled us to explore how the cells’
crowded environment affects TR function. Thus, today, it is possible to visualize these TRs
as individual molecules, performing their function in the native cellular context [154].

An example of the unprecedented mechanistic insights from a single-molecule fluo-
rescence experiment in a cellular context (in this case, smFRET) is the recent work on the
Fur-family metalloregulator Zur [155] (Figure 3D). Under zinc-replete conditions, Zur–Zn
binds to DNA, repressing the transcription of zinc uptake transporters. Single-molecule
tracking (SMT) experiments have allowed for the measurement of Zur mobility in E. coli
cells, which differentiates freely diffusing TRs from the ones bound to DNA. These experi-
ments revealed that in live E. coli cells, Zur’s dissociation rate from DNA is sensitive to the
protein concentration in a biphasic manner, initially impeded and then facilitated with in-
creasing Zur concentration. This observation challenges the conventional models of protein
dissociation being unimolecular processes (i.e., independent of the concentration) and may
explain how bacteria can turn off the transcription of the metal resistance genes by using the
intracellular free repressor after metal stress has been relieved. Although this phenomenon
could be attributed to high protein concentrations due to the overexpression of the regulator
that is otherwise in very low copy numbers, it remains an interesting observation that has
been reported in regulators from different families of proteins (Figure 3D,G) [134,156,157].

Recent single-molecule experiments have highlighted the role of compartmentaliza-
tion in bacteria by membraneless organelles in defining and organizing biochemical func-
tions [158–160]; however, our understanding of how these processes affect transcriptional
regulation in bacteria is still limited. Post-translational modifications (PTMs) on proteins
are known to be one of the described driving forces of biomolecular condensation [161],
and many transcriptional regulators are induced by PTMs, so it is likely that condensation
can amplify the regulatory signal. Moreover, recent super-resolution imaging experiments
on a eukaryotic transcriptional activator [162] suggest that even in the absence of a defined
chemical inducer, external stimuli can trigger condensation, PTMs, and activation.

One interesting aspect of the compartmentalization phenomena is related to the obser-
vation that these elements are dynamically regulated (by their assembly and disassembly)
depending on the environment as they lack a membrane [163]. This dynamic regulation
can potentially affect the regulatory response of TRs. Besides the well-known condensates
formed by DNA-enhancers and transcription factors [164], there is evidence in eukaryotic
cells that supports transcriptional condensates derived from emergent RNAs [165]. This
provides dynamic feedback through its RNA product, as these condensates are dissolved
after an excess of RNA is produced. Although there is no evidence of these kinds of
processes in bacteria, the ubiquity of phase separation, especially in distantly related or-
ganisms, suggests that this may be an evolutionarily conserved mechanism [166]. Thus,
it is interesting to consider the impact of the observed membraneless organelles in tran-
scription, as they could be affecting transcription reaction rates by spatially regulating
diffusion-controlled binding processes with DNA [167,168]. This is an exciting direction
of future research, as the limit of microscopy techniques to identify these condensates has
significantly improved in recent years, enabling us to find them even in bacteria where the
size is usually close to the diffraction limit [159,169,170]. This is particularly relevant for
bacterial transcriptional regulation, as many of these proteins contain intrinsically disor-
dered regions IDRs [105,115,124,171,172] (Figure 3A,C,D,H–J), which is a common feature
of proteins included in condensates [173–175].

Confirming the possible relevant role of these processes beyond eukaryotic cells, it is
the case that E. coli RNA polymerase can form these biomolecular condensates or clusters
by itself, enabling the regulation of nutrient-dependent transcription [176]. Fluorescence
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imaging and single-molecule tracking experiments show that RNAP is distributed through-
out the nucleoid in cells grown in minimal media, while it concentrates into distinct clusters
when cells are grown in rich media. These weak protein–protein interactions between
RNA polymerase proteins have also been described in other bacteria, giving rise to cluster
formation and not necessarily condensates [177].

Observing condensates in bacteria will continue to benefit from the advances in
super-resolution microscopy and other techniques [178], as they are significantly smaller
compared to eukaryotic condensates [169]. Recently developed photoactivated localiza-
tion microscopy (PALM) and stochastic optical reconstruction microscopy (STORM), as
well as cryogenic super-resolution imaging, are valuable tools to evaluate condensates in
bacteria [159,179]. We expect that this will be an area of exciting research in the following
years, aiming to contribute to a more holistic understanding of transcriptional regulation in
bacteria by combining their insights with multipronged strategies, as presented here.

7. Conclusions and Future Perspectives

Bacterial survival requires swift responses to various adverse stress conditions. As
discussed in other work published in this issue [180–182], transcriptional regulation is key
for this adaptation. In this review, we focused on bacterial, allosteric TRs, highlighting
the state-of-the-art techniques used for functional, biophysical, structural, and dynamic
characterization. We expect that it will be helpful to not only researchers that focus on the
characterization of a particular transcriptional response but also to an emerging commu-
nity of researchers interested in putting what is known about a particular TR protein or
family into perspective. There is a diverse community interested in these systems, from
microbiologists interested in finding new targets for possible antimicrobial therapies [183]
to synthetic biologists aiming to identify new regulators to incorporate into devices [184].

Future areas of exciting research in the field will likely emerge from bioinformatic
analysis, taking advantage of the wealth of structural, functional, and “-omics” data on
TRs, and paving our understanding of the evolution of bacterial transcriptional responses.
We believe that the evolution of regulation and antibiotic resistance defines a thrilling field
of research, as protein dynamics and allostery have likely facilitated the rapid rise of new
functionalities in bacterially encoded regulatory proteins. As bacterial resistance becomes a
major threat, understanding key aspects of how bacteria respond to stress conditions by
regulating biological outcomes will play a critical role in preventing deadly pandemics in
the post-antibiotic era.
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