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In recent years, the readiness potential (RP), a type of pre-movement neural activity, has

been investigated for asynchronous electroencephalogram (EEG)-based brain-computer

interfaces (BCIs). Since the RP is attenuated for involuntary movements, a BCI driven by

RP alone could facilitate intentional control amid a plethora of unintentional movements.

Previous studies have mainly attempted binary single-trial classification of RP. An

RP-based BCI with three or more states would expand the options for functional control.

Here, we propose a ternary BCI based on single-trial RPs. This BCI classifies amongst

an idle state, a left hand and a right hand self-initiated fine movement. A pipeline

of spatio-temporal filtering with per participant parameter optimization was used for

feature extraction. The ternary classification was decomposed into binary classifications

using a decision-directed acyclic graph (DDAG). For each class pair in the DDAG

structure, an ordered diversified classifier system (ODCS-DDAG) was used to select

the best among various classification algorithms or to combine the results of different

classification algorithms. Using EEG data from 14 participants performing self-initiated

left or right key presses, punctuated with rest periods, we compared the performance of

ODCS-DDAG to a ternary classifier and four popular multiclass decomposition methods

using only a single classification algorithm. ODCS-DDAG had the highest performance

(0.769 Cohen’s Kappa score) and was significantly better than the ternary classifier

and two of the four multiclass decomposition methods. Our work supports further

study of RP-based BCI for intuitive asynchronous environmental control or augmentative

communication.

Keywords: BCI, EEG, readiness potential, self-initiated fine movement, spatio-temporal filtering, diversified

classification scheme

INTRODUCTION

Brain computer interfaces (BCIs) facilitate direct communication between the brain and external
devices, potentially providing people with severe disabilities alternative communication and
mobility (Ortiz-Rosario and Adeli, 2013; Burns et al., 2014). Due to its non-invasiveness, high
temporal resolution, relative low cost, and convenient operation, electroencephalography (EEG)
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is the most widely used brain monitoring technique in BCI
research. Often, EEG-based BCIs use motor-imagery for target
selection such as in wheelchair control (Müller-Putz and
Pfurtscheller, 2008; Rodrıguez-Bermudez et al., 2013), and visual
(Farwell and Donchin, 1988; Jin et al., 2014) or auditory (Lopez-
Gordo et al., 2012; Yin et al., 2016) evoked potentials for
communication through on-screen keyboards and spellers. Most
of these BCIs require training and are paced by the system rather
than the user.

Kornhuber and Deecke (1965) were the first to report the
pre-movement neural activity in EEG. This preparatory activity
is a slow negative potential that can start as early as 1.5 s
before voluntary movement (Kornhuber and Deecke, 1965). This
potential is commonly known as the Bereitschaftspotential or
readiness potential (RP). The initial segment of the RP (known
as the “early RP”) is slow-evolving and symmetric over the
central-medial cortex (Shibasaki andHallett, 2006). The potential
becomes lateralized (known as the “late RP”) ∼500 ms prior
to movement onset, with a steeper negative slope and larger
amplitude over the contralateral primarymotor cortex (Shibasaki
and Hallett, 2006). An RP-based BCI would offer asynchronous
control allowing users to execute actions at will rather than
according to system-paced cues. However, being a slow non-
oscillatory cortical potential and occurring concurrently with
task-unrelated brain activity, the RP is typically not visible in
single trials and is, therefore challenging to detect. Nonetheless,
two recent studies of single-trial RP signals demonstrated the
detection of self-paced fine movement (Abou Zeid and Chau,
2015) and arm reaching movement (Lew et al., 2012) intention
from rest state. The lateralized RP has also been exploited in
combination with imagined movement rhythms to improve the
speed and accuracy of BCIs (Blankertz et al., 2003, 2006). Other
studies have used the RP to distinguish the laterality (i.e., left
or right hand) of an upcoming movement (Blankertz et al.,
2001, 2011; Wang et al., 2004; Liao et al., 2007; Tomioka and
Müller, 2010; Lu et al., 2014; Abou Zeid et al., 2016). RP-based
BCIs have been also investigated in patients with amyotrophic
lateral sclerosis (Kübler and Birbaumer, 2008) and stroke patients
(Jankelowitz and Colebatch, 2005; Muralidharan et al., 2011).

The majority of RP-based BCI studies have investigated
a binary classification problem such as detecting movement
intention from a rest state (Lew et al., 2012; Abou Zeid and Chau,
2015) or laterality prediction of movement (Blankertz et al., 2001,
2011; Wang et al., 2004; Liao et al., 2007; Tomioka and Müller,
2010; Lu et al., 2014; Abou Zeid et al., 2016). Limited work
has considered the differentiation of more than two states. In
Jochumsen et al. (2013), authors achieved average classification
accuracy of 59.25% between four different levels and speeds of
intended right ankle movements. Another study (Jochumsen
et al., 2015) showed the possibility of classifying between three
different grasp tasks with an accuracy of 63%. A most recent
study (Hassan et al., 2015) showed that, following detection of
movement from rest, an average classification accuracy of 73%
can be achieved between two different right ankle movements.
However, none of these studies considered fine movements.

In the literature, a classification challenge that involves more
than two classes is labeled as a multiclass problem. Because

