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Abstract

Liver cancer poses a global health challenge with limited therapeutic options. Notably, the limited success of current therapies
in patients with primary liver cancers (PLCs) may be attributed to the high heterogeneity of both hepatocellular carcinoma
(HCCs) and intrahepatic cholangiocarcinoma (iCCAs). This heterogeneity evolves over time as tumor-initiating stem cells,
or cancer stem cells (CSCs), undergo (epi)genetic alterations or encounter microenvironmental changes within the tumor
microenvironment. These modifications enable CSCs to exhibit plasticity, differentiating into various resistant tumor cell
types. Addressing this challenge requires urgent efforts to develop personalized treatments guided by biomarkers, with a
specific focus on targeting CSCs. The lack of effective precision treatments for PLCs is partly due to the scarcity of ex vivo
preclinical models that accurately capture the complexity of CSC-related tumors and can predict therapeutic responses.
Fortunately, recent advancements in the establishment of patient-derived liver cancer cell lines and organoids have opened
new avenues for precision medicine research. Notably, patient-derived organoid (PDO) cultures have demonstrated self-
assembly and self-renewal capabilities, retaining essential characteristics of their respective in vivo tissues, including both
inter- and intratumoral heterogeneities. The emergence of PDOs derived from PLCs serves as patient avatars, enabling
preclinical investigations for patient stratification, screening of anticancer drugs, efficacy testing, and thereby advancing the
field of precision medicine. This review offers a comprehensive summary of the advancements in constructing PLC-derived
PDO models. Emphasis is placed on the role of CSCs, which not only contribute significantly to the establishment of PDO
cultures but also faithfully capture tumor heterogeneity and the ensuing development of therapy resistance. The exploration
of PDOs’ benefits in personalized medicine research is undertaken, including a discussion of their limitations, particularly
in terms of culture conditions, reproducibility, and scalability.
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Key Points

Patient-derived organoids serve as patient avatars, offer-
ing precise models of tumor heterogeneity and therapy
resistance for preclinical testing and personalized treat-
ment strategies.

Investigating cancer stem cell heterogeneity and plastic-
ity is essential for overcoming therapy resistance in liver
cancer.

Organoids enable effective drug screening and treatment
optimization, improving therapy outcomes.
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1 Introduction

The global cancer burden is responsible for nearly 10 mil-
lion deaths per year and is expected to increase. Among
the different organs affected, the liver is the sixth most
common site of primary cancer in humans with approxi-
mately 905,000 cases in 2020 [1]. Primary liver cancers
(PLCs) include a heterogeneous group of tumors with
distinct histological features and poor prognosis rates:
hepatocellular carcinoma (HCCs) represents 80-85% of
all PLCs, followed by intrahepatic cholangiocarcinoma
(iCCAs) and a combined hepatocellular-cholangiocarci-
noma subtype (CHCs). While hepatitis B virus (HBV) and
hepatitis C virus (HCV) infections remain pivotal external
risk factors, the significant rise in PLC cases is also attrib-
uted to excessive alcohol consumption and the related con-
ditions of metabolic syndrome, obesity, type 2 diabetes,
and non-alcoholic fatty liver disease [2, 3]. The majority
of these cancers are still diagnosed at advanced stages,
where treatments are not very effective and which remains
associated with a poor prognosis (5-year survival less than
18%) [4—6]. All targeted therapies have to contend with the
emergence of resistance, systematically leading to thera-
peutic failure [5, 7-10].

The notable heterogeneity observed in PLCs accounts
for the resistance of tumors to therapeutic interventions.
Moreover, the varied etiology of PLCs is reflected in the
molecular heterogeneity of cancers, either within an indi-
vidual (intratumoral heterogeneity) or within patients
(intertumoral heterogeneity) further supporting the need
for patient-tailored therapeutics, also called personalized
medicine. The current comprehension of PLC heteroge-
neity primarily revolves around intertumor heterogeneity,
emphasizing molecular subclassification through genomic
profiling. This approach has successfully identified dis-
tinct patient subtypes based on genomic profiles, guiding
targeted therapy selection [7-10]. However, relying solely
on intertumor heterogeneity for subclassification might
not encompass the entire tumor spectrum. Consequently,
there is a need to integrate molecular features consider-
ing both intertumor and intratumor heterogeneity, along
with functional heterogeneity, to enhance patient subclas-
sification and optimize therapy response. Studies have
consistently observed intratumor heterogeneity in PLCs
through various methods, such as histology, analyses of
ploidy patterns, DNA fingerprinting, and whole-genome
sequencing (WGS) [11-13]. This intratumor heterogeneity
is partly explained by the presence of cancer stem cells
(CSCs) sub-populations [14] and their dynamic evolution/
plasticity dependent on internal (genetic and epigenetic)
or external [tumor micro-environment (TME), drug pres-
sure] signals [15]. This complexity introduces the concept
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of “functional” intratumor heterogeneity, which charac-
terizes the capacity of cancer cells to adapt to a well-
defined microenvironment linked to a specific etiology
and develop drug resistance [16].

To date, there are still few predictive models available
to understand PLC heterogeneity, to assess the efficacy of
planned oncology treatment, and to potentially develop
effective new therapies. To achieve this, it is important
to develop replicable and accurate models that mimic the
structure, TME, and pathological function of PLCs. Spe-
cifically, these models must aim to accurately capture and
maintain the diversity within a tumor cell community, which
is intricately linked to patient outcomes, including responses
to treatment. While genetically engineered mouse models
(GEMM) and two-dimensional (2D) cell lines have furthered
our understanding of liver cancer [17-20], they suffer in
recapitulating key features of human liver tissue, in par-
ticular its complex three-dimensional (3D) architecture and
metabolic functions. In addition, iCCAs have proven diffi-
culty in propagating in vitro [21]. On the other hand, Patient-
derived xenografts (PDXs), established for both HCCs and
iCCAs, recapitulate the genetic and histological features of
the original tumor and show great translational potential to
direct treatment in a patient-tailored manner. However, this
strategy has several drawbacks: PLCs tend to display rela-
tively low engraftment rates (generally between 5 and 20%
engraftment efficiency as reported) [21-25], rendering liver
cancer PDX models impractical for functional diagnostics,
especially high-throughput drug screening processes. As
the use of these animal models is both time-consuming and
expensive, alternative methods have been developed, such
as the production of ex-vivo three-dimensional (3D) tumor
models, which represent relevant physiologically models
that are able to closely resemble the in vivo tumor.

In this review, we will give the state of the art concern-
ing the production of PDOs from PLCs, highlighting both
potential and limitations in the context of personalized medi-
cine. We provide an overview of advances in PLC-derived
PDO models, focusing on CSCs as key players both in the
establishment of PDOs but also in recapitulating the tumor
heterogeneity and related therapy resistance.

2 Building Tumor Replicas: Liver Organoids
Model and Engineered Tumor Organoids

Organoids are self-organized cell aggregates derived from
stem cells that are capable of self-renewal, typically organ-
ized in three-dimensional (3D) constructs able to replicate
the complex structure and in many cases the function of the
in vivo tissue, mimicking its in vivo physiology.

In 2009, Sato et al. paved the way for organotypic cul-
ture by demonstrating the ability to induce a single mouse
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LGRS+ intestinal stem cell to form complex villus-crypt
structures on an extracellular matrix (ECM), in the pres-
ence of niche-specific growth factors, including epidermal
growth factor (EGF), R-spondin-1 (Rspol), and noggin [26].
Two signaling pathways are essential for the growth of most
organoid types: the EGFR pathway, which promotes cancer
cell proliferation and requires EGF supplementation in the
culture medium [27], and stimulation of the Wnt pathway,
via the addition of Rspo-1 and Wnt3a, agonists of the LGR
(leucin-rich repeat-containing G-protein-coupled recep-
tor) and Frizzled receptors, and its coreceptor LRP (low-
density lipoprotein receptor-related protein). This pathway
is involved in the control of numerous processes, such as
proliferation, adhesion, and cell differentiation, via the sta-
bilization of a transcriptional cofactor, p-Catenin [28, 29].
This groundbreaking discovery by Sato et al. has since
sparked the development of a vast array of human and
mouse organoid cultures, revolutionizing our understand-
ing of organ development and function. These versatile 3D
ex-vivo models now serve as invaluable tools for investi-
gating a wide range of organs and diseases. On the basis
of this work, organoids can be established from two types
of stem cells, both with the capacity for self-renewal and
self-organization: adult tissue-specific stem cells (ASCs)
[30] or pluripotent stem cells (PSCs) [31] which include
both induced pluripotent stem cells (iPSCs) and embryonic
stem cells (ESCs). Once formed under proper culture con-
ditions, organoids can be expanded and remain genetically
and phenotypically stable in long term culture. They can
also be genetically modified and cryopreserved. The advent
of a large number of human organoid models has provided
a path toward dynamic observation and mechanistic studies
of human development [32, 33]. Organoids have also been
used to build customized models of specific human diseases
and also for clinical applications, such as transplantations.
Of note, iPSCs can be used to create 3D liver organoids that
mimic the complex structure and functions of the human
liver. Takabe et al. demonstrated the successful generation
of transplantable hepatic buds with functional character-
istics through a combination of iPSC-derived endoderm
directed toward hepatic differentiation, mesenchymal stem
cells (MSCs), and human umbilical vein endothelial cells
(HUVECS) [34, 35]. Hepatic organoids can be derived from
both normal and patient-derived iPSCs, enabling the mod-
eling of human liver diseases [36, 37]. iPSC-derived liver
organoids can have a potential advantage of their expansion
ability, making them valuable tools for toxicology stud-
ies, allowing for the rapid screening of a large number of
compounds in industrial settings [38]. Recently, organoids
genetically manipulated using the gene-editing tool Clus-
tered regularly interspaced palindromic repeats (CRIPSR)/
Cas9 [39], provide a better understanding of the pathways
involved in the pathogenesis and pathophysiology of PLCs,

enabling studies of gene function, disease modeling, and the
identification of potential therapeutic targets. Although engi-
neered tumor organoids may serve a purpose in modelling
cancer initiation, studying the origin of specific mutations,
and identifying potential preventive therapies, it is uncertain
whether these organoids fully replicate the original tumor
complexity.

