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Weight-HbA1c-Insulin-Glucose Model for Describing
Disease Progression of Type 2 Diabetes

S Choy1*, MC Kjellsson1, MO Karlsson1 and W de Winter2

A previous semi-mechanistic model described changes in fasting serum insulin (FSI), fasting plasma glucose (FPG), and
glycated hemoglobin (HbA1c) in patients with type 2 diabetic mellitus (T2DM) by modeling insulin sensitivity and b-cell
function. It was later suggested that change in body weight could affect insulin sensitivity, which this study evaluated in a
population model to describe the disease progression of T2DM. Nonlinear mixed effects modeling was performed on data
from 181 obese patients with newly diagnosed T2DM managed with diet and exercise for 67 weeks. Baseline b-cell function
and insulin sensitivity were 61% and 25% of normal, respectively. Management with diet and exercise (mean change in body
weight 5 24.1 kg) was associated with an increase of insulin sensitivity (30.1%) at the end of the study. Changes in insulin
sensitivity were associated with a decrease of FPG (range, 7.8–7.3 mmol/L) and HbA1c (6.7–6.4%). Weight change as an
effector on insulin sensitivity was successfully evaluated in a semi-mechanistic population model.
CPT Pharmacometrics Syst. Pharmacol. (2016) 5, 11–19; doi:10.1002/psp4.12051; published online 16 December 2015.

Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC? � The existing semi-mechanistic models for modeling dis-
ease progression of type 2 diabetes have yet to account for weight change, which is a potentially important biomarker for
understanding the disease. • WHAT QUESTION DID THIS STUDY ADDRESS? � Weight change as an effector for insu-
lin sensitivity has been successfully evaluated in a semi-mechanistic model which then alters the FSI-FPG homeostasis,
and subsequently HbA1c. • WHAT THIS STUDY ADDS TO OUR KNOWLEDGE � The study demonstrated that the
added information from weight change is important in developing a disease progression model for T2DM. • HOW THIS
MIGHT CHANGE CLINICAL PHARMACOLOGY AND THERAPEUTICS � Having quantified the effects of weight change
on insulin sensitivity, the model could be applied in various settings, such as predicting HbA1c in a long-term patient
management program or in drug development.

There have been a number of models describing biomarkers
of diabetes, ranging from empirical1 to more mechanistic
models.2–4 The commonly used biomarkers for diagnosis
and subsequent monitoring of disease progression are fast-
ing plasma glucose (FPG), fasting serum insulin (FSI), and
glycated hemoglobin A1c (HbA1c). These three biomarkers
are the most commonly seen in long-term data as well. How-
ever, the mechanisms behind the glucose-insulin homeosta-
sis dysfunction leading to diabetes are complex and there
are many processes involved that are less studied.

The underlying processes in the disease progression of
type 2 diabetes mellitus (T2DM) are the progressive loss of
insulin sensitivity and b-cell function.5 The disease onset of
T2DM is initially driven by decreases in insulin sensitivity.
With decreased insulin sensitivity, b-cells compensate by
overproducing insulin, which leads to hyperinsulinemia, in
order to keep the glucose homeostasis stable. Eventually,
insulin production is diminished from relative b-cell failure
because of exhaustion, and combined with decreasing insu-
lin sensitivity then leads to hyperglycemia in T2DM.6

The standard of care for patients with T2DM is metformin
treatment, diet, and exercise. The low-sugar diet was origi-
nally introduced as a means to reduce the glucose intake and
thereby reduce plasma glucose, but it was later discovered

that any diet resulting in weight loss will reduce plasma
glucose concentrations independent of glucose intake.7 It has
been hypothesized that the weight loss is tightly linked to
improved insulin sensitivity, such that plasma glucose concen-
trations decrease with maintained insulin concentrations.8,9 de
Winter et al.10 published a mechanism-based model for
T2DM that describes the disease progression and treatment
effects of oral antidiabetic drugs on FSI, FPG, and HbA1c. In
this model, insulin sensitivity and b-cell failure at baseline are
estimated and are changing over time. The model is imple-
mented with the homeostatic model assessment (HOMA)
method such that for a given FPG and FSI the estimated
insulin sensitivity and b-cell failure is predicted by HOMA-S%
and HOMA-B%, respectively.11 FSI and FPG in this model
was described with a linked turnover model with an inverse
relationship, whereby FSI inhibits FPG production and
FPG stimulates FSI production, mimicking the physiological
feedback mechanisms for insulin and glucose. FPG is then
used as an input for the production of HbA1c in a single
compartment.