of their complex decision boundaries, multiclass classifiers are
usually more difficult to build than binary classifiers (Galar et al.,
2011). This is why decomposition techniques are widely used to
divide the original multiclass problem into easier to solve binary
classifications. Two common decomposition techniques are the
one-against-one (OAO) and one-against-all (OAA) (Lorena
et al., 2008; Rokach, 2010). The OAO builds a binary classifier for
each possible class pair, and the outputs of these binary classifiers
are combined to predict the output class. A disadvantage of
OAO is that each classifier is exclusively trained on data from
two classes; during testing, when the classifier is exposed to
instances from a previously unseen class the output would be
non-competent and could negatively affect the final classification
results (Furnkranz et al., 2009). The OAA builds a binary
classifier for each class, separating it from the all other classes.
A disadvantage of OAA is that imbalanced training datasets may
be produced when instances from a single class are compared
to all other instances in the dataset, causing undesirable effects
in the derived classifiers (Sun et al., 2009). Both OAO and
OAA require methods that combine the outputs of the binary
classifiers to produce the final result. The most common
methods for combining outputs in OAO are voting (Friedman,
1996), weighted voting (Hüllermeier and Vanderlooy, 2010), and
probability estimates (Wu et al., 2004). Maximum confidence and
dynamic ordering (Hong et al., 2008) combination methods are
used for OAA. Alternatives to OAO andOAA are the hierarchical
strategies (Lorena et al., 2008), which, in a tree structure format,
perform successively more refined discrimination until the final
class is obtained. Two well-known hierarchical strategies are
the directed binary tree (DBT) (Schwenker and Palm, 2001)
and the decision directed acyclic graph (DDAG) (Platt et al.,
2000). Each node in the DBT corresponds to a binary classifier
that distinguishes between two sets of classes. With the DDAG,
however, each node corresponds to a binary classifier for one
pair of classes. Initially all classes are candidates, and according
to the root classifier, one of the classes is eliminated and a new
node is defined. This process is iterated until a leaf node is
reached corresponding to the output class. One disadvantage of
the DDAG is that the results may depend on the sequence of
the binary classifiers in the nodes of the graph (Kijsirikul and
Ussivakul, 2002). Hierarchical strategies do not require a separate
method of combining classifier decisions. Therefore, they can
naturally deal with test cases in the unclassifiable region of OAO,
where ties in voting occur.

Although other motor related EEG signals, notably the
event-related desynchronization (ERD) (Liao et al., 2007), have
been studied in BCI, RP remains unique: RP and ERD reflect
different neurophysiological phenomena of the sensorimotor
cortex (Pfurtscheller and Da Silva, 1999). RP is specific to
voluntary movement (Obeso et al., 1981; Baker et al., 2012),
whereas ERD occurs with voluntary, passive and imagined
movements (Formaggio et al., 2013). The RP may thus serve
as an identifying cue for voluntary control in the presence of
excessive unintentional movements, such as those characteristic
of athetoid cerebral palsy (Hou et al., 2006). In addition, the
RP associated with extant fine movements may be particularly
informative for those with severe disabilities, due to, for example,
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cervical spinal cord injury (Blain et al., 2010) or degenerative
neuromuscular conditions (Power and Chau, 2013), where only
residual motor activity is retained. Moreover, a RP-based BCI
with three ormore states would expand the options for functional
control beyond that of a binary system. In this paper, we propose,
single-trial classification amongst three states: a clear idle (rest)
state, and RP signals preceding a self-initiated left or right fine
motor movement. We evaluate our method on a multi-subject
dataset.

METHODS

Experimental Setup
The dataset (Abou Zeid et al., 2016), was collected according to
the protocol shown in Figure 1B. Briefly, 34 channels of EEG
signals were recorded at 1 kHz from 14 able-bodied participants
(P1–P14; 25.57 ± 5.03 years; three male; two left-handed), at

the scalp locations depicted in Figure 1A, using a BrainAmp
actiCap (Brain Products) during self-initiated keyboard presses
(letters “D” and “L”) with their left and right index fingers.
In each trial, participants heard the word “left” or “right” in
a female voice. Instead of reacting to the cue, participants
were asked to press the key with the corresponding finger on
their own time. For each participant, 400 trials (200 left and
200 right) were recorded. Trials where the keystroke occurred
within 2 s of the auditory cue (i.e., reactive and not a self-
initiated response) were discarded. Trials where multiple key
presses occurred were also discarded. On average, 390 trials
were retained and post-auditory cue of 4.76 ± 1.98 s elapsed
before participants pressed the key (Tonset in Figure 1B). Four
channels of electrooculography (EOG) signals were also collected
at 1 kHz to facilitate the suppression of eye movement artifacts
in the EEG. For each trial, the 500 ms interval preceding the
auditory cue was taken as the rest signal, while the 500 ms

FIGURE 1 | Experimental setup. (A) Locations of the 34 EEG electrodes. (B) Timeline of a trial. Each trial began in the idle state where the participant rested his or

her forearms, and elbows on the table, with the index fingers of the left and right hand on the key “D” and “L” respectively. A “left” (L) or “right” (R) auditory cue

informed the participant that a self-initiated keystroke could be made. Trefract is a refractory period of 4 s following the keystroke and before the start of the next trial.

Frontiers in Human Neuroscience | www.frontiersin.org 3 May 2017 | Volume 11 | Article 254

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Abou Zeid et al. Diversified Classification for a Ternary BCI

interval ending 130 ms before the key press was extracted as
the RP signal. For further information and justification of the
experimental setup and dataset, please refer to Abou Zeid et al.
(2016).

For illustration, Figure 2 shows the low-pass filtered (0–
1Hz) EEG signals from channels C1, C3, C2, and C4 averaged
over all trials and for all participants. The idle (dash-dotted
black line) interval corresponds to [−3 0] s before the auditory
cue. The left (solid blue line) and right (dashed red line)
RP intervals correspond to [−2 1] s with respect to the
time of key press (Time = 0 s). The shaded black region
corresponds to the 500 ms segment of idle state analysis. The
shaded violet region corresponds to the 500 ms segment of
RP analysis, ending 130 ms before key press. This interval
of analysis includes the RP peak negativity and a clear
laterality of the RP (i.e., more pronounced negativity on the
side contralateral to movement), especially for channel C1
and C3.

Feature Extraction
For feature extraction, we deployed the pipeline of spatio-
temporal filtering (PSTF) algorithm (Abou Zeid et al., 2016),
which was previously introduced for binary classification. The
PSTF derives discriminatory features based on participant-
specific optimization of temporal and spatial filtering of signals
from all available EEG electrodes. Figure 3 summarizes the stages
of the algorithm in a flowchart and shows an example of the
signal pattern produced after each stage. In this paper, we briefly
describe the mathematical formulation of the PSTF and its
extension to multi-category classification.