3 PDOs: Capturing Cancer Complexity
with CSC Insights

Using organoid technology, scientists are actively develop-
ing advanced models of cancer tissues known as PDOs or
“tumoroids” (meaning “tumor-like organoid”). These mod-
els are typically derived from primary or metastatic tumors
collected from oncology patients. PDOs establishment is
primarily driven by the presence of Tumor initiating cells
(TICs), also known as CSCs, within human tumor tissues
[40]. CSCs, akin to normal stem cells, possess the dual capa-
bilities of self-renewal and differentiation [41]. Unlike nor-
mal stem cells, which typically remain quiescent until their
regenerative potential is needed, accumulating evidence sug-
gests that CSCs are a pivotal driving force, responsible for
tumor initiation, disease progression, cancer recurrence, and
resistance to treatment.

3.1 CSCs: Unveiling Heterogeneity and Resistance
in PLCs

3.1.1 CSCs: Beyond the Tip of the Iceberg in PLCs

Traditionally, tumor heterogeneity has been attributed to
genetic and epigenetic alterations that accumulate during
the clonal evolution of cancer cells [42, 43]. However, a
newer concept, the “CSCs hypothesis,” proposes that a dis-
tinct subset of tumor cells, possess stem cell-like characteris-
tics, enabling them to self-renew and divide asymmetrically
in order to generate heterogenous cell populations, through
multilineage differentiation potential [41]. These CSC traits
contribute to tumorigenicity, tumor cell heterogeneity, and
the hierarchical organization of cells within tumors [44, 45],
(Fig. 1).

Beyond their stem cell-like characteristics, CSCs exhibit
various adaptive features that enhance their survival under
environmental stress. These include increased drug efflux
capacity to actively pump out chemotherapy drugs, aber-
rant DNA repair mechanisms, activation of various cyto-
protective and survival signaling pathways, dysregulation
of stemness signaling pathways, increased quiescence,
increased immune evasion, deficiency of mitochondrial-
mediated apoptosis, and upregulation of anti-apoptotic
mechanisms [46]. As a result, these cells, exhibiting inherent
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Fig.1 Tumor heterogeneity in PLCs presents a major challenge to
personalized cancer medicine where it drives therapy resistance. Het-
erogeneity occurs both within individual tumors (intratumoral) and
across patients (intertumoral), reflecting the complexity of cancer
biology. Moreover, temporal heterogeneity, arising from treatment
and disease progression, compounds intratumoral heterogeneity, fur-
ther complicating therapeutic outcomes. Traditionally, tumor hetero-
geneity was explained by the clonal evolution model, which attributes
it to the accumulation of genetic and epigenetic alterations in cancer
cells. However, the “CSC hypothesis” introduces a distinct subset
of cells with stem-like properties as key drivers of intratumoral het-
erogeneity. Initially described as a static subpopulation in the hierar-

resistance to conventional anticancer therapies and hostile
microenvironmental conditions, are extremely resilient and
are often the driving force behind tumor heterogeneity and
treatment failure [44, 45].

The traditional notion of CSCs as a static subpopulation
of tumor cells has been challenged by recent research reveal-
ing their remarkable plasticity and ability for dedifferentia-
tion and as well as their capability to switch between distinct
cell states [47]. These transitions include the epithelial-
mesenchymal transition (EMT), promoting dissemination,
and its reverse mesenchymal-epithelial transition (MET),
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chical CSC model, recent evidence supports the plastic CSC model,
emphasizing their dynamic ability to dedifferentiate and switch
between distinct cell states, including hybrid epithelial-mesenchymal
(E/M) states. This plasticity is tightly regulated by intrinsic factors,
such as genetic and epigenetic modifications, and extrinsic factors,
including the TME. The TME, composed of stromal cells, such as
CAFs, MSCs, endothelial cells, and adipocytes, creates a niche that
promotes CSC functionality and therapy resistance. CSCs cancer
stem cells, PLCs primary liver cancers, TME tumor microenviron-
ment, CAFs cancer-associated fibroblasts, MSCs mesenchymal stem
cells

facilitating colonization at distant sites [48, 49]. Further-
more, CSCs can shift between differentiated (non-CSCs) and
dedifferentiated (CSCs) states, adopting hybrid E/M states,
further complicating their behavior [48]. As a result, the
dynamic and adaptable nature of CSCs, as proposed by the
“plastic CSC model,” challenges the traditional static view
of CSCs as a distinct tumor subpopulation. Accumulating
evidence indicates CSC plasticity is finely regulated by both
cell intrinsic (genetic [50] and epigenetic [51]) and extrinsic
factors (environmental injury, tumor niche microenviron-
ment) [44, 52]. Thus, the tumor microenvironment (TME),
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a complex interplay of cellular and noncellular components,
plays a pivotal role in tumor development, progression, and
therapy resistance. Stromal cells, including cancer associ-
ated fibroblasts (CAFs) [53], MSCs [54], endothelial cells
[55], and adipocytes [56], play a critical role in maintain-
ing the TME and promoting CSC functions. This concept
of CSC plasticity adds complexity to our understanding of
cancer and contributes to intratumoral heterogeneity and
therapeutic resistance [45]. However, owing to the lack of
a standardized in vivo validation method, the plastic CSC
model remains under debate. Deciphering the complex biol-
ogy and behavior of CSCs is imperative for advancing thera-
peutic approaches that specifically target these resilient cells,
ultimately improving patient outcomes in cancer treatment
[57].

3.1.2 CSC Subpopulations: Their Roles in Liver Cancer

Many studies have shown that the phenotypic and functional
heterogeneity of tumors, including PLCs, is likely caused by
the presence of subpopulations of CSCs within the tumor
[14]. Successful identification of CSCs and CSC plasticity
comprehension are prerequisite for a better understanding
of the molecular mechanisms by which liver cancer evades
treatment. Various cell markers have been utilized to iden-
tify and isolate CSCs within PLC specimens. These mark-
ers include CD133, CD90, CD44, EpCAM, CD13, CD24,
OV6, DLK1, 0251, ICAM-1, CD47, LGRS, and CK19 [15,
58-61], which are commonly expressed in hepatoblasts
or hepatic progenitor cells but not in mature hepatocytes.
Additionally, multiple CSC markers have been identified
for iCCAs, such as ALDH, CD44, CD44v9, CD90, CD133,
CD147, EpCAM, and SOX2 [62, 63]. Intriguingly, most
CCA cells coexpress CK19 and albumin, a characteristic
of hepatobiliary stem/progenitor cells [62]. Other markers,
such as ALDH, side population (SP), and EMT markers,
have also been employed to differentiate CSCs from PLCs
[64, 65]. So far, no universal markers for liver CSCs have
been identified and characterization of CSC subpopulations
and their hierarchy organization among tumor on the basis
of these markers remains problematic.

Importantly, the presence of high levels of CSC mark-
ers is a significant predictor of poor clinical outcomes in
patients with iCCAs [63] and HCCs [66]. Yamashita et al.
demonstrated that CSCs heterogeneously and largely rep-
resented in human iCCAs (> 30%), indicating that these
cancers as diseases rich in stem/progenitor cells [67].
The high CSC prevalence in iCCAs stands in contrast to
HCCs and other solid tumors [68], where these markers
identify only 0.5 to 3% of tumor cells. However, the rate
of CSCs in HCCs differs between various clinical stages.
Compared with well-differentiated HCCs, poorly differ-
entiated HCCs display higher CSC percentages [66, 69]

and are associated with reduced overall and disease-free
survival after treatment [70].

Within the tumor, distinct CSC subpopulations coexist,
each with its own functional characteristics [14]. However,
the composition of these subpopulations varies depending
on the cancer subtypes and clinical stages from patients
with PLCs [71]. In primary iCCAs cultures and established
cell lines CSCs with mesenchymal characteristics (CD90,
CD13) overwhelmingly dominate over CSCs with epithe-
lial markers (EpCAM, and LGRS). Moreover, these CSC
subpopulations exhibit distinct functional roles depend-
ing on the microenvironment (spheroids versus xenografts)
[71]. Similarly, in primary HCC tissues and cell lines,
there are at least two distinct CSC types that differ in their
gene and protein expression patterns and functions. While
tumorigenic epithelial EpCAM+ CSCs primarily produce
AFP, a well-known HCC marker, metastatic mesenchy-
mal CD90+ CSCs produce a specific basement membrane
component, laminin y2 monomer (LG2m), and exhibit
enhanced metastatic potential [59, 72].

The roles of CSC subpopulations in the various
responses to treatment remain ambiguous. Some sub-
populations exhibit intrinsic resistance by overexpressing
efflux pumps, such as ABC transporters [73], or entering a
quiescent state, allowing them to evade therapies targeting
proliferative cells. Differences in the activation of signal-
ing pathways, such as Notch, Hedgehog, or Wnt/p-catenin
[73], further complicate therapeutic strategies as some
subpopulations remain unaffected by inhibitors targeting
specific pathways. Metabolic diversity also contributes to
resistance, with certain subpopulations relying on glyco-
lysis while others depend on oxidative phosphorylation,
making metabolic targeting challenging [74]. Finally,
CSCs exhibit phenotypic plasticity, favoring dynamic
switching between CSC and non-CSC states, which com-
plicates efforts to eradicate them. In addition to intrinsic
factors, CSC plasticity is significantly influenced by TME
components, including selective stimuli such as hypoxic
conditions [75] and chemotherapy.