Although this model was a conceptual improvement over
previous descriptive models, insulin sensitivity was esti-
mated empirically without underlying mechanistic support.
In a later effort, it was suggested that modeling insulin
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sensitivity as a mechanism-based function of change in
body weight could be superior than an empirical model.12

In this study, we evaluated this idea on a population that
underwent diet and exercise, as well as including an addi-
tional postprandial glucose (PPG) factor and transit com-
partments to describe HbA1c formation.

METHODS
Study design
The data used in this study came from the placebo arm of

a randomized, double blind, placebo-controlled, multicenter,
parallel-group study (ClinicalTrails.gov identifier: NCT00236600)

to determine the efficacy and safety of topiramate, an anticonvul-
sant drug that induces weight loss as a side effect. The placebo

arm consisted of 181 (67 men, 114 women) Swedish, obese,

newly diagnosed with T2DM, treatment-naive patients. The stud-
ied population was between 18 and 75 years of age with a body

mass index �27 kg/m2 and <50 kg/m2, median baseline weight

(BLWT) of 104 kg (range, 72–159 kg), median baseline FSI of
17.8 mU/mL (range, 3.3–79.5 mU/mL), median baseline FPG of

7.6 mmol/L (range, 5–14.2 mmol/L), and median baseline

HbA1c of 6.7% (range, 5.3–9.1%).
The subjects underwent six weeks of placebo run-in

before a randomized treatment phase (placebo arm in this

case), which lasted for 60 weeks. The treatment phase was

further divided into a titration phase (8 weeks) and a fixed
dose maintenance phase (52 weeks). During the run-in

phase, the subjects were treated with placebo and a non-

pharmacologic therapy, which was continued until the end
of the active treatment phase. The following data were

used in the analysis: weight (kg), which was collected every
two weeks during the run-in and titration phase, and every

four weeks during the maintenance phase (up to 22 obser-

vations per subject), FSI collected at the start of the run-in

and titration phase, and twice during the maintenance

phase (up to four observations per subject), FPG collected
from the start of the run-in until the end of the maintenance

phase (up to 19 observations per subject), and HbA1c col-

lected from the start of the run-in phase until the end of the
maintenance phase (up to 17 observations per subject).

The ancillary nonpharmacologic therapy consisted of an

individualized energy-deficient diet, a behavioral modifica-

tion program, and a physical activity program explained by

trained counselors was provided for all subjects from enrol-
ment through to the final visit.

The prescribed energy-deficient diet for each subject was

600 kcal (2500 kJ) less than the individual subject’s total

energy expenditure, which was calculated as 1.3 times the
individual’s basal metabolic rate.13 A diabetic diet with a

maximum of 30% fat content was designed for each subject,

and total energy expenditure was recalculated for all subjects

six months (32 weeks) into the maintenance period.

Succinct model description
The weight HbA1c insulin glucose (WHIG) model (Figure 1)

builds upon the previously published semi-mechanistic model

by de Winter et al.10 with an additional turnover model for

body weight,12 which has a mechanism-based relationship
with insulin sensitivity. The homeostatic feedback relationship

between FPG and FSI was described using linked turnover

models, by which insulin sensitivity and FSI are inversely
related to the production rate of FPG, because FSI has a

strong inhibiting effect on hepatic glucose production, which

is the primary determinant of FPG in the basal state,14 so

that increased FSI and/or insulin sensitivity results in a lower
FPG. The production of FSI was governed by the FPG con-