The pre-processing stage consisted of participant-specific
low- and high-pass filters that maximized participant-specific
classification accuracy on training data. Eye movement artifacts
were suppressed via EOG regression (Schlögl et al., 2007).
Next, the pre-processed signals were then filtered using a
Fisher criterion (Bishop, 2006a) beamformer, determined with
regularization. Such spatial filtering increased the separation

FIGURE 2 | Group trial average of left and right RP period (corresponding to [−2 1] s with respect to key press, blue x-axis), and idle period

(corresponding to [−3 0] s before the auditory cue, black x-axis) for all participants at electrodes C1, C2, C3, and C4. The gray vertical line at 0 s, on blue

x-axis, corresponds to the key press. EEG signals were filtered between 0 and 1 Hz, and baseline corrected. Solid blue line, dashed blue line, and dash-dotted black

line correspond to left and right hand fine movement, and idle period respectively. The shaded blue region (ending 130 ms before key press) and shaded black region

(ending just before auditory cue) correspond to the 500 ms interval of analysis for movement and idle states respectively.
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FIGURE 3 | The PSTF feature extraction algorithm. (A) Flowchart: N is the number of channels, T is the number of data samples and K the total number of trials.

Raw data of dimensions N× T ×K are pre-processed by a low-pass (LPB as cut-off) and a high-pass (HPB as cut-off) filters. EOG regression is applied for eye artifact

removal. The spatial filtering stage applies a Fisher criterion (FC) beamformer to reduce the feature dimensions to T × K. The temporal filtering stage applies

non-overlapping window averaging to reduce feature dimensionality to T ′ × K, with (T ′≪ T ). LPB, HPB, and the window averaging size are determined by

optimization on training data on a per participant basis. (B) Processing of a single trial (N = 34; T = 50) along the PSTF stages.

between classes while minimizing the variance within a class.
Thus, the objective was to maximize the Fisher criterion quotient
in Equation (1):

J (W) =
W′SbW

W′SwW
(1)

where Sb and Sw are the spatial between-class and within-class
covariance matrices, respectively. Hence, the optimal spatial filter
W is found by solving the eigenvalue problem in Equation (2)
(provided SW is non-singular):

(Sw
−1Sb)W =W3 (2)

where 3 is a matrix of eigenvalues. Taking the spatio-temporal
matrix Xi,k (dimensionN×T, whereN is the number of channels
and T the number of data samples) from each trial k of class Ci,
the matrices Sb and Sw are computed by Equations (3) and (4):

Sb =

Nc
∑

i=1

pi (Mi −M) (Mi −M)′ (3)

Sw =

Nc
∑

i=1

Ki
∑

k=1

(Xi,k −Mi)(Xi,k −Mi)
′ (4)

Where Ki is the number of trials belonging to class Ci. Nc is the
number of classes. In case of ternary classification, these are C1,
C2, and C3 representing, respectively, the left movement, right
movement, and idle classes. The symbol pi is the class probability.
The average of the trials in class Ci and of all trials are denoted by
Mi andM respectively, and computed by Equations (5) and (6):

Mi =
1

Ki

Ki
∑

k=1

Xi,k (5)

M =
1

K

K
∑

k=1

Xk (6)

where K is the total number of trials, and Xk is the spatio-
temporal data matrix.

Finally, the selected filter W(1) (N × 1) is the eigenvector
associated with the largest eigenvalue of (SW

−1Sb). For a given
matrix Xk (dimension N × T), the spatial filter output yk (1× T)
is given by Equation (7):

yk = W(1)′Xk (7)
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Since W is estimated from noisy EEG signals, to improve
generalization (i.e., reduce noise overfitting, and enforce non-
singularity), regularization may be used. This is achieved by
replacing Sw by [Sw+γ I] in Equation (4), where γ > 0 and I is a
correspondingly sized identity matrix. The regularized parameter
γ was determined by applying cross-validation on training data.

Lastly, the temporal filtering stage consisted of signal
averaging over consecutive non-overlapping windows. This
filtering captures the temporal evolution of the RPwhile reducing
the feature dimensionality. Such reduction in dimension is
preferred for classification given the limited size of our dataset.

Multiclass Classification
We attempted to solve the ternary classification problem (left
movement vs. right movement vs. idle state) directly through
a multiclass classifier (MCS), and, via the following binary
decomposition techniques: OAO, OAA, DBT, and DDAG.

MCS

The PSTF was used in its ternary form to produce training
features for the three classes. These features were fed to a classifier
to estimate the boundaries that best separate the three classes. The
estimated PSTF and classifier parameters were applied on the test
cases to predict their labels.

OAO

The PSTF was used in its binary form to provide training
features for three different binary classifiers: R-I (right vs. idle),
L-I (left movement vs. idle), and R-L (right movement vs. left
movement). Each of the classifiers was trained independently
and its boundaries and parameters estimated. Each test case
was presented to each classifier and all class probabilities were
retained. Individual classifier probabilities were combined by the
pairwise coupling algorithm (Wu et al., 2004) to infer the label
for the test case (Figure 4A).

OAA

The PSTF was used in its binary form to provide training features
for three different binary classifiers: R-A (right movement vs. All
{idle, left movement}), I-A (idle vs. All {left movement, right
movement}), and L-A (left movement vs. All {right movement,
idle}). Each of the classifiers was trained independently and
each had its boundaries and parameters estimated. Each test
case was presented to every classifier and all class probabilities
were retained. The predicted label was the class with the highest
probability across classifiers (Figure 4B).

DBT

The PSTF was used in its binary form to provide training features
for two different classifiers: I-(L, R) (idle vs. left/right movement),
L-R (left vs. right movement). Each classifier was trained

FIGURE 4 | Binary decomposition techniques: (A) OAO with pairwise-coupling combination; (B) OAA with maximum probability combination; (C) DBT structure;

(D) DDAG RIL structure; (E) DDAG ILR structure; (F) DDAG RLI structure. “I” refers to idle class, “L” refers to left movement class, and “R” refers to right movement

class.
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independently and its boundaries and parameters estimated. A
test case was passed through the DBT structure in Figure 4C,
representing an intuitive approach for solving the multiclass
problem. The root node performed a general discrimination
between the idle or movement (i.e., left/right movement) classes.
If a test case was classified as movement, a subsequent node
refined the decision as being either a left or right movement.