Favoring the dynamical switch between CSC and non-
CSC states, CSC plasticity plays an important role in the
evolution of therapeutic resistance, tumor relapse and
metastasis. In addition to intrinsic factors, CSC plasticity is
influenced by TME components, such as selective stimuli,
like chemotherapy. While sorafenib, 5-FU, and epirubicin
treatment lead to EpCAM+ cell enrichment in HCC cell
lines [76], only 5-FU or epirubicin treatment induces de
novo generation of CD90+ and CD105+ mesenchymal
liver CSCs [77]. This study demonstrates that liver CSCs
and non-CSCs can adopt functional characteristics similar to
those of stem cells, induced by intrinsic or acquired cellular
plasticity, which contributes to their resistance to treatments
and patient relapse.
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3.2 Establishing PDOs from PLC Patients

The processes used to generate distinct PDOs differ in vary-
ing degrees from organoid generation but generally share
several key steps. A commonly used PDO method is a recon-
stituted model, in which cells dissociated from mechanically
and enzymatically dissociated tumor tissues are cultured in
a dome or flat gel of 3D scaffolding matrix [e.g., Matrigel or
Basement Membrane Extract Type 2 (BME-2)], underneath
cell culture medium. In this “submerged Matrigel” proce-
dure, various growth factors and/or pathway inhibitors are
supplemented depending on tissue type but often include
additives, such as Wnt3a, R-spondin-1, EGF, and bone mor-
phogenetic (BMP) inhibitor noggin, which mimic factors
present during normal stem cell homeostasis [26] (Table 1).
Thanks to their self-renewal and differentiation properties
[41], these culture systems allow CSCs to self-organize into
functional units or specific tissue architectures that contain
both differentiated cells and stem cells. By this method,
PDOs have been successfully developed and amplified from
primary tumors and metastatic lesions from various organs
including liver, with an establishment rate ranging from less
than 20 to more than 90% depending on the type of tumor
considered [78].

Thus, organoid technology has been optimized for human
PLCs allowing the generation of PDOs from all three com-
mon liver tumor subtypes (HCCs, iCCAs and CHCs). An
important work performed by Broutier et al. demonstrated
that organoid cultures derived from human liver donor/
healthy tissues could be expanded long-term in vitro while
preserving most of their liver functionality and genetic sta-
bility over time [79]. In a second work, the authors have
demonstrated the proof-of-concept that liver organoid cul-
tures replicate human PLCs in vitro and successfully estab-
lished cultures from eight patients, representing three com-
mon subtypes of PLC [80]. Thereafter, PLC-derived PDOs
were subsequently established from resected early stage dis-
ease, advanced cancers, and highly chemorefractory tumors
(Table 2).

The most effective method for obtaining tissue to pro-
mote the growth of tumor organoids is through surgical
resection, as it offers ample starting material for the robust
propagation of these organoids. Importantly, the challenge
of restricted access to surgically resected PLC specimens
can be addressed by utilizing tumor needle biopsies. Studies
have demonstrated that tumor needle biopsies serve as a via-
ble source for the generation of liver organoids [81]. While
most PLC-derived PDO collections come from fresh tumor
tissues, studies demonstrated the feasibility of establishing
PDOs from frozen tissues. PDOs could thus be generated
from flash-frozen and DMSO frozen samples [82, 83], with
only minimal impact on their growing potential. Although
this has not been demonstrated for PLCs, Nantasanti et al.
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have shown that normal organoids can also be generated
from frozen liver tissue [84].

Of note, the majority of organoid-based studies on liver
cancer focus on PLCs. In contrast, there is limited research
on metastatic hepatic carcinoma and other tumors that have
metastasized to the liver. An interesting approach was taken
by Skardal et al., who introduced colon carcinoma cells
into liver organoids, creating 3D liver-tumor organoids for
in vitro modeling of liver metastasis [85]. This innovative
model demonstrated superior efficacy in representing meta-
static tumors compared to traditional 2D cell cultures. While
it may not fully replicate the complexity of liver metastatic
tumors, this model merits further exploration in research.

3.3 Mirror Images: PDOs Reflecting the Architecture
and Expression Profile of the Original Tumor

Several studies have shown that PLC-derived organoids
recapitulate the histological architecture and functional char-
acteristics of the corresponding parent tumor. While healthy
liver-derived organoids form single-layered epithelial ductal-
like cells surrounding a central lumen, PDOs formed com-
pacted structures that resembled the corresponding tumor-
of-origin. Notably, PLC-derived organoids also retain the
specific histological features between patients as well as
between tumor subtypes. HCC-derived PDOs, such as their
parental tissue, exhibit pseudoglandular rosettes, a hallmark
of HCCs while CCA-derived PDOs exhibit extensive glan-
dular domains, similar to the patient’s tumor [80, 81, 86].

Remarkably, PLC-derived PDOs are also characterized by
the fact that they retain the expression of markers (such as
epithelial and stem cell markers) observed on the tissues of
the original patient, maintaining inter-patient and/or tumor
subtype differences with specific expression profiles between
HCCs and iCCAs [80, 81, 86—88]. Thus, well-established
markers include preferentially HepParl, Glypican-3 (GPC3),
hepatocyte nuclear factor 4 (HNF4) for HCCs, and SOX2,
EpCAM for iCCAs. Cytokeratins 7 and 19 (CK7 and CK19)
serve also as valuable histochemical markers for distinguish-
ing between HCCs and iCCAs, since both markers are higher
expressed in iCCAs [89]. Moreover, others stem cell mark-
ers such as LGR5 and SOXO9 are used to characterize PLC-
derived PDOs [88]. On the other hand, the most significant
HCC markers are albumin (ALB) and a-fetoprotein (AFP).
This latter one represents a marker of liver function, such as
synthesis and secretion, typical of differentiated hepatocytes
[90]. PAS and mucicarmine staining showed that mucus
including mucin was present in the lumen of primary iCCA
tissues and matched PDOs demonstrating that PLC-derived
PDOs mimic the primary tissues in both architecture and
function [86]. Likewise, AFP, spalt-like transcription fac-
tor 4 (SALL4), EpCAM are “stemness”-related markers for
CHCs [91].
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Table 1 Composition and functions of culture medium components used in the generation of primary liver cancer-derived organoids as reported

in published articles

Organoid isolation mediums for primary liver cancer-derived organoids

References

[80]

“Classical IM” “Tumouroid IM”

(81]

[88]

Organoid Splitting Media Advanced DMEM/F12/Hepes/Glutamax/B27
supplement 1X/N2 supplement 1X

Y-27632 A Rho kinase inhibitor that effectively reduces
the anoikis of dissociated stem cells

A83-01 Potent inhibitor of TGF-pR ALKS, ALK4, and
ALK?7 that suppresses the proliferation of
organoids

Noggin An inhibitor of bone morphogenetic proteins
that modulates cellular differentiation, prolif-
eration, and apoptosis

EGF Key factor in epithelial malignancies, and its
activity enhances tumor growth, invasion, and
metastasis

FGF-10 FGF10/FGF receptor 2I1Ib axis is important
for the organ development, including the
stomach, liver, breast, and prostate

HGF HGF/Met signaling promoted oncogenesis,
tumor angiogenesis, tumor invasion of mul-
tiple tumor types; HGF profoundly enhances
organoid growth

Gastrin I Gastrin stimulates tumor growth through pro-
moting the proliferation and suppressing the
apoptosis of cancer cells

N-acetylcysteine Antioxidant directly scavenging ROS and
partially via ERK1/2 activation. It is also a
source for cysteine in the generation of the
antioxidant glutathione

Nicotinamide Vitamin PP is a nutrient that is required for
long-term culture of organoids

Forskolin (FSK) A CFTR activator used to induce organoid
swelling due to chloride and fluid flux into
the lumen

‘Whnt 3a conditioned medium A master regulator in regulation of cell devel-
opment, proliferation, differentiation, adhe-
sion, and polarity; The aberrant activation of
Wnht signaling promotes carcinogenesis and
progression of cancers

R-Spondin 1 conditioned medium The ligand of LGRS and a niche factor that is
required for the self-renewal of stem cells
and activates Wnt signaling; R-spondin-1
facilitates the growth and metastasis of cancer
cells

Dexamethasone It acts as a glucocorticoid that helps in modu-
lating cellular stress responses, promoting
cellular differentiation, and reducing inflam-
matory signaling

25 ng/mL

50 ng/mL

100 ng/mL

25 ng/mL

10 nM

1.25 mM

10 mM

10 uM

30%

10%

+
10 uM

5uM

50 ng/mL

100 ng/mL

25 ng/mL

10 nM

1.25 mM

10 mM

10 M

3 nM

5uM

50 ng/mL

100 ng/mL

25 ng/mL

10 nM

1.25 mM

10 mM

10 yM

30%

10%

+
10 uM

0.5 uM

100 ng/mL

50 ng/mL

100 ng/mL

30 ng/mL

10 nM

1.25 mM

12.5 mM

12.5 uM

30%

20%

EGF epidermal growth factor, FGF fibroblast growth factor, HGF hepatocyte growth factor, Wnt3a wingless-type MMTYV integration site fam-

ily, member 3A
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Table 2 Published articles on establishment of patient-derived organoids for primary liver cancer