centration, modulated by natural b-cell function, treatment

Figure 1 The weight glycated hemoglobin (HbA1c) insulin glucose (WHIG) model. EFW is the combined treatment effect of diet and
exercise (D&E), placebo (P), and an upward counter-effect dependent on time acting on the input of weight (WGT). Effect on insulin
sensitivity (EFS) is a function of change in weight (DWGT), which changes insulin sensitivity (IS). EFB is the treatment effect on b-cell
function, which is a composite function consisting of its increase (EFBI) and decrease (EFBD) over time. EFB together with the natural
progressive loss on b-cell function (B), determines the production rate of fasting serum insulin (FSI). The homeostasis of FSI and fast-
ing plasma glucose (FPG) is described with FSI inhibiting FPG production, whereas FPG stimulates FSI production. FPG and post-
prandial glucose (PPG) drive the production of HbA1c, which is described using three transit compartments.
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effect (EFB), and their change over time. HbA1c was

described using three transit compartments, with production

determined by FPG with contribution from a PPG factor.

Detailed descriptions of each model component are given

below.

Weight change
In essence, all weight change can be described with the

basic energy flux balance equation,15 which is energy intake

(I) subtracted by energy expenditure (E).

dWGT

dt
5I2E (1)

The daily rate of energy expenditure is proportional to body

weight,16 thus, subjects’ diets were personalized based on

their body weights. In the current study design, weight change

from energy flux imbalance was achieved from a combination

of diet (restricted energy intake) and exercise (increased

energy expenditure), together known as diet and exercise

(D&E). Although D&E should ideally be separated into two

effects acting on the input (diet) and output (exercise) of

weight, as described above, multiple D&E effects would be

unidentifiable and therefore they have been combined as a

single effect (EFD&E).

EFD&E1Pi 5EFD&Ei 1EFPi (2)

EFD&E1P is the sum of the parameters describing diet and

exercise and placebo (EFP) for each individual (i). These

parameters, normally distributed with mean of HD&E and HP

and standard deviation (SD) of xD&E and xP, are modeled as

step functions with the effect setting in at week zero and

week six, respectively. EFD&E1P is therefore the total nega-

tive contribution to the overall effect on weight (EFW).
Over time, there is also a constant positive contribution on

weight, attributed to the lack of motivation to continue diet and

exercise and/or placebo effect wearing off, EFUP. EFUP is

assumed to be a normally distributed parameter with mean

HUP and SD xUP; thus EFUP, even though having a positive

median, can take both positive and negative values on an indi-

vidual level, indicating a weight loss or gain, respectively.
The net effect on weight input (EFW) is therefore the

product of EFUP and EFD&E1P, both normalized to one at

time zero. Assuming a steady-state, weight input is equal to

weight output, so EFW below one will result in weight loss.

EFW 5
1001EFUP;i � t=365

100
� 1002EFD&E1P;i

100
(3)

dWGT

dt
5EFW � KinWGT2KoutWT �WGT (4)

Insulin sensitivity
Changes in insulin sensitivity were modeled as inversely pro-

portional to an individual’s absolute change in weight

(DWGT; Eq. 5). Effect on insulin sensitivity (EFS) is then

expressed as a fraction that is scaled linearly (ScaleEFS) to

DWGT (Eq. 6). Individual baseline weight (BLWTi) and

ScaleEFs,i were estimated with a log-normal distribution with a

mean of HBLWT and HScaleEFs,i and a SD of xBLWT and

xScaleEFs,i. The more an individual loses weight, the higher

the insulin sensitivity and, conversely, the more an individual

gains in weight, the lower the insulin sensitivity.

DWGT5BLWTi 2WGT (5)

EFS511ScaleEFs;i � DWGT (6)

b-cell function and disease progression
The rate of natural disease progression of b-cell function

deterioration (RB) was modeled as a logistic decline from

baseline b-cell function (B0) per year, and is normally dis-

tributed with a mean of HB0 and HRB and a SD of xB0 and

xRB, respectively.