DDAG

The PSTF was used in its binary form to provide training features
for three different binary classifiers. Each classifier was trained
independently and its boundaries and parameters estimated.
We distinguished among three different DDAG structures as
shown in Figures 4D–F. A test case was passed through a DDAG
starting from the root node. According to the result of the root
node classifier, one of the classes was eliminated and a second
node distinguished between the remaining two classes. Due to
different permutations of nodes in the graph, the three distinct
DDAGs may yield different results, as highlighted in Kijsirikul
and Ussivakul (2002).

Ordered Diversified Classifier System
A multiple classifier system is an ensemble of competent and
diversely trained classifiers (Lysiak et al., 2014) with the aim of
improving classification accuracy (Xu et al., 1992; Ho et al., 1994;
Kittler et al., 1998). While classifier diversity can be achieved
through a variety of strategies (Kang et al., 2015), the most
successful employs different classification algorithms. Indeed, the
best classification algorithm may vary within a dataset, from
participant to participant and even from data sample to data
sample (Woods et al., 1997; Cavalin et al., 2013).

We propose an ordered diversified classifier system (ODCS)
for the aforementioned multiclass problem. The principle
behind the ODCS is to determine the best combination of
classification algorithms for every sub-problem derived from
binary decomposition of the original multiclass problem. A
similar approach has been presented in Kang et al. (2015) but
is specific to OAO and is limited to identifying the best single
classification algorithm (rather than classifier combination). In
contrast, ODCS can be used with any binary decomposition
technique and admits the best combination of any number
of classifiers according to a competence-ordered list of the
candidate classification algorithms. The overall ODCS procedure
as described in Algorithm 1 can be summarized as follows.
Consider a training dataset of N data samples, D = {Xi, yi|i =
1, . . . ,N}, where Xi is a feature vector and yi ∈ {C1, . . . ,Cc}

denotes its class label. For a class pair (j, k), we form the
subset Djk of D that consists of the data samples belonging to
the jth or kth classes. Next, we build the candidate classifiers
ŴA1 ,Djk

, . . . , ŴAM ,Djk
with the subset Djk using a pre-defined

set of classification algorithms {A1, . . . ,AM}. For each candidate
classifier, validation accuracy is computed on a subset of training
data and the candidate classifiers are ordered by decreasing
performance (i.e., validation accuracy). This classifier ordering
is performed on every class pair in the binary decomposition
algorithm (i.e., DDAG, OAO, etc.). The classification result from
the ordered classifiers can then be used in a combination strategy
to produce the final classification result.

Two general types of classifier combination strategies
can be used, yielding different multiple classifier systems:
classifier selection and classifier fusion (Kuncheva, 2002b).
Classifier selection uses the best classification algorithm, whereas
classifier fusion combines the outcome of multiple classification
algorithms through weighting. Classifier selection performs well
in cases where a single algorithm is superior to all others. In
contrast, classifier fusion is preferred when the classification
algorithms perform comparably, and the group consensus may
improve the overall accuracy.

Among the early methods of classifier fusion (Kittler et al.,
1998; Kuncheva, 2002a), none considered classifier reliability.
One of the first to do so, Ahangi et al. (2013) proposed a
weighted majority voting, in which the vote of each classifier
was weighted by a measure of its performance. Nikjoo et al.
(2011) suggested a reputation-based classification in which the
decision of each classifier was weighed on the basis of its past
performance. In this work, we use the reliability weighted average
(RWA) technique (Abou Zeid and Chau, 2015). It weights the
classification algorithms by their validation accuracies. For a data
pattern Z, the fused posterior probability for a class Cj given M
classifiers as in (8):

P
(

Cj|Z
)

=

M
∑

i=1

ωip(Cj|Xi) (8)

where Xi is the feature vector representation of pattern Z for

the ith classifier, ωi is the weight for classifier i: ωi =
eVAi

∑M
j=1 e

VAj
,

with VAi being the validation accuracy of classifier i. Finally,
the data pattern Z is assigned to the class with highest posterior
probability.

Algorithm 1 Ordered diversified classifier system (ODCS)

Input: training dataset D = {Xi, yi|i = 1, . . . ,N},
yi ∈ {C1, . . . ,Cc}, candidate classifier algorithms A1, . . . ,AM

Output: ordered classifier set Ŵjk for every class pair (j, k)

procedure ODCS

for each class pair (j, k) do
- Djk← set of data samples whose class labels are j or k

- train the different candidate classifiers
ŴA1 ,Djk

, . . . , ŴAM ,Djk

- obtain validation accuracy for each candidate classifier
- Ŵjk←ŴA1 ,Djk

, . . . , ŴAM ,Djk
ordered by descending

validation accuracy
end for

end procedure

Implementation
For PSTF implementation, the data were filtered bi-directionally
(zero-phase shift) by IIR Butterworth low- and high-pass
filters. The candidate frequency cut-offs were {1, 2, 3, 4, 5,
6, 7 Hz} for the low-pass filter, and {none, 0.1, 0.3, 0.5} for
the high-pass filter. For the FC beamformer, the candidate
regularization coefficients were {0, 1, 10, 103, 104, 105, 106}.
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In the temporal filtering stage, the candidate window sizes
were {5, 10, 25}. The optimal combination of frequency cut-
off, regularization coefficient, and time window size were
determined by five-fold cross validation on training data for each
participant.

Each trial from the experimental protocol, presented in
Experimental setup above, was composed of an idle period and
either a left or a right movement period. This protocol produced
more samples of the idle class than left or right movement classes.
Therefore, for classifier training, where applicable, the idle class
was subsampled to create a balanced training set. Also, due to
limited number of available trials (average of 195 left or right
movement valid trials per participant), the dataset was split into
10 equal and distinct chunks, 9 used for training and 1 for testing.
Testing was repeated 10 fold, each time using a distinct chunk of
data.