Tissue collection  PLC subtype Number of Number of  Success rate Treatment References
patients— PDO cell
biopsies lines
Surgical specimen HCCs 11 - N/A 3 ~27% 29 anticancer compounds [80]
iCCAs 6 — N/A 3 50%
CHCs 2 - N/A 2 100%
Needle biopsies HCCs 26 — 36 10 26% Sorafenib [81]
iCCAs 4-6 2 ~33%
Surgical specimen HCCs 2 -N/A 10 N/A 129 anticancer compounds [88]
iCCAs 3-N/A 17 N/A
Surgical specimen HCCs 26 — N/A 17 ~47% Cabazitaxel, oxaliplatin and sorafenib [92]
CCAs 2 - N/A 1 50%
Surgical specimen HCCs 20 — N/A 40 N/A Omacetacxine [164]
Surgical specimen iCCAs N/A N/A N/A 55 anticancer compounds [165]
Surgical specimen HCCs 14 - 14 4 ~28% Tumor infiltrating lymphocytes and peripheral [132]
blood lymphocytes
PDX lines and iCCAs N/A >3 N/A Differentiation medium and macrophage condi- [135]
surgical speci- tioned medium
men
Surgical specimen iCCAs 6 — N/A 3 50% 339 anticancer compounds [86]
Surgical specimen HCCs 153 52 29% Sorafenib, phenformin [126]
Surgical specimen CCAs 29 — N/A 20 ~69% Gemcitabine, sorafenib, cisplatin, and doxorubicin [166]
Surgical specimen HCCs 8 —N/A 4 50% Sorafenib, GANT61 [87]
Surgical specimen HCCs N/A N/A N/A Knockdown of PRMT6, 5-FU, cisplatin, and [110]
sorafenib
Surgical specimen iCCAs 57 — N/A 44 ~75% Gemcitabine, cisplatin, 5-FU, oxaliplatin and [93]
others
Surgical specimen HCCs N/A N/A N/A Veterporfin (YAP inhibitor) [167]
Surgical specimen HCCs N/A N/A N/A SHP099, sorafenib [168]
Surgical specimen HCCs N/A 27 60% CD8 cells [169]
PDX lines HCCs N/A 14 N/A 268 anticancer compounds [161]
PDX lines CCAs N/A 19 N/A Pemigatinib, niraparib [25]
Surgical specimen HCCs N/A 4 N/A Ifenprodil, sorafenib [127]
Needle biopsy HCCs N/A 3 NA CAR-T cells, CD8+ T cells [170]
Surgical specimen HCCs N/A N/A N/A EpCAM-apt-Dox [124]
Surgical specimen HCCs 13— N/A N/A N/A Knockdown of OPAI and MFN1 [111]
Surgical specimen iCCAs 1 -N/A N/A N/A
Surgical specimen CCAs N/A 4 N/A CAFs cocultures, sorafenib, regorafenib, and 5-FU  [145]
Surgical specimen HCCs N/A N/A N/A CAFS conditioned medium, sorafenib [146]
PDX lines HCCs N/A N/A N/A HCC-endothelial co-cultures [171]
Needle biopsy HCCs N/A N/A N/A CD8+ TILs [172]

CAFs cancer-associated fibroblasts, CAR-T chimeric antigen receptor -T cells, CCAs cholangiocarcinoma, CHCs combined HCC-CCA, EpCAM-
apt-Dox epithelial cell adhesion molecule aptamer with doxorubicin, HCCs hepatocellular carcinoma, MFNI mitochondrial fusion protein mito-
fusin-1, OPA1 optic atrophy 1, PDX patient-derived xenografts, PRMT6 protein arginine methyltransferase 6, TILs tumor-infiltrating lympho-

cytes, 5-FU 5-fluoruracil, N/A not available

3.4 Preserving the Blueprint: PDOs Retaining
Genetic Landscape, Even After Long-Term
in Vitro Expansion

Comprehensive sequencing analyses have uncovered the
substantial genetic diversity of PLCs, with high somatic
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alteration rate (mutations, fusions, or amplifications).
Some of these alterations are potential therapeutic targets.
To effectively translate these genomic findings into novel
therapeutic approaches, in-depth functional characteriza-
tions are required, employing experimental models that
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faithfully recapitulate the cancerous characteristics of pri-
mary PLCs, in particular the mutational landscape.

Several groups have succeeded in establishing PLC-
derived PDOs that phenotypically and genetically mimic the
tumor from which they are derived. Furthermore, they have
demonstrated that PDOs can be grown stably for over a year
without significative changes in the histological architecture,
expression profile but also in the genomic landscape. Indeed,
when comparing the global variant profile, several studies
have demonstrated a good concordance rate of whole exonic
variants (~ 90%) between the primary tumor tissues, xeno-
graft tumor tissue, and PDOs derived [80, 81, 86]. Impor-
tantly, mutations and amplifications affecting bona fide can-
cer genes found in the original cancer tissues were preserved
in matched PDOs [92, 93]. Consistent with prior studies [78,
94], each PLCs-derived PDO retained a remarkable intratu-
moral mutational heterogeneity and tumor subtype-specific
mutations present in the primary tissue, even after long-term
expansion [80, 81, 86, 92].

This ability of PDOs to be grown in culture over the long
term without significant modifications distinguishes them
from existing 2D cell lines, which often lose their patient-
specific characteristics and genetic landscape, as evidenced
by the frequent accumulation of 7P53 mutations in these cell
lines [95]. While the exact reasons for these discrepancies
remain unclear, it is plausible that ECM interactions play a
significant role in maintaining heterogeneous and unselected
populations within the PDO culture, thus preventing anoikis
[96].

3.5 CSCs’Pivotal Role: PDOs Recapitulate PLC
Tumorigenesis

Importantly, upon transplantation into mice, PLC-derived
PDOs show metastatic potential, even after long-term expan-
sion in culture [80, 81]. These results show that CSCs, with
self-renew and lineage differentiation capacities are still
maintained in PDOs cultured during short or prolonged cul-
ture period (> 4 months). This result is supported by a recent
work revealing that during serial passages, the percentage
of CSCs (such as cluster of differentiation-133+ and Wnt+
cells) and their tumor-initiating capacity were constant in
colorectal-derived PDOs, while they gradually increased in
sphere culture (spheroid) models. Thus, while the sphere
formation assay enriches for CSCs and chemoresistant cells,
PDOs culture may be useful in long-term maintaining tumor
heterogeneity and the levels of chemoresistant cells [97].
The fundamental question by which CSCs function in
PLC progression is unclear. The ability of CSCs to initiate
and reconstitute tumor lesions together with features such
as differentiation state and chemo/radiotherapy resistance
has been extensively studied from 2D tumor tissue or cell
line culture models but still remains very little studied in

3D tumor culture models, such as PDOs. Mimicking several
features of the original tumor, PDOs represent essential tools
to better understand CSC functions. These aspects will be
discussed later.

4 Liver Organoids: Unlocking Secrets
of Liver Cancer

While engineered organoids may serve a purpose in model-
ling cancer initiation, these models have limitations, particu-
larly in replicating the intricate tumor complexity observed
in patients. Thus, collections of PLC-derived PDOs from a
variety of histological cancer subtypes and patient clinical
stages are indispensable for studying PLC progression mech-
anisms, including CSC research, discovering biomarkers and
transcriptomic profils, and improving therapy response pre-
diction in patients (Fig. 2).

4.1 Deciphering the Journey: Studying Liver Cancer
Initiation and Progression

While existing cancer cell lines and PDOs from PLCs mirror
the mutations and gene expression patterns of real tumors,
they cannot tell us how these cancers start. Organoids
derived from normal liver tissues can be used to model liver
tumor initiation by investigating the effects of sequentially
introduced driver mutations in an isogenic genetic back-
ground. In particular, researchers have successfully applied
CRISPR/Cas9 gene editing technology to liver organoids
to model the initial alterations in human PLCs. Artegiani
et al. discovered that human cholangiocyte organoids with
four common cholangiocarcinoma mutations (7P53, PTEN,
SMAD4, and NF1I) became malignant after loss-of-function
of the tumor suppressor BAPI by CRISPR/Cas9 [98]. A
similar strategy has also been employed with murine CCA-
derived organoids to produce tractable CCA PDOs that reca-
pitulate the multiple steps involved in liver tumorigenesis
[99]. Sun et al. created also organoids with liver architecture
and function by directly reprogramming human hepatocytes
(hiHeps) and inactivation of p53 and RB. Thus, genetically
engineered HiHep organoids models demonstrated that
HCCs could be formed via c-MYC overexpression, while
iCCAs could be induced by oncogenic RAS-driven lineage
conversion [100]. Thus, combining miniature “organ repli-
cas” (organoids) with precise gene editing (CRISPR/Cas9)
offers a powerful tool to study how genes contribute to can-
cer in a human-like setting.