B5
1

11eB0;i1RBi �t=365
(7)

An empirical treatment effect (EFB) is multiplied with the

natural b-cell function to mimic the natural response of the

b-cells to stimulate insulin release in order to compensate

for reduced insulin sensitivity in early stages of T2DM. EFB

is a composite function comprising of a logistic increase

(EFBI) using the start of treatment date (tTRT) as the half

increase time with a steepness parameter (SEFBI), and a

logistic decline (EFBD) that eliminates the effect with both

the time at half decline (EFB50) and steepness (SEFBD)

estimated. EFB increases from one and then back to one

over the course of the study duration.

EFBI5
EFB;max;i

11 t
tTRT;i

� �SEFBI

0
B@

1
CA (8)

EFBD5
EFBI;i

11 t
EFB50;i

� �SEFBD

0
B@

1
CA (9)

EFB511EFBD (10)

The maximal relative increase of b-cell function (EFB,

max.i) and the time of half decline (EFB50,i) are log-normally

distributed with a mean of HEFBmax and HEFB50 and a SD

of xEFBmax and xEFB50, respectively.

FSI-FPG homeostatic feedback model
The homeostasis between FSI and FPG is biologically

complex and involves many processes, and could become

even more complicated with an active treatment. In the

WHIG model, the relationship between FSI and FPG are

described with the following differential equations10:

dFSI

dt
5EFB � B � FPG-3:5ð Þ � KinFSI2FSI � KoutFSI (11)

dFPG

dt
5

KinFPG

EFS � IS0 � FSI
2FPG � KoutFPG (12)

The production rate of FSI is stimulated by FPG, but also

negatively affected by natural disease progression leading to
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the loss of b-cell function. FSI production could be further

modified by a treatment effect (EFB; Eq. 10). For consistency

with the HOMA equations, a lower physiological limit of

3.5 mmol/L for FPG-stimulated insulin secretion was used.17,18

Therefore, IS0 is the estimated baseline insulin sensitivity with

a normal distribution with a mean of HIS0 and a SD of xIS0,

which is then expressed as an inverse logit.
To speed up the modeling of these computationally inten-

sive processes, short-term dynamics for both FSI and FPG

are assumed to be at steady-state (SS; i.e., dA/dt 5 0), and

FSI production can be linearized with the quadratic equation

(see Supplementary Appendix S1 online). KinFSI/KoutFSI is

a constant 7.8, corresponding to a healthy FSISS of 7.8 uU/

mL, which according to the updated HOMA2 is defined as the

concentration of insulin that will have �100% insulin sensitiv-

ity.18 KinFPG/KoutFPG is a constant with value 35.1, calculated

as a product from healthy FPGSS of 4.5 mmol/L given a FSISS

of 7.8 uU/mL.

HbA1c model
The total amount of HbA1c is given by the sum of three

transit compartments (Eq. 13). The rate of Hb glycation is

driven by FPG, in addition to a residual rate that is inde-

pendent of FPG, which is best explained as the contribution

from PPG as well as an assay error.19,20 The PPG effect is

log-normally distributed with a mean of HPPG and a SD of

xPPG. At times greater than zero, PPG contribution is

reduced by an estimated scaling parameter (ScalePPG) that

represents a PPG-lowering effect from diet and exercise

(Eq. 14). The population KinHbA1c is estimated, and

KoutHbA1c is expressed as the number of transit compart-

ments (3) divided by the population mean transit time

(MTT; Eq. 17).

HbA1cTotal5HbA1ccmt 11HbA1ccmt 21HbA1ccmt 3 (13)

Where

dHbA1ccmt 1

dt
5 PPGi � ScalePPG1KinHbA1c � FPG2KoutHbA1c

� HbA1ccmt 1

(14)

dHbA1ccmt 2

dt
5KoutHbA1c � HbA1ccmt 12KoutHbA1c � HbA1ccmt 2

(15)

dHbA1ccmt 3

dt
5KoutHbA1c � HbA1ccmt 22KoutHbA1c � HbA1ccmt 3

(16)

KoutHbA1c5
3

hMTT
(17)

Data analysis and model evaluation
Nonlinear mixed effects modeling using NONMEM 7.2 with

first order conditional estimation method with interaction

(FOCE1I) was used for data analysis.21 Model selection

was based on mechanistic plausibility of its parameter val-

ues, and drop in the objective function value. Objective

function value is a goodness-of-fit measurement propor-

tional to minus twice the log likelihood. When comparing

nested models, a significant improvement in goodness-of-fit

can be concluded if the decrease in objective function value

is larger than predicted by the v2 distribution with degrees

of freedom given by the number of parameters differing

between the models.
Graphical assessment was performed using visual pre-

dictive checks (VPC). VPCs can be used to assess model

fit by overlaying simulated datasets created from the model

onto actual observations. In this way, discrepancies

between the model and the data can be easily identified.

Similar profiles between the simulated datasets and the

observations indicate an adequate model. For the VPCs

used in this study, the median and 95% prediction intervals

based on 1,000 simulated datasets from the model were

compared to the corresponding median, 2.5th, and 97.5th

percentiles of the observed data. Model precision was

assessed with relative standard errors obtained from a non-

parametric bootstrap resampling of the final model

(n 5 500).

RESULTS
Weight change
The estimated BLWT of the study population was 104 kg.

At the end of the study, the subjects on average had a 4%

decrease in body weight. Predicted weight was affected by

EFW, which had an overall weight loss effect (Figure 2).

The model fit was assessed with VPCs, which shows both

the absolute values and the relative change from baseline

of weight over time (Figures 3a and 4a). Estimated param-

eter values for the diet and exercise effect, placebo effect,

and the weight gain counter-effect are shown in Table 1.

Figure 2 The estimated overall treatment effect on weight
(EFW). Black dots are post hoc estimations from the WHIG
model corresponding to an observation at that time point, joined
by a gray line representing each individual. The blue line repre-
sents the median value per 20-day bins. Diet and exercise effect
(EFD&E) was modeled as an immediate step effect starting from
time 5 0, and the placebo effect (EFP) comes in later at the com-
mencement of the active treatment phase around weeks six to
seven. There is also a counter-effect (EFUP) that determines the
slope over time.
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Insulin sensitivity
The estimated baseline insulin sensitivity (IS0) was 25% of

normal. At the end of the study, the population insulin sen-

sitivity increased from 25% to 30.1% of normal as a result

of weight change (mean DWGT 5 4.1 kg; Figure 5).

b-cell function and disease progression
The estimated baseline b-cell function (B0) in the study

population was 61% of normal and the natural disease pro-

gression rate was estimated to be 5% reduction of starting

b-cell function per year. The shape of the empirical treat-

ment effect EFB is seen in Figure 6a.
The overall trend in b-cell function, which is the natural

disease progression of b-cell function modified by treatment

effect EFB, shows a small initial increase at the start of the

study and returning to the baseline around day 300. The

flexibility of the function allows for highly variable individual

profiles of the b-cell function, shown in Figure 6b.

FSI change
The estimated baseline FSI was 19.2 mIU/mL and at the end of

the study the mean decrease of FSI was 3.3 mIU/mL. Observa-

tions of FSI were sparse and highly variable with some FSI

measurements being physiologically implausible (Figures 3b

and 4b). If subjects did not adhere strictly to fasting before their

measurements, high FSI was expected in combination with

high FPG, and thus the correlation between FPG and FSI was

investigated for those points with FSI >40 mIU/mL. Because

the correlation was weak (R2 5 0.0051), the high FSI observa-

tions were included in the analysis.

Figure 3 Visual predictive check of the biomarkers measured in the study population using the WHIG model. Blue circles indicate
observations; red solid line indicate the median observations; dashed lines indicate the 97.5th and 2.5th percentiles of the observa-
tions; shaded areas indicate the 95% confidence intervals for the median (red), 97.5th and 2.5th percentiles (blue) from 1,000 simu-
lated datasets. (a) Weight (kg) over time. (b) FSI (mIU/mL) over time. (c) FPG (mmol/L) over time. (d) HbA1c (%) over time.
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FPG change
The estimated baseline FPG was 7.8 mmol/L. At the end of

the study, the mean decrease of FPG was 0.4 mmol/L.

This apparently small difference is related to the opposing

actions of weight loss (which led to increased insulin sensi-

tivity) and b-cell function decline (which led to decreased

insulin production). The maximal decrease in FPG coin-

cides with maximal insulin sensitivity around day 120, after

which it returns back to near baseline levels at the end of

the study (Figures 3c and 4c).

HbA1c change
The estimated baseline HbA1c was 6.7%. At the end of the

study, the estimated mean decrease of HbA1c was 0.3%. If

FPG is assumed as being the only factor driving HbA1c

change, the change of FPG was expected to be quicker

than and precede the change in HbA1c. However, this is not

what was observed in the data (Figures 3d and 4d). To

account for the similar rate of change in HbA1c and FPG

and the less than expected delay in HbA1c change, an addi-

tional effect was added to the input of HbA1c glycation,

which was modeled as the PPG contribution factor, and was

estimated to be 0.0709% per day. At times after zero, PPG

is further reduced by about 4% because of the reduced

PPG contribution as a result of diet and exercise efforts.

MTT across the HbA1c compartments was estimated to be

38.9 days.
The collected measurements of HbA1c values were

rounded to 0.1%, which can be seen in Figures 3d and 4d

as semidiscrete HbA1c values. To ensure the predictions in

simulated datasets were similar to observed, predictions

were also rounded to the closest 0.1%.

Figure 4 Visual predictive checks of change from baseline of the biomarkers measured in the study population using the WHIG model.
Blue circles indicate observations; red solid line indicate the median observations; dashed lines indicate the 97.5th and 2.5th percen-
tiles of the observations; shaded areas indicate the 95% confidence intervals for the median (red), 97.5th and 2.5th percentiles (blue)
from 1,000 simulated datasets. (a) Fractional change of weight over time. (b) Fractional change of FSI over time. (c) Fractional change
of FPG over time. (d) Fractional change of HbA1c over time.
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DISCUSSION

In the present study, we have evaluated the concept of

using weight change as a driver for insulin sensitivity in a

semi-mechanistic model, subsequently using changes in

insulin sensitivity to describe FSI, FPG, and HbA1c in a

diabetic population. In the WHIG model, the mechanism-

based relationship between body weight change and insulin

sensitivity was implemented as a linear function scaled to

absolute weight change, which could be problematic if a

patient had instead gained more than 10 kg in weight, as

this would result in a negative insulin sensitivity. Although

this was not an issue in our current study, a nonlinear func-

tion, such as an Emax function, would ensure a non-

negative insulin sensitivity when extrapolating beyond the

data we used for modeling. Several different implementa-

tions were also investigated, such as other nonlinear rela-

tionships between DWT and insulin sensitivity, as well as

using absolute vs. proportional weight change, or using

weight change to affect b-cell function. However, because

of model stability and runtime concerns, using a linear func-

tion were found to be most appropriate.

Table 1 Final parameter estimates with relative standard errors (RSE; %) and their respective interindividual variability (CV, %) of the WHIG model

Parameter Description Typical value (RSE) CVa,b (RSE)c

Weight

t1=2, WGT, d Half-life of weight compartment 96.9 (27.1) –

BLWT, kg Baseline weight 104 (1.1) 14.6 (5.2)

Insulin sensitivity

IS0 Baseline insulin sensitivity, logistic function 1.1 (4.3) 0.305 (6.4)

Scale EFS Scaling factor of change in weight on insulin sensitivity 0.0514 (11.9) 67 (11.7)

b-cell function

B0 Baseline b-cell function, logistic function 20.446 (25.1) 1.4 (7.6)

EFB, max Maximal relative increase of b-cell function 0.171 (12.4) 49.9 (20.9)

SEFBI Shape parameter for logistic increase of b-cell function 23.69 (25.9) –

SEFBD Shape parameter for logistic decrease of b-cell function 8.05 (28.0) –

EFB50, d Time at half of EFB logistic decline 190 (6.0) 34.9 (11.4)

RB, y Rate of baseline b-cell function decrease per year, logits 0.209 (34.9) 0.21 (18.3)

HbA1c

MTT, d Mean transit time of HbA1c 38.9 (8.7) –

Kin, HbA1c, %/d L/mmol Rate constant, HbA1c compartments production 0.0129 (10.2) –

PPG, %/d Residual HbA1c production rate independent of FPG 0.0709 (9.9) 15.4 (9.0)

Scale PPG Scaling factor on PPG when time >0 0.963 (0.9) –

Treatment effects

EFDE, % Effect of diet and exercise at run-in phase on weight input 4.08 (29.1) 35.6 (28.9)

EFP, % Effect of placebo at active treatment phase on weight input 2.28 (28.9) 40.2 (35.3)

EFUP, %/y Counter-effect on weight input per year 2.99 (52.3) 74.4 (34.7)

Residual errors

Weight Proportional residual error for weight 0.00919 (4.2) –

FSI Proportional residual error for FSI 0.262 (5.4) 31.5 (16.3)

FPG Proportional residual error for FPG 0.0688 (2.8) 25.6 (9.2)

HbA1c Proportional residual error for HbA1c 0.0241 (2.3) 16.1 (23.7)

aCorrelations between interindividual variabilities are found in Supplementary Appendix S2 online.
bCVs for IS0, B0, RB, EFDE, EFP, and EFUP are reported as absolute values.
cRSEs were obtained from a nonparametric bootstrap resampling (n 5 500) of the final model.

Figure 5 The relationship between weight loss and insulin sensi-
tivity. Black dots are post hoc estimations from the WHIG model
corresponding to an observation at that time point, joined by a
gray line representing each individual. The blue line represents a
linear regression of all points. In the WHIG model, weight loss
and insulin sensitivity are linearly proportional. For each kilogram
lost, an individual is expected to regain about 1.5% insulin
sensitivity.
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Our study population had an overall small weight change

(24%), and because weight change affects insulin sensitiv-

ity and subsequently FPG, FSI, and HbA1c in the model, it

is expected that our model will not produce large changes

in the biomarkers relative to their baseline (Figures 3 and 4).

This was a study design issue that could be rectified in a

future study—for example, a more strict diet regimen for the

subjects or conducting a longer duration study could both

potentially produce larger weight changes to test the validity

of the model. It was seen in our model that at the end of

study duration, FPG and HbA1c were trending upward back to

near baseline levels, and so it would be motivating to have data

coming from a study with longer duration, for example, longer

than five years, to compare how FPG and HbA1c progresses

with time to the WHIG model. Another study design issue was

that the diet and exercise effect could not be separately identi-

fied into a diet effect and an exercise effect. Exercise and diet

could potentially have a different rate as well as site of action

on affecting weight, but, in practice, it would be difficult to iso-

late the processes. Therefore, for the purposes of this study,

combining both effects together as an input for weight was

acceptable.
There were also other adaptations for the WHIG model

compared to the de Winter model apart from weight. In the

original model, HbA1c was estimated as a single compart-

ment. Recent advances in red blood cell (RBC) and HbA1c

modeling has suggested that using between 4 and 12 transit

compartments19,20,22 was more suitable to model the lifespan

of HbA1c. To reflect this finding, the WHIG model incorpo-
rated transit compartments for HbA1c. The number of opti-
mal transit compartments for HbA1c was investigated but it
was found that having more than three transit compartments
were not significantly better objective function value-wise but
had a drastically increased runtime. Therefore, as a compro-
mise between model runtimes and stability, the decision was
made to include three transit compartments for the final
model.

Other structural models for HbA1c were also investigated
in the model building process, which included a transitional
glycosylation RBC model,22 a mean plasma glucose RBC
model,20 and an mean plasma glucose-HbA1c model,23 in
addition to other unpublished models, such as fractional and
flexible glycation rates, but none of these candidate models
offered an improvement in model fit (results not shown). It is
also worthwhile to note that the estimated MTT in the current
model is about 40 days, whereas the lifespan of RBCs is con-
ventionally accepted at 90–120 days. This is because the
MTT in the WHIG model reflects the lifespan of glycated
RBCs, rather than the natural lifespan of RBCs, therefore,
our estimate reflects the postglycation lifespan of RBCs, so a
better comparison would be to the mean age of circulating
RBCs, which has been found to be 39–56 days in a diabetic
population.24 In addition, there was an apparent lack of delay
between the times when HbA1c starts to decrease compared
to FPG. Even though our model tried to account for this dis-
crepancy with a PPG effect, there could be other confound-
ers that were not identified, such as the patients not being at
steady state of glycation at the start of the study. This is rea-
sonable because the patients are newly diagnosed, which
would lead to an HbA1c change from changes in FPG pre-
ceding the start of the study, such as drastic lifestyle changes
immediately postdiagnosis. Another possible factor is the
effect of exercise, which is known to contribute to hemolysis
by mechanical stress,25 which would also reduce the average
lifespan, making HbA1c respond quicker to changes in glu-
cose and reduce HbA1c overall. This possibility of hemodes-
truction was also explored in our analysis as an additional
first-order elimination on HbA1c, but was not included in our
final model due to lack of improvement.

Apart from the structural parameters, there were also
changes to the stochastic or random effect parameters. In
the original model, there were three covariances. In the
WHIG model, the size of the variance-covariance matrix had
been increased to 10 (see Supplementary Appendix S2
online). In addition, the correlation between the residual error
of FSI and FPG were also estimated. Implementing a large
variance-covariance matrix had a noticeable effect of reduc-
ing the variability of the upper and lower prediction intervals
(blue areas in Figures 3 and 4).

The model was built using data from an obese population
that was newly diagnosed with T2DM, which is only a part
of the entire T2DM population. Applying the model on dif-
ferent demographics, such as non-obese patients or
patients with a long history of T2DM is the next logical
step. Comparing the differences in the structural parameters
between various demographics would be beneficial to both
validate the model as well as providing insight to how the dis-
ease progression of T2DM differs between subpopulations.

Figure 6 The predicted b-cell function of the study population
using the WHIG model. Black dots are post hoc estimations from
the WHIG model corresponding to an observation at that time
point, joined by a gray line representing each individual. The blue
line represents the typical individual profile from the parameter
estimates. (a) The empirical treatment effect EFB mimics the surge
in b-cell function typically seen in new patients with T2DM. (b) The
net effect of b-cell function over time, which is the product of the
treatment effect EFB and natural b-cell function.

Weight-HbA1c-Insulin-Glucose Model
Choy et al.

18

CPT: Pharmacometrics & Systems Pharmacology



Previously published population models on T2DM have
so far not investigated the importance of using weight
change as an effector for FSI-FPG homeostasis. Given that
obesity is a primary risk factor and generally regarded as
the main driver for T2DM, which is a lifelong disease,
patients often undergo weight change over the course of
their lives from lifestyle adjustments. The main advantage
of the WHIG model is that it is able to use a previously
neglected biomarker to predict how it will affect HbA1c with
a physiological basis, which is by changing insulin sensitivity.

In conclusion, the addition of weight change as an effector
was evaluated and successfully implemented to the semi-
mechanistic disease progression model for T2DM. To the
authors’ knowledge, this was the first thorough study in which
weight change was implemented in a semi-mechanistic
model to quantify its effects on insulin sensitivity to predict
the changes of fasting plasma glucose, fasting serum insulin,
and HbA1c in humans with T2DM. As T2DM is intricately
linked with obesity, further application of this updated model
could prove useful in understanding the disease.
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