As candidate classification algorithms for the ODCS, five well-
known classification algorithms were selected (Bishop, 2006a,b):
linear probabilistic Gaussian model (LPGM), support vector
machines (SVM), Fisher linear discriminant analysis (FLDA),
logistic regression (LR), and regularized least square (RLS).
The following is a brief description of these algorithms. In
this paper, the ODCS was applied with each class pair in the
DDAG structure for either the selection of the best classification
algorithm (ODCS1-DDAG) or fusion of the results of the best
two (ODCS2-DDAG), three (ODCS3-DDAG), four (ODCS4-
DDAG), and five (ODCS5-DDAG) classification algorithms.

LPGM models the training features by unimodal Gaussian
distributions, and assumes that classes share a common
covariance matrix, leading to linear decision boundaries.
This assumption limits model complexity and improves
generalization by reducing the risk of noise over-fitting.
Following the estimation of the class-conditional Gaussian
distributions from training data, Bayes’ theorem is used to infer
the posterior probability of a test case belonging to a certain
class. We presented a complete mathematical formulation of
LPGM in Abou Zeid and Chau (2015).

SVM is a linear classifier that seeks to find the maximum
margin hyperplane that separates one class from another (Bishop,
2006b). It can deal with non-linear classification problems by
mapping the input space through kernel functions to a higher
dimensional space. SVM formulates a convex optimization
problem that can be solved through sequential minimal
optimization. The radial basis function (RBF) kernel was used.

FLDA projects the input features onto a one-dimensional
space that maximizes class separation. The projection vector
is computed following the Fisher’s criterion (Bishop, 2006a)
by maximizing the between-class variance while minimizing
the within-class variance. A discriminant is computed on the
projected data by using LPGM.

LR forms a logistic function of a linear combination of the
input variables whose output is in the range of [0, 1]. The best
weight of the combination can be estimated by maximizing
the likelihood function on the training data and using gradient
decent methods (Bishop, 2006a).

RLS estimates the linear model (i.e., weights) associated with
each of the classes by minimizing the sum-of-squared error

function on training data (Bishop, 2006a). A regularizer λ was
used to limit the growth of the weights, which facilitated model
training with a modestly sized data set while mitigating the risk
of severely over-fitting the model to noise. For λ, the candidate
values were {0, 0.5, 1, 10, 102, 103, 104, 105 }. The optimal λ was
determined by 5 fold cross-validation on training data for each
individual participant.

Performance Evaluation
As described in Section Implementation above, the dataset was
unbalanced (i.e., unequal number of samples per class due
to the nature of the experiment). To measure the agreement
between the predicted and desired selections in the presence
of unbalanced data, Cohen’s kappa (k) (Cohen, 1960; Thomas
et al., 2013) coefficient was used instead of accuracy rate. k was
computed from the confusion matrix as in (9):

k =
N

∑m
i=1 hii −

∑m
i=1 TriTci

N2 −
∑m

i=1 TriTci
(9)

where hii are the main diagonal elements of the confusion
matrix (i.e., the number of true positives for each class),
(Tex translation failed) is the number of examples, m is the
number of class labels, and Tri and Tci are the marginal
row and column counts, respectively. k ranges from −1 (total
disagreement) through 0 (chance-level classification) to 1 (perfect
agreement).

The main difference between the accuracy rate and k is the
scoring of correct classifications. The accuracy rate scores all
the successes over all classes, whereas k scores the successes
independently for each class and aggregates them. The kmeasure
is less sensitive to randomness and bias caused by unequal
numbers of examples in each class, and therefore is the preferred
method of evaluation with unbalanced classes (Danker-Hopfe
et al, 2004; Galar et al., 2011).

RESULTS

Table 1 lists the mean of the 10 fold test k score over all
participants, for various binary decomposition methods (OAA,
OAA, DBT, DDAG) and classification algorithms (LPGM, SVM,
FLDA, LR, RLS). Among the different classification algorithms,
FLDA resulted in the highest k score for all binary decomposition
methods (OAA-FLDA: 0.735; OAA-FLDA: 0.733; DBT-FLDA:
0.701; DDAG-FLDA: 0.725).The DDAG results shown are
from the RIL structure (Figure 4D). There was no significant
difference in k score between the various DDAG structures
(Figures 4D–F).

Figure 5 shows significant differences (ANOVA, p < 0.05)
in the mean 10 fold test k scores among the various methods
(MCS: 0.541 ± 0.01; DBT-FLDA: 0.701 ± 0.01; DDAG-FLDA:
0.725 ± 0.011; OAA-FLDA: 0.733 ± 0.01; OAO-FLDA: 0.735
± 0.01; ODCS3-DDAG: 0.769 ± 0.009) when considering all
participants. For ODCS3-DDAG, the ODCS method was applied
for classifier fusion (i.e., fusion of the results of the best three
classification algorithms among LPGM, SVM, FLDA, LR, and
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TABLE 1 | Mean and standard deviation of the 10 fold test Kappa (κ) score across all participants, for the different binary decomposition methods and

different classification algorithms.

Binary decomposition method LPGM SVM FLDA LR RLS

OAO 0.676 ± 0.116 0.647 ± 0.096 0.735 ± 0.111 0.716 ± 0.14 0.659 ± 0.144

OAA 0.672 ± 0.128 0.659 ± 0.098 0.733 ± 0.114 0.708 ± 0.127 0.665 ± 0.13

DBT 0.637 ± 0.116 0.606 ± 0.091 0.701 ± 0.105 0.689 ± 0.119 0.639 ± 0.117

DDAG 0.672 ± 0.116 0.631 ± 0.099 0.725 ± 0.114 0.708 ± 0.138 0.665 ± 0.126

OAO, one-against-one; OAA, one-against-all; DBT, directed binary tree; DDAG, decision directed acyclic graph. LPGM, linear probabilistic Gaussian model; SVM, support vector

machine; FLDA, Fisher linear discriminant analysis; LR, logistic regression; RLS, regularized least square.