In the case of chronic HBV infection, the primary cause
of liver cirrhosis and HCCs worldwide, our understanding
of the mechanisms behind HBV-induced HCC mainly comes
from epidemiological studies [101, 102], genomic analy-
ses [103, 104], and in vitro research [105, 106]. However,
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Fig.2 PDOs, driven by CSCs, are considered the most predictive
models in basic and translational cancer research. On the basis of the
capacity of stem cells for self-renewal and self-organization, liver
organoids can be derived from normal liver tissue, ASCs, or PSCs.
Employing CRISPR/Cas9 gene editing technology enables the engi-
neering of tumor organoids, providing a valuable tool for modeling
cancer initiation, exploring the origins of specific mutations, and
identifying potential therapies. Furthermore, utilizing organoid tech-
nology, PDOs have been established from tumor biopsies or CTCs
(not yet with PLC-derived CTCs). These PDOs maintain crucial
genetic and phenotypic characteristics of their respective in vivo tis-
sues, even after prolonged in vitro expansion. The ability to freeze

the complexities of HBV-mediated tumorigenesis remain
largely unclear owing to a lack of suitable model systems.
De Crignis et al. propose human liver organoids as valuable
models for studying HBV infection and tumor development
[107]. For that, study developmental processes with orga-
noids can also give critical information concerning tumor
development. Transcriptomic and metabolomic analysis of
organoid development indicated that the phosphatidylethan-
olamine biosynthesis pathway plays a vital role in both early
liver development and HCC progression [108]. Other studies
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and recover PDOs facilitates the creation of living PDO biobanks.
PLC-derived PDOs act as patient avatars, facilitating preclinical
investigations for biomarker identification, anticancer drug screen-
ing, efficacy testing, and advancements in precision medicine. Addi-
tionally, PDOs contribute to fundamental research, particularly in
understanding the behavior of CSCs, CSC plasticity, and their inter-
actions with the tumor microenvironment (stromal cells, immune
cells, endothelial cells, extracellular vesicles, etc.) ASCs adult tissue-
specific stem cells, CSCs cancer stem cells, CTCs circulating tumoral
cells, PDOs patient-derived organoids, PLCs primary liver cancers,
PSCs pluripotent stem cells

utilizing liver organoids establish a mechanistic connection
between tumorigenicity and changes in glucose metabo-
lism [109, 110] and alterations in mitochondrial structure
and function [100]. Notably, Sun et al. demonstrated that
excessive coupling of mitochondrial-associated endoplas-
mic reticulum (ER) may serve as the key mechanism driv-
ing c-MYC dependent hepatocarcinogenesis, as evidenced
in a forced c-MYC transfection model in liver organoids
(hiHeps), ultimately leading to the formation of HCCs [100].
These conclusions are supported by a study of Li et al., who
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demonstrated that excessive activation of mitochondrial
fusion in CCA- and HCC- derived PDOs altered cellular
metabolism and fueled tumor cell growth [111].

4.2 Finding the Needle in the Haystack: Identifying
Biomarkers

The poor prognosis of PLCs results from delayed detection.
Late diagnosis hinders timely treatment and contributes to
lower survival rates. Consequently, there is a critical need to
innovate and develop novel diagnostic methods for PLCs. By
integrating banked liver PDOs into genetic and epigenetic
screens, the use of molecular profiling approaches, includ-
ing transcriptomics, proteomics and metabolomics, enables
a better understanding of the genetic and epigenetic land-
scape of different cancer subtypes and patient clinical stages,
improving the robustness and generalizability of results. In
this way, PDO cultures could become a valuable resource
for the discovery of biomarkers with an essential function in
aiding diagnosis and guiding precision medicine. Indeed, the
identification of reliable biomarkers capable of establishing
more effective patient stratification and accurately predicting
drug responsiveness is the key to effective cancer treatment.
Using omics approaches, several studies have revealed the
promising application of PLC-derived PDOs as a biomarker
discovery tool. Broutier et al. identified novel genes associ-
ated to poor prognosis for PLCs [80], demonstrating that
culturing PLCs as PDOs models retains critical tumor cell
characteristics, enabling the identification of novel genes
that hold promise as prognostic biomarkers for PLCs. How-
ever, further research is required to validate their useful-
ness as predictive biomarkers and/or to establish their direct
involvement in the progression of the disease.

4.3 Testing Grounds: PLC-Derived PDOs
as Promising Drug Screening Platforms

Although being an indispensable tool for carrying out pre-
clinical studies, the use of PDX in vivo systems for large-
scale screening during early drug discovery is hampered by
ethical, economic and throughput constraints that limit the
number of drug tested. Moreover, due to their low engraft-
ment rates, PLCs make liver cancer PDX models unsuitable
for functional diagnostics [21-25]. Thus, recent findings
indicate that PDOs hold promise for high-throughput drug
screening and target discovery in a three-dimensional con-
text. A number of studies using PDOs derived from different
cancer types have demonstrated good reliability between the
results of PDO-based in vitro drug screening and clinical
response. In a clinical study, the responses of metastatic
colorectal cancer-derived PDOs to irinotecan correlated
with patients’ responses to the drug, suggesting that PDOs
could help avoid giving irinotecan to patients who would not

benefit [112]. In a systematic approach, de Witte et al. dem-
onstrated that ovarian cancer-derived PDO drug response to
carboplatin and paclitaxel combination treatment correlated
with several clinical response measure [113]. By comparing
clinical responses observed in patients with ex vivo-response
data gathered in patients-derived PDO and PDX models,
Xiaoxue et al. reports that PDOs also faithfully recapitu-
lated treatment responses of biliary tract cancers (BTCs).
The drug screening results in PDOs are further validated in
PDO-based xenografts and confirmed in 92.3% (12/13) of
BTC patients with actual clinical response. In primary liver
cancers, Broutier et al. pioneered a proof-of-concept drug
sensitivity test using PDOs and PDO-derived xenografts,
demonstrating a correlation between some drug sensitivi-
ties and mutational profiles. Thus work showed that PLC-
derived PDOs facilitate both the prediction of drug sensitiv-
ity/resistance in a patient-specific manner but also enabled
target identification, revealing the efficacy of ERK inhibi-
tors in cells resistant to BRAF and MEK inhibitors [80].
Nuciforo et al. tested different sorafenib concentrations on
tissue-derived PDOs from PLC patients with various clini-
cal stages and etiologies. The study revealed a remarkable
dependence of PDO growth on sorafenib dosage, highlight-
ing significant inter-patient variability in treatment response.
This result indicates that PDOs derived from PLCs biop-
sies could be used to test the specificity and sensitivity of
drugs to the tumor [81]. Remarkably, the pharmacotyping
of PDO culture remained consistent across numerous pas-
sages, with occasional minor variations [80, 114]. This
could be explained in part by the fact that CSCs are consist-
ently maintained in PDOs even after long-term expansion
in culture [80, 81]. This strongly differentiates them from
spheroid models in which CSC enrichment and an evolution
of chemoresistance have been observed during serial pas-
sages [97]. These elements show a perspective for research
on drug resistance and personalized medicine. In 2019, Li
et al. demonstrated the promise of PDOs for drug screening
in the treatment of iCCAs. They established several PDOs
from distinct regions of each primary surgical specimen and
tested 129 FDA-approved cancer drugs on them. While the
majority of drugs proved either ineffective or effective only
in specific PDOs, a subset of drugs exhibited pan-efficacy,
displaying at least moderate activity in most of the PDOs.
Among them, four drugs identified in the study (idarubicin,
panobinostat, topotecan, and bortezomib), and are under-
going clinical trials for both HCCs and iCCAs. Moreover,
this study revealed substantial intrapatient heterogeneity of
responses to different drugs [88].

Precision therapy faces limitations owing to the complex
and dynamic nature of cancer. Mechanisms of resistance to
conventional and targeted therapies are dynamic and sequen-
tial and evolve over time. They involve reversible pheno-
typic changes, such as transient senescence [115], metabolic
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reprogramming [116], epigenetic changes [117], EMT [118],
and/or irreversible mutational changes [119]. Studying
these processes directly in patients require a multiplication
of samples during therapeutic management, which is often
unthinkable. Enter PDO models, which offer a valuable tool
to address these challenges. PDOs make it possible to follow
the sequence of resistance acquisition in a controlled setting
and identify the mechanisms involved in a reproducible and
more relevant way than 3D culture in spheroids [97].

High-throughput drug screening using PLC-PDOs holds
immense potential, but a comprehensive analysis integrating
drug response profiles and genomic data is still missing. In
this context, transcriptomic signatures, based on the analy-
sis of expression levels of transcripts for selected groups of
genes, offer a powerful tool. Not only can they illuminate
tumor behavior [120-122], but they also possess the exciting
potential to predict drug efficacy, even for therapies without
specific known targets [123]. Thus, PDOs hold significant
potential for establishing the pharmacogenomic landscape
in PLCs, a goal that hinges on a systematic analysis of
gene—drug associations within PDO biobanks.

4.4 Shining a Light on Cancer Stem Cells:
Applications of PLC-Derived PDOs in CSC
Research

Current PDOs are not only useful in uncovering novel
treatments but can also be used to carry out fundamental
research, particularly the behavior of CSCs, CSC plastic-
ity, and their relationship with the TME. Thanks to their
capacity for self-renewal and differentiation, CSCs possess
unique properties that enable them to contribute to tumor
formation, intratumoral heterogeneity and the hierarchical
organization of cancer cells [14]. The analysis of stem cells
in human cancers is challenging because it is difficult to
identify and track tumor cells in their natural environment.
Traditional cancer models, such as cell lines, do not rep-
licate this complexity, which limits research. Thus, PDOs
that could be maintained in culture for extended periods
are good models to better understand stem cell hierarchies,
allowing researchers to track the behavior of CSCs over
time and study their response to different treatments. Sin-
gle-cell transcriptome analysis revealed intratumoral CSC
heterogeneity within HCC-derived PDOs. Notably, within
CSC markers, such as CD133, EpCAM, and CD44, it was
discerned that the CD444 CSC subpopulation contributes
to drug resistance by intensifying the Jak-STAT signaling
pathway. This activation is instigated by the upregulation of
nuclear paraspeckle assembly transcript 1 (NVEATI) under
hypoxic conditions [75].

To adapt to their environment, CSCs display both remark-
able plasticity, moving from a “stem” to a differentiated
state, and remarkable resilience, employing a variety of
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adaptive features, as we saw earlier. These CSC features
contribute to their role as a major driver of treatment fail-
ure [44—46]. Knowledge of cancer pathophysiology can be
enhanced by specific studies on certain important aspects of
the TME, which functions as a CSC niche, protecting and
maintaining CSC characteristics. PDOs could be a suitable
model to identify the mechanisms that mediate stemness-
related drug resistance induced by the TME and evaluate
strategies aiming to target CSCs. Several approaches have
been explored to kill CSCs to deplete the pool of CSCs,
disrupt the hierarchical organization of tumors [50]. This
strategy will allow reducing tumor cell heterogeneity, and
making tumors more susceptible to conventional anti-cancer
treatments (Fig. 3). In this context, the identification and
targeting of surface markers specific to CSCs hold signifi-
cant potential for selectively eliminating CSC populations,
thereby interrupting tumor growth and preventing disease
relapse. EpCAM expression in HCC-derived PDOs corre-
lated with the expression of multiple CSC markers (CD133,
CD24, ALDH1A2, CD90) and proteins related to stemness
(Notch pathway), angiogenesis (PDGF, VEGFB) and
EMT [124]. On the basis of these results, Zhou et al. used
aptamer-based drug delivery agents (CD133-apt-Dox and
EpCAM-apt-Dox) to selectively and effectively kill liver
cancer stem-like cells. Both combinations of drugs and anti-
bodies significantly inhibited the growth of HCC-derived
PDOs but exerted minimal cytotoxicity to normal liver
organoids, demonstrating that aptamer-based drug delivery
agents could be a highly promising approach for liver cancer
therapy [124, 125].

Among the targeted therapies against CSCs, targeting
epigenetic modifications, including histone methylation,
histone acetylation, and DNA methylation, presents prom-
ising strategies to subvert tumor metastasis and improve the
efficacy of cancer treatments in CSCs. The emergence of
CSCs has been linked to abnormal epigenetic alterations in
normal cells, leading to sustained primed epigenetic modi-
fications that perpetuate aberrant differentiation and tumo-
rigenesis, even after the oncogene’s cessation [15]. In this
context, Chang et al. showed that silencing of the protein
methyltransferase 6 (PRMT6) promoted cancer stemness
and therapy resistance of patient-derived organoids through
enhanced expression of CSC markers (CD133, SOX2,
NANOG), enhanced cell-like properties (migration, inva-
sion, and oncosphere formation), and increased resistance
to cisplatin, 5-FU, and sorafenib. They propose a critical
repressive role for PRMT6 in HCC cell maintenance via
regulation of RAS binding and MEK/ERK signaling through
methylation of CRAF on arginine 100. These results provide
a mechanistic link among tumorigenicity, therapy resistance,
and glucose metabolism [109].

If targeting CSCs directly is a promising strategy for
developing more effective cancer therapies, evidence
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Fig.3 Schematic diagram summarizing the therapeutic strategies tar-
geting CSCs. Unlike bulk tumor cells, CSCs are inherently resistant
to most conventional chemotherapeutic agents, allowing the surviving
CSC subpopulation to regenerate tumors in patients, leading to tumor
relapse. Several strategies have been developed to eliminate CSCs,
aiming to deplete the CSC pool and disrupt the hierarchical organi-
zation of tumors. These approaches notably include targeting surface
markers specific to CSCs, modifying epigenetic alterations, inhibit-

demonstrated that targeting both CSCs and the TME may
represent the best option in the anticancer approach. In
regards to targeting CSC regulating pathways, a combina-
tion of agents which can affect multiple cellular signaling
pathways is likely to be the most robust targeting strategy.
Since CSCs regulate myriad cellular functions, conven-
tional therapies could also be combined with novel treat-
ment options to overcome resistance mechanisms induced
by the conventional therapies such as sorafenib, the first-
line drug for HCC. PDOs can be used to study how CSCs
become resistant to therapy and how this information can
be used to develop new strategies to counteract resistance.
Xian et al. has been demonstrated that acquired sorafenib

i.e DNMTi, HDTi/ HMTi, HDACi, BETi

ing key signaling pathways, disrupting cancer metabolism, and alter-
ing the tumor microenvironment. Targeting CSCs reduces tumor cell
heterogeneity and enhances the tumor’s susceptibility to conventional
anticancer treatments. In orange, examples of inhibitors or drugs used
to target CSCs. OXPhos oxidative phosphorylation, PRMT6 protein
arginine methyltransferase, ROS reactive oxygen species, CD133-apt-
Dox CD133-specific aptamer conjugated with doxorubicin

resistance in PDOs promotes HCC aggressiveness via
facilitating stemness, dedifferentiation and EMT. How-
ever, specific targeting the mammalian target of rapamycin
(mTOR) signaling pathway has been shown to be effec-
tive in treating acquired sorafenib-resistant HCC-derived
PDOs, possibly via inducing phosphorylated S6 kinase
[126]. Using a combinatorial CRISPR-Cas9 screen to
identify druggable targets that synergize with sorafenib,
Xu et al. found that NMDARI, a glutamate receptor,
could be a potential target for HCC therapy. Combina-
tion of ifenprodil, a clinically approved NMDAR antago-
nist, and sorafenib significantly reduced tumor growth on
HCC-derived PDOs. Authors attributed these magnified
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effects to the upregulation of unfolded protein response,
which triggers the arrest of the cell cycle, and the down-
regulation of genes linked to Wnt-signaling and stemness.
They suggested that ifenprodil could be repurposed as an
adjunct to sorafenib for HCC treatment, as it has a known
safety profile and could improve the clinical outcome and
prevent tumor recurrence [127]. Another study on HCC-
derived PDOs demonstrated that the induced sensitivity
to sorafenib by GANT61, an Hedgehog signaling inhibi-
tor, was correlated with a decrease in stemness features
(SOX2, NANOG, OCT4) [87].

Ongoing studies are also investigating the potential of
regulating reactive oxygen species (ROS) levels in the
TME of CSCs as a viable approach for cancer treatment
since maintaining low ROS levels in CSCs preserves
stemness and associated therapy resistance [128]. In this
context, Wang et al. have reported that the novel ROS-
modulating agent LBL21 has promising anticancer activ-
ity by effectively eliminating stem-like cancer cells [129].
Despite these advancements, the precise mechanism of
regulating ROS levels in CSCs remains unclear. By silenc-
ing kinesin family member 15 (KIF15) in HCC-derived
PDOs, Li et al. revealed that KIF15 markedly decreased
intracellular ROS levels, by inhibiting proteasomal deg-
radation of phosphoglycerate dehydrogenase (PHGDH).
This process, in turn, promoted the CSC phenotype char-
acterized by the expression of CD133, CD44, CD24,
CD90, and EpCAM, along with enhanced malignancy
features, such as tumor initiation, self-renewal, metastatic
potential, and resistance to therapy [130].

Investigating the intricate connection between CSCs
and the TME in PDO model could lead to identify new
CSC molecular markers, to decode the mechanisms that
drive CSC plasticity and develop innovative strategies to
disrupt CSC niches. Addressing these challenges using
suitable preclinical models, such as PLC-derived PDOs,
is decisive to advancing our knowledge of CSCs and their
interactions with the TME, thus paving the way for more
effective CSC-targeted therapeutic approaches.

5 Challenges and Hurdles: Bridging Gaps
in Organoid Technology

While PDOs have emerged as promising tools for PLC
studies, their full potential remains constrained by limita-
tions in culture conditions, reproducibility, and scalabil-
ity. Effectively incorporating organoids into liver cancer
treatment approaches for clinical use requires thorough
preclinical and clinical validation to ensure both their
effectiveness and safety.
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5.1 Seeding the Future: Enhancing Success
in Establishing PLC-Derived PDOs

PLC-derived PDOs could be derived from patients with all
major underlying liver diseases and different clinical stages
of the tumors, demonstrating the potential of the organoid
technique for building up larger biobanks representing the
entire clinical spectrum of liver cancer. However, liver PDO
culture faces challenges in achieving high success rates com-
pared with other tumor organoids such as pancreatic PDOs
(75-83%) and colorectal PDOs (90%) [78]. The success rate,
notified, in few works, varies considerably between hepato-
cyte and cholangiocyte origin. Indeed, HCC PDOs genera-
tion exhibit a particularly low rate of around 26% from nee-
dle biopsies [81, 131] or 29 to 50% from surgical resection
pieces of approximately 1-4 cm? [80, 87, 126], while CCA
organoids have a success rate of 50% [86].

While the success rate of culturing PLC-derived PDOs
was first not significantly associated with a range of clini-
cally relevant patient characteristics [81], more recent work
has shown that larger tumor size, microvascular invasion,
macrovascular invasion, advanced TNM stage, and advanced
Barcelona Clinic Liver Cancer (BCLC) stage were associ-
ated with successful development of HCC-derived PDOs
[126]. There are many reasons for this low success rate of
PLC-PDOs establishment (Fig. 4):

(i) HCC organoids can be generated only from a
restricted subset of HCCs. Thus, it has been demon-
strated that the rate of organoid establishment from
PLC tissue is strongly correlated with the histopatho-
logical grading of the HCCs. Indeed, only moder-
ately to poorly differentiated tumors (Edmondson
grades III and IV) with a KI-67 index > 5% were
able to generate HCC-derived PDOs. It is conceiv-
able that the generation of HCC PDOs requires a
cell proliferation rate threshold that is not reached
in highly differentiated, slow-growing Edmondson
grade I and II tumors [80, 81, 131]. More impor-
tantly, multiple prior studies support the notion that
the presence of CSCs, based on the expression of
CD133, CD90, CD44, and EpCAM, is correlated
with poor differentiation and aggressive phenotype of
patients with HCCs and lower overall survival com-
pared to well-differentiated HCCs [66, 69, 70, 126,
132]. Thus, HCC tissues with stronger stem features
and proliferative capacity are more likely to succeed
in establishing PDOs. This conclusion is supported
by a recent study from Ren et al., which analyzed the
molecular characteristics of 72 BTC tissues (includ-
ing 57 iCCAs) that yielded successful or failed PDOs
cultures. This work showed that tumor tissues with
enhanced stemness- and proliferation-related gene
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Fig.4 PLC-derived PDO culture faces challenges, both in achieving
high success rates and in faithfully representing the CSC related het-
erogeneity of original tissue, thereby biasing the response of tested
anticancer therapeutics. Case 1 represents the ideal situation where
the PDO accurately reflects the CSC composition of the original
tumor. Several factors influence this outcome: A stemness rate in
the biopsy. The establishment of HCC PDOs is closely linked to the
histopathological grade, stemness features, and proliferation capac-
ity of the original tumor. Poorly differentiated tumors with stronger
stem features are more likely to form PDOs (e.g., Edmondson grades
IIT and IV, case 2) compared with highly differentiated Edmondson
grade I and II tumors in HCCs (case 6). B Insufficient amounts of
tissue with CSC features. The availability of fresh tumor tissue con-
taining viable CSCs is essential for successful PDO production. In
addition to resected tumors (cases 1-6), needle-biopsies (cases 7-10)
offer a less invasive alternative but present drawbacks, such as lim-
ited material and CSC subpopulations. Consequently, needle biopsies
may fail to generate PDOs (case 7) or inadequately capture the full
spectrum of tumor heterogeneity (cases 9-10), contributing to vari-

can more easily form PDOs [93]. A similar finding
was observed by Xian et al. demonstrating that the
higher success rate of PDO generation is associated
with the presence of more aggressive PLC tumor
cell subpopulations in these samples, with elevated
expression of genes associated with stemness and
proliferation, such as POSTN, SLCIA7, MMP12,
TREM]1, and CLEC5A [126].

ability in PDO accuracy, transcriptomic fidelity, and drug response
prediction. Using multiple biopsy protocols (case 8) can help ensure
that functional intratumor heterogeneity is well represented in PDO-
driven platforms. C Contamination by epithelial organoids. Healthy
epithelial organoids often outgrow tumor-derived PDOs due to the
slower proliferation of cancer cells (case 4). Modified protocols,
such as extending tissue digestion and using specifically designed
specific isolation media, help to suppress normal organoids. How-
ever, even these improved methods do not guarantee successful PDO
generation from all tumor samples (case 5). D Current uncontrolled
and non-standardized protocols, including the culture medium (i.e.,
medium A, B, C, or D). Variability in culture media and protocols
exerts selective pressures on PDOs, which can bias the representation
of tumor subclones and hinder genetic fidelity to the original tumor
(cases 2, 4, 5). E The absence of tumor micro-environment com-
ponents. Cellular co-cultures of PDOs enriched with a specific cell
(mainly stromal, endothelial and immune cells) overcome partly this
limitation (case 3). CSCs cancer stem cells, HCCs hepatocellular car-
cinoma, PDOs patient-derived organoids, PLCs primary liver cancers

(i1)) Another major obstacle to establishing success-
ful PDO cultures is the limited availability of fresh
tumor tissue containing viable tumor cells presenting
stemness features. While traditionally derived from
resected tumors, PLC-derived PDOs can also be gen-
erated from minimally invasive fine-needle biopsies
[81], expanding access to a broader patient popula-
tion. However, this biopsy approach presents limita-
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tions. The amount of material obtained is often insuf- modified their derivation protocol in several ways.
ficient, and more specifically the number and types They extended the tissue digestion time from under
of CSC subpopulations captured can be limited, both an hour to more than 2 h or even overnight. They
of which affect the success rate of generating PDOs. further adjusted the initial culture conditions by
Additionally, owing to intratumor heterogeneity, removing R-spondin-1, Noggin, and Wnt3a, and
biopsies from different tumor regions often contain incorporating dexamethasone as a supplement. This
distinct cellular populations, leading to a variety “tumoroid-specific isolation medium” selectively
of PDOs. This inherent intratumoral heterogene- generates tumoroids; however, it did not success-
ity contributes to the observed variability in drug fully result in tumoroid generation from all tumor
responses across these models [88]. This variability specimens.
may explain why some studies report transcriptomic (iv) Current uncontrolled and nonstandardized protocols
differences between primary tumors and correspond- for organoid culture, including in particular the cul-
ing PDOs. These differences can impair the ability of ture medium used, largely affect the rate of PDO gen-
organoids to accurately reflect the parental tumor and eration and genetic disparity to the original tumor.
limit their usefulness in guiding clinical treatment Actually, there are no defined culture conditions to
[86]. Thus, the derivation of PDOs from multiple grow PDOs specific to different type of tumors. Stud-
tumor locations of individual patients may allow bet- ies have shown that the composition of the medium
ter estimation of intratumoral heterogeneity and risk used to culture cancer organoids can exert selective
of resistance, thus contributing to improved treat- pressure on them, which can influence the genetic
ment allocation. In all cases, increasing the tumor landscape of PDOs by favoring the growth of certain
tissue available for PDOs production would lead to a tumor subclones over others [136]. This can lead to
greater success rate and better ameliorate the similar- either the failure to establish PDOs [80] or the estab-
ity in term of heterogeneity between PLC-tissues and lishment of PDOs that do not accurately represent the
their paired PDOs. original tumor.

(iii) A crucial factor for failure of PDO establishment is
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via contamination by normal epithelial organoids
[133]. Owing to the gradual telomere shortening
[134], PDOs grow at a slower rate than normal epi-
thelial cells and are often out competed by them [86].
This is a problem which plagues all organoid cultures
despite efforts to refine the tissue extraction process
to minimize contaminating cells. In their study on
PLC-derived PDO production, Broutier et al. [80]
observed that healthy contaminating organoids can
rapidly outcompete tumor-derived organoids when
cultured in a “Classical human liver organoid iso-
lation medium” (Classical IM), whose composi-
tion is relatively similar to that employed by other
research groups [81, 88] (Table 1). To address this,
they proposed manually separating healthy liver-
derived organoids from tumor-derived organoid cul-
tures based on visual inspection. Initially, healthy
liver-derived organoids were distinguished by their
typical morphology, a single layer of ductal-like
epithelial cells surrounding a central lumen, while
tumor-derived organoids generally formed compact
structures. However, this strategy has limitations, as
tumor tissues can also exhibit a monolayered cystic
morphology depending on their differentiation state
(e.g., poorly or moderately differentiated tumors),
as demonstrated in studies by Saito et al. [135] and
Broutier et al. [80]. To prevent the growth of these
healthy contaminating organoids, the researchers

5.2 Recreating the Ecosystem: Optimizing TME
in PDOs

Cancer is now considered a TME disease, although it was
originally thought to be a cell and gene expression dis-
order. The intricate and varied composition of the TME,
encompassing a variety of cellular (epithelial cells, fibro-
blasts, stem cells, endothelial, and immune cells) and non-
cellular (ECM, cytokines, chemokines, and growth factors)
components, holds pivotal roles in tumor development and
progression and therapy resistance. This resistance against
chemotherapy, radiotherapy, and immunotherapy is highly
influenced by the TME, which provides a survival niche for
CSCs to maintain the immature CSC phenotype and influ-
ence CSC plasticity [44, 45, 52]. Therefore, understanding
the mechanisms underlying the interaction between the TME
and CSCs is essential to better study phenotypic heterogene-
ity, cell plasticity and develop strategies to overcome thera-
peutic resistance in cancer [137].

Owing to the limitations of 2D models, 3D organoid cul-
tures are gaining prominence as tools for modeling the TME
and evaluating cancer therapeutics. However, reconstructive
methods for establishing PDOs in submerged Matrigel have
only focused on expanding the epithelial counterpart of the
tumors and generally fail to preserve the non-cancerous cells
present in the TME, which are rapidly lost in the PDO cul-
tures. The dense stroma, observed in PLCs, includes fibro-
blasts, immune cells and ECM, creating a complex ECM,
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each component of which has a distinct role in promoting
cancer development, invasion and metastasis, as well as
chemoresistance [138]. Given that CSCs rely heavily on the
TME to maintain their stemness [139], the absence of fibro-
blasts, vascular structures, or immune cells components in
a single 3D PDOs system represents a major drawback for
recapitulating the heterogeneity of CSCs in the tumor of ori-
gin, thereby biasing the response of tested anticancer thera-
peutics [140, 141]. To overcome this limitation, researchers
have optimized PDO culture technology, developing cellular
cocultures of PDOs enriched with a specific cell (mainly
stromal cells, ECs, immune cells and pathogens), associated
with sophisticated approaches, such as microfluidic devices
and bio-printer cultures.

CAFs provides a survival niche for CSCs [53]. CAFs
have been shown to maintain cancer stemness by directly
interacting with cancer cells or secreting growth factors,
such as IL-6, chemokine (C-C motif) ligand 2 (CCL2), and
hepatocyte growth factor (HGF), to upregulate Notch and
Wnt stemness signaling [142—-145]. Building on this, Liu
et al. successfully established 3D coculture models of PLC-
derived PDOs and CAFs [146]. This model, applicable to
both mice and humans, delves deeper into the intricacies of
interactions between liver cancer cells, particularly CSCs,
and CAFs. The study revealed that CAFs not only boosted
the growth of PDOs but also enhanced their stemness fea-
tures, as evidenced by increased expression of markers, such
as Lrigl, Muc5ac, CD133, TERT, and NANOG, as well as
an increase in tumorigenic potential. Furthermore, the cocul-
ture model demonstrated how PDOs acquired resistance to
various drugs, such as sorafenib, regorafenib, and 5-FU
through both direct cell-cell contact and paracrine signal-
ing mechanisms. In that regard, Loh et al. enhanced hepato-
cyte resistance to sorafenib by culturing HCC-derived PDO
in conditioned medium to mimic the TME. This approach
revealed a critical role for Follistatin-like 1 (FSTL1), a pro-
inflammatory factor, which was predominantly secreted
from the CAFs, to enhance stemness in HCC via deregulated
AKT/mTOR/4EBP1 signaling pathways [147].

The combination of an anti-VEGF (bevacizumab) and
an anti-PDL1 (atezolizumab) has become the standard of
care for the treatment of unresectable HCCs highlighting
the importance of the vascular sector and immune system
in HCC [148]. Researchers are actively developing tech-
niques to enhance vascularization in organoids, including:
endothelial cell cocultures, microfluidic devices, tumor-on-
a-chip, 3D bioprinting with pre-formed vascular networks
[34, 149, 150]. New research indicates that ECs, beyond
their known structural role in forming blood vessels, may
be a source of angiocrine factors that could influence the
behavior of cancer cells and other stromal cells within the
TME, impacting tumor progression and therapy resistance
[55, 151-153]. Similarly, the lack of an immune system in

current PDO models hinders the study of immunotherapy.
In 2022, Zhou et al. demonstrated the feasibility of creating
co-culture PDOs from iCCAs with allogenic PBMCs. By
optimizing culture conditions they successfully maintained
the 3D structure of organoids while enabling immune cell
interaction with tumor cells. The coculture system demon-
strated an effective antitumor organoid immune response
with cytotoxic effects mediated by direct cell-cell contact
and the release of soluble factors. This innovative approach
eliminates the need for patient-specific blood (autologous),
simplifying the process and potentially broadening its appli-
cability [154].

Thus, PLC-derived PDOs represent patient-specific
platforms for preclinical testing of angiogenic-, immune-
and chemotherapies, leading to individualized treatment
decisions.

6 From Bench to Bedside: Bridging the Gap
Between PDO-Based Drug Response
Assessment and Clinical Application

Beyond current challenges related to the representativeness
of the TME in PDO models, the undeniable potential of
PDOs for personalized medicine faces a critical challenge:
time. Delays in cancer treatment worsen prognosis and often
require harsher treatments with more severe side effects. A
4-week delay in treatment can significantly increase mor-
tality across various cancers [155]. Thus, the window of
opportunity is narrow, and PDO models must deliver results
quickly to inform treatment decisions within clinical time-
lines. A major obstacle is the expansion bottleneck. Solid
tumors, particularly those derived from core needle biopsies,
often require 4-12 weeks [81] for sufficient PDO growth
to enable drug testing, exceeding acceptable timeframes.
Automated organoid platforms offer solutions by enabling
rapid production of standardized PDO batches, improving
consistency across labs, reducing human error, and produc-
ing more reliable, reproducible results. For example, Linsen
et al. recently introduced an automated system for sample
storage and retrieval [156], significantly reducing handling
time. Furthermore, advancements in miniaturization, micro-
fluidics, and robotics, such as liquid-handling robots [157],
are under development to allow testing of more molecules
with fewer PDOs. Combi-seq is a scalable microfluidic pro-
cess capable of screening hundreds of drug combinations
within picoliter-sized droplets [158], using transcriptome
changes as measurable outputs for drug effects. Automated
microfluidic platforms also enable sequential delivery of
chemotherapeutics in PDOs, replicating real-world treatment
combinations in a patient-specific manner [159]. Combined
with artificial intelligence, these methods provide rapid,
cost-effective assessments of treatment responses, reducing
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response times [160]. For example, the Quadratic Pheno-
typic Optimization Platform (QPOP) efficiently identi-
fies optimal drug compositions and doses from a pool of
candidates without requiring mechanistic insights [161].
QPOP identified dinaciclib and ixazomib as an effective
combination against HCCs. Validation in HCC-derived
PDX organoids confirmed that this combination induces
stronger pro-apoptotic and antiproliferative effects com-
pared with sorafenib, likely via the JNK signaling pathway
[162]. High-throughput optical imaging of drug response in
patient-derived organoids could enable patient-specific drug
testing and help clinicians select the optimal drug regimen
for each cancer patient. Identifying specific transcriptomic
signatures in PLC-derived PDOs will streamline the drug
selection process, leading to more efficient identification of
effective treatments tailored to individual patients.

Once promising drug combinations have been identified
using patient-derived organoids, it becomes crucial to evalu-
ate their effectiveness and clinical applicability. In vitro stud-
ies should transition into in vivo experiments using animal
models to assess the therapeutic effects observed in orga-
noids under more complex biological conditions. Further-
more, clinical trials play an essential role in validating the
findings from preclinical studies. Incorporating information
gleaned from organoid testing into trial design can enhance
the selection of eligible participants and inform treatment
regimens. This translational approach ensures that the
insights gained from organoid research not only remain on
paper but also find their way into practical and effective can-
cer treatment methodologies. By adopting a patient-centric
strategy, where treatments are based on individual tumor
profiles, the field of liver cancer therapy stands to benefit
immensely, ushering in a new era of personalized medicine.

7 A Look Ahead: Future Perspectives

Preclinical research using human cancer cell lines and
mouse models has led to beneficial discoveries for patient
care, but the high failure rate of clinical trials shows the need
to improve preclinical investigations. Of note, a large analy-
sis of clinical trial data (406,038 entries for 21,143 com-
pounds) revealed a concerningly low success rate for cancer
treatments (3.4%), compared with an overall success rate
of 13.8% for all other diseases combined [163]. Systemic
therapies for cancers are inefficient because of the disease’s
considerable heterogeneity and its tendency to develop
drug resistance, which leads to therapeutic failure. Accu-
mulating evidence has shown that CSC subpopulations have
distinct functional roles in tumor development but remain
difficult to identify with current CSC markers. Moreover,
their maintenance/regulation in the TME remains unclear.
This evidence further support the need for patient-tailored
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therapeutics. Understanding how the TME affects the prop-
erties of liver CSCs could open up new possibilities for inno-
vative therapeutic strategies. Furthermore, the plasticity of
CSCs, allowing them to switch between CSC and non-CSC
states, emphasizes the need for treatments that can adapt to
this dynamic nature, targeting both CSCs and transitioning
tumor cells.

Better preclinical models are essential for assessing ther-
apy efficacy and identifying the patients who would benefit
the most. PLC-derived organoids (PDOs) from PLC tissue
preserve the histological structure, genetic profile, and muta-
tional landscape of their original tumors. Displaying genetic
and phenotypic stability, even after long-term in vitro expan-
sion, PDOs can be frozen and recovered, enabling the crea-
tion of living PDO biobanks. Thus, PDOs, covering the three
common subtypes of liver tumors (HCC, iCCA, and CHC),
have been successfully produced from tumor tissues, rep-
resenting early-stage disease, advanced cancers and highly
chemoresistant cancers. These PDO models, which enable
tumors to be modelled more accurately, are more appropriate
for in vitro tumor biology and research related to treatment.
Since PDOs provide biological links with patient data, PDOs
have become avatars for precision cancer therapy. This can-
cer model is valuable for finding genes with prognostic sig-
nificance and potential new therapeutic targets for PLCs.
The PDO model also enables drug sensitivity testing, allow-
ing the link between treatment efficacy and the individual
tumor’s genetic profile. By identifying specific transcrip-
tomic signatures and adjusting dosage regimens in vitro, the
PDO model makes it possible to optimize therapeutic results
through personalized treatment strategies.

Challenges remain in liver PDO culture, including achiev-
ing high success rates compared with other tumor organoids.
Successful organoid generation is related to the level of
stemness rate in PLC tissues, highlighting the impact of the
number and/or specific types of CSC subpopulations in the
tumor samples required. The low success rate in generating
PDOs may also depend on criteria specific to the nature of
PLCs, which need better understanding.

To address the lack of stromal components in current
PDOs, advanced PDO models have been developed, includ-
ing the TME to provide a niche for CSCs, affecting CSC
plasticity and therapy resistance. Coculturing PDOs with
specific stromal cell types and using bioprinter approaches,
microfluidic cultures and air-liquid interface (ALI), are
promising methods for better reproducing physiological
components of bulk tumors. Advanced PDO models will
be more adept at replicating the traits of the initial tumor
stem cells. This proficiency is fundamental for identifying
and characterizing subpopulations of CSCs, comprehend-
ing stem cell hierarchies, and investigating the mechanisms
governing cell plasticity that drives therapeutic resistance.
Consequently, they will contribute to a better understanding
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of stemness-related drug resistance and develop start-up
strategies to target CSCs and overcome therapeutic resist-
ance in PLCs. The development of high-quality TME PDO
models is therefore essential for converting in vitro drug
screening results or immunotherapy responses into reliable
clinical predictions.

Thus, the ability of PDOs to bridge the gap between
tumor biology and PLC patient data unlocks a new era of
personalized cancer therapy, where treatment is guided by
individual patient avatars.
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