FIGURE 5 | Mean of the 10 fold test Kappa (κ) score comparisons over all participants and for multiple classifications methods (MCS, multiclass

classifier using LPGM classification algorithm; DBT-FLDA, directed binary tree using FLDA classification algorithm; DDAG-FLDA, decision directed

acyclic graph using FLDA classification algorithm; OAA-FLDA, one-against-all using FLDA classification algorithm; OAO-FLDA, one-against-one

using FLDA classification algorithm; ODCS3-DDAG, fusion of best 3 classification algorithms using ODCS {ordered diversified classifier system}

applied with DDAG). Five classification algorithms (LPGM, SVM, FLDA, LR, and RLS) have been used in ODCS3-DDAG. Error bars represent the 95% confidence

interval computed over all participants. Methods with significant pairwise difference to ODCS3-DDAG are denoted by an asterisk (*).

RLS) with each class pair in the DDAG structure. Post-hoc pair-
wise comparison (Table 2), with Bonferroni correction, reveals
that ODCS3-DDAG achieves a significantly higher k score than
MCS (p = 2.088 × 10−46), DBT-FLDA (p = 7.83 × 10−5),
and DDAG-FLDA (p = 0.039). No significant difference in k
score is found when comparing ODCS3-DDAG to OAA-FLDA
(p = 0.239) or OAO-FLDA (p = 0.329).

The mean of the tenfold test k score, across all participants,
for classification algorithm selection (ODCS1-DDAG) was 0.735
± 0.01. The same score was 0.760 ± 0.009, 0.769 ± 0.009,
0.766 ± 0.009, and 0.751 ± 0.010 for the fusion of two, three,
four, and five best classification algorithms, respectively. A non-
parametric ANOVA test indicated equivalence (p = 0.073)
between selection and fusion methods.

Table 3 shows the total confusion matrix for ODCS3-DDAG
computed from 10 test folds, for all participants.

Table 4 lists the selection percentage (%) for each classification
algorithm. The table entries indicate how often ODCS selected
each candidate algorithm (columns) as the best for a given class
pairing (rows).

DISCUSSION

Our findings demonstrate the successful differentiation between
idle state and an upcoming left or right fine movement from
single trial analysis of the RP in a self-initiated key press protocol
with able-bodied individuals.

As shown in Table 1, among the employed classification
algorithms (LPGM, SVM, FLDA, LR, RLS), FLDA resulted in the
highest mean k score for all of the binary decompositionmethods
(OAA, OAA, DBT, and DDAG) with a single classification
algorithm. Such result is mainly due to the fact that FLDA
projects the input features onto a one-dimensional space that
maximizes class separation (Bishop, 2006a).

Overall, the proposed decomposition method (ODCS3-

DDAG) yielded significantly higher (p < 0.05, Table 2) mean
k score (0.769 ± 0.009; Figure 5), than the multiclass classifier
(MCS: 0.542 ± 0.010) and some of the binary decomposition

methods with a single best classification algorithm (DBT-FLDA:
0.701 ± 0.01; DDAG-FLDA: 0.725 ± 0.011). ODCS3-DDAG
performance was not significantly better than OAA-FLDA (0.733
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TABLE 2 | Multiple comparisons between the various classification methods using the Bonferroni correction.

Method1 vs. Method2 ODCS3-DDAG OAO-FLDA OAA-FLDA DDAG-FLDA DBT-FLDA MCS

ODCS3-DDAG 0 0.329 0.239 0.039 7.84 × 10−5 2.088 × 10−46

OAO-FLDA 0.329 0 1.000 1.000 0.333 6539 × 10−35

OAA-FLDA 0.239 1.000 0 1.000 0.454 2.437 × 10−34

DDAG-FLDA 0.039 1.000 1.000 0 1.000 1.489 × 10−31

DBT-FLDA 7.84 × 10−5 0.333 0.454 1.000 0 1.160 × 10−24

MCS 2.088 × 10−46 6.539 × 10−35 2.437 × 10−34 1.489 × 10−31 1.160 × 10−24 0

Two methods are significantly different if their comparison p-value is < 0.05.

TABLE 3 | ODCS3-DDAG total confusion matrix across all 10 fold (test

sets) and for all participants.

Correct class Predicted class

Right Idle Left

Right 1,896 (72.37%) 116 (4.43%) 608 (23.20%)

Idle 51 (0.97%) 5,043 (96.24%) 146 (2.79%)

Left 454 (17.33%) 128 (4.88%) 2,038 (77.79%)

The values in bold correspond to number and percentage of correctly classified instances.

TABLE 4 | Percent of time each classification algorithm was selected as

the best by ODCS, for each class pairing on training data.

Pairs LPGM SVM FLDA LR RLS

Right vs. Idle 0.0 34.0 28.0 38.0 0.0

Left vs. Idle 0.0 44.0 30.0 26.0 0.0

Right vs. Left 0.0 0.0 4.0 19.0 77.0

± 0.01; p = 0.239) or OAO-FLDA (0.735 ± 0.01; p = 0.329).
However, ODCS3-DDAGhad a highermean k score and a tighter
95% confidence interval that slightly overlapped (Figure 5) with
that of OAA-FLDA and OAO-FLDA. Furthermore, for 10 out
of 14 participants, ODCS3-DDAG achieved the highest 10
fold average test k score. These results corroborate previous
reports that group consensus among different classification
algorithms tends to outperform an individual classifier (Stashuk
and Paoli, 1998; Kamel and Wanas, 2003). Important to mention
that ODCS3-DDAG avoids the complexity of the combination
methods required by OAO-FLDA (Wu et al., 2004) and OAA-
FLDA (Hong et al., 2008), as shown in Figure 4.

Comparing Multiclass and Decomposition
Classification
Figure 5 and Table 2 show that each of the binary decomposition
methods (OAO-FLDA: 0.735 ± 0.01; OAA-FLDA: 0.733 ±
0.01; DBT-FLDA: 0.701 ± 0.01; DDAG-FLDA: 0.725 ± 0.011)
outperformed the multiclass classifier (MCS: 0.541± 0.01) when
using as a single classification algorithm (i.e., when ODCS is
not applied). This finding is not surprising, as generally, for any
classification algorithm, the decision boundaries of a multiclass
problem tend to bemore difficult to compute than that of a binary
classification problem (Galar et al., 2011).

Amongst the binary decomposition methods, when using
a single classification algorithm, no significant difference in
performance (Figure 5 and Table 2) was observed (OAO-FLDA:
0.733 ± 0.01; OAA-FLDA: 0.733 ± 0.01; DBT-FLDA: 0.701
± 0.01; DDAG-FLDA: 0.725 ± 0.011). Nonetheless, DBT and
DDAG avoid the complexity of the combination methods needed
with, namely, OAO (Wu et al., 2004) and OAA (Hong et al.,
2008), as shown in Figure 4.

Comparing Classification Algorithm
Selection and Fusion
With ODCS, classification algorithm selection (i.e., selection of
the best classification algorithm) or fusion (i.e., combination of
the results of the best two or more classification algorithms)
can be used to produce the final results. Although there was an
increase in k score for ODCS2-DDAG, ODCS3-DDAG, ODCS4-
DDAG, andODCS5-DDAG compared to classification algorithm
selection (ODCS1-DDAG), these differences were not significant.
One way to interpret this finding is that the consensus among all
classification algorithms may not improve upon the decisions of
the best classification algorithm when those decisions are already
highly accurate. Indeed, the performance of classifier fusion is
never worse than the average of the individual classifiers, but not
necessarily better than the best classifier (Stashuk and Paoli, 1998;
Kamel and Wanas, 2003).

Analysis of the Confusion Matrix
The total confusion matrix in Table 3 shows that ODCS3-DDAG
is highly sensitive and specific to the idle class with classification
accuracy of 96.24%. The results are less accurate, but well-above
chance level, for the right (72.37%) and left class (77.79%), with
a slightly better performance for the latter. Most of the right
class misses (23.20%) are predicted as left class and vice versa
for the left class (17.33%). It is known that a left or right hand
movement would activate similar areas in the motor cortex,
although with stronger activation in the hemisphere contralateral
to the movement (Shibasaki and Hallett, 2006).

Selection of Classification Algorithms
As shown in Table 4, the selection of the best classification
algorithm varied by class pair. For the right vs. idle class pair,
SVM (34%), FLDA (28%), and LR (38%) were the only selected.
In the case of left vs. idle, the same three classification algorithms
were selected (SVM 44%, FLDA 30%, and LR 26%), with a greater
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preference for SVM. It is known that the RPs preceding left
and right hand movements both arise from the motor cortex,
albeit with stronger activation in the contralateral hemisphere
(Shibasaki and Hallett, 2006). Therefore, it is conceivable that
similarities existed between the classification problems for these
two class pairs (right vs. idle and left vs. idle), leading to the
selection of the same classification algorithms. For the right
vs. left class pair, RLS was predominantly selected (77% of the
time), followed by LR (19% of the time), and FLDA (only 4%
of the time). This indicates that among the five classification
algorithms, RLS is best suited to fine movement laterality
prediction. Interestingly, LPGM was never selected, indicating
that Gaussian modeling of the feature distributions was not
appropriate.

To the best of our knowledge, this paper is the first
work on ternary classification of fine movements from RP
features. Herein, the achieved results (average k score of 0.769%
and associated average classification accuracy of 82.13%) are
comparable to published results on RP-based binary BCIs:
76% average sensitivity in predicting gross movement from
idle state (Lew et al., 2012); 82.21% average classification
accuracy in predicting fine movements from idle state (Abou
Zeid and Chau, 2015); 76.27% (Lu et al., 2014) and 74.99%
(Abou Zeid et al., 2016) average classification accuracies in
predicting the laterality of fine movements. Furthermore, the
results in this paper are superior to reported performance on
multiclass classification of movement related potentials: 59.25%
average classification accuracy amongst four different levels
and speeds of intended right ankle movements (Jochumsen
et al., 2013); 63% average classification accuracy amongst
three different grasp tasks (Jochumsen et al., 2015); 73%
average classification accuracy amongst two different right angle
movements, following detection of movement from rest (Hassan
et al., 2015).

Future efforts should focus on enhancing the classification
between left and right movements. One approach might be to
consider more candidate classification algorithms, especially
ones that can model non-linearity (among the algorithms
described in this paper, only SVM can deal with non-linearity),
such as neural networks (given enough data are available).
Ultimately, we would like to evaluate the proposed ternary
RP-based BCI with individuals possessing only residual muscle
movement, in an online, asynchronous rather than system-
paced paradigm. The algorithms described herein are easily
trained and calibrated offline. Once calibrated, these algorithms
can be implemented by simple operations making it suitable
for real-time systems. Since the RP is a pre-motor potential

preceding voluntary movement (Shibasaki and Hallett, 2006),
eliciting it requires no cue, and it can be detected in a continuous

flow of neuronal signal. Indeed, using RP signals, we have
shown successful prediction of fine movement from idle state
in a simulated online paradigm (Abou Zeid and Chau, 2015).
Likewise, the ternary BCI described here should be validated
online. Functional contexts for such an online system might
include real-time driving of a powered wheelchair or operation
of an augmentative and alternative communication aid.

CONCLUSIONS

In this paper, we proposed the ODCS as a classifier selection-
fusion algorithm for use with multiclass decomposition methods.
We applied the ODCS with a decision directed acyclic graph
(ODCS-DDAG).We compared the ODCS-DDAG to amulticlass
classifier and other multiclass decomposition methods (OAO,
OAA, DBT, DDAG) for ternary classification amongst an
idle state, a left movement and a right movement on the
basis of readiness potential signals. On a dataset of 14 able-
bodied participants, ODCS-DDAG achieved significantly better
classification in terms of average Cohen’s Kappa score, when
compared to ternary classifier, DBT, and DDAG. Average Cohen’s
Kappa scores did not differ significantly between classification
algorithm selection and classification algorithms fusion.
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Nikjoo, M. S., Steele, C. M., Sejdić, E., and Chau, T. (2011). Automatic

discrimination between safe and unsafe swallowing using a reputation-based

classifier. Biomed. Eng. Online 10:100 doi: 10.1186/1475-925X-10-100

Frontiers in Human Neuroscience | www.frontiersin.org 12 May 2017 | Volume 11 | Article 254

https://doi.org/10.1016/j.neuropsychologia.2011.12.026
https://doi.org/10.3109/17483100903323275
https://doi.org/10.1109/TNSRE.2003.814456
https://doi.org/10.1109/TNSRE.2006.875557
https://doi.org/10.1016/j.neuroimage.2010.06.048
https://doi.org/10.1177/1073858414549015
https://doi.org/10.1007/s00521-011-0737-9
https://doi.org/10.1177/001316446002000104
https://doi.org/10.1046/j.1365-2869.2003.00375.x
https://doi.org/10.1016/0013-4694(88)90149-6
https://doi.org/10.1186/1743-0003-10-24
https://doi.org/10.1016/j.patcog.2011.01.017
https://doi.org/10.1109/34.273716
https://doi.org/10.1016/j.patcog.2007.07.004
citeseerx.ist.psu.edu/viewdoc/citations;jsessionid...?doi=10.1.1.518.878
citeseerx.ist.psu.edu/viewdoc/citations;jsessionid...?doi=10.1.1.518.878
https://doi.org/10.1016/j.patcog.2009.06.013
https://doi.org/10.1142/S0129065714500270
https://doi.org/10.1007/s11517-015-1421-5
https://doi.org/10.1088/1741-2560/10/5/056015
https://doi.org/10.1016/j.neucom.2014.08.006
https://doi.org/10.1109/34.667881
https://doi.org/10.1007/BF00412364
https://doi.org/10.1109/34.982906
https://doi.org/10.1109/3477.990871
https://doi.org/10.3389/fneng.2012.00013
https://doi.org/10.1109/TBME.2006.889206
https://doi.org/10.1142/S0129065712500098
https://doi.org/10.1007/s10462-009-9114-9
https://doi.org/10.1109/TNSRE.2014.2315717
https://doi.org/10.1016/j.neucom.2013.01.052
https://doi.org/10.1109/TBME.2007.897815
https://doi.org/10.3389/fnins.2011.00039
https://doi.org/10.1186/1475-925X-10-100
http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Abou Zeid et al. Diversified Classification for a Ternary BCI

Obeso, J. A., Rothwell, J. C., and Marsden, C. D. (1981). Simple tics in Gilles de la

Tourette’s syndrome are not prefaced by a normal premovement EEG potential.

J. Neurol. Neurosurg. Psychiatry 44, 735–738. doi: 10.1136/jnnp.44.8.735

Ortiz-Rosario, A., and Adeli, H. (2013). Brain-computer interface

technologies: from signal to action. Rev. Neurosci. 24, 537–552.

doi: 10.1515/revneuro-2013-0032

Pfurtscheller, G., and Da Silva, F. H. L. (1999). Event-related EEG/MEG

synchronization and desynchronization: basic principles. Clin. Neurophysiol.

110, 1842–1857.

Platt, J. C., Cristianini, N., and Shawe-Taylor, J. (2000). “Large margin DAGs for

multiclass classification, Vol. 12,” in Advances in Neural Information Processing

Systems, eds S. A. Solla, T. K. Leen, K. Müller (Cambridge: The MIT Press),

547–553.

Power, S. D., and Chau, T. (2013). Automatic single-trial classification of

prefrontal hemodynamic activity in an individual with Duchenne muscular

dystrophy. Dev. Neurorehabil. 16, 67–72. doi: 10.3109/17518423.2012.

718293

Rodrıguez-Bermudez, G., Garcıa-Laencina, P. J., and Roca-Dorda, J. (2013).

Efficient automatic selection and combination of EEG features in least squares

classifiers for motor-imagery brain computer interfaces. Int. J. Neural Syst. 23,

1350015. doi: 10.1142/S0129065713500159

Rokach, L. (2010). Ensemble-based classifiers. Artif. Intell. Rev. 33, 1–39.

doi: 10.1007/s10462-009-9124-7

Schlögl, A., Keinrath, C., Zimmermann, D., Scherer, R., Leeb, R., and Pfurtscheller,

G. (2007). A fully automated correction method of EOG artifacts in

EEG recordings. Clin. Neurophysiol. 118, 98–14. doi: 10.1016/j.clinph.2006.

09.003

Schwenker, F., and Palm, G. (2001). “Tree-structured support vector machines for

multiclass pattern recognition,” in Proceedings of the InternationalWorkshop on

Multiple Classifier Systems, eds J. Kittler and F. Roli (New York, NY: Springer),

409–417.

Shibasaki, H., and Hallett, M. (2006). What is the Bereitschaftspotential?

J. Clin. Neurophysiol. 117, 2341–2356. doi: 10.1016/j.clinph.2006.

04.025

Stashuk, D. W., and Paoli, G. M (1998). Robust supervised classification

of motor unit action potentials. Med. Biol. Eng. Comput. 36, 75–82.

doi: 10.1007/BF02522861

Sun, Y., Wong, A. C., and Kamel, M. S. (2009). Classification of imbalanced

data: a review. Int. J. Pattern Recogn. Artif. Intell. 23, 687–719.

doi: 10.1142/S0218001409007326

Thomas, E., Dyson, M., and Clerc, M. (2013). An analysis of performance

evaluation for motor-imagery based BCI. J. Neural Eng. 10:031001.

doi: 10.1088/1741-2560/10/3/031001

Tomioka, R., and Müller, K. R. (2010). A regularized discriminative framework

for EEG analysis with application to brain-computer interface. Neuroimage 49,

415–432. doi: 10.1016/j.neuroimage.2009.07.045

Wang, Y., Zhang, Z., Li, Y., Gao, X., Gao, S., and Yang, F. (2004). BCI

Competition 2003-Data Set IV: an algorithm based on CSSD and FDA

for classifying single-trial EEG. IEEE Trans. Biomed. Eng. 51, 1081–1086.

doi: 10.1109/TBME.2004.826697

Woods, K., Kegelmeyer, W. P., and Bowyer, K. (1997). Combination of multiple

classifiers using local accuracy estimates. IEEE Trans. Pattern Anal. Mach. Intell.

19, 405–410. doi: 10.1109/34.588027

Wu, T. F., Lin, C. J., and Weng, R. C. (2004). Probability estimates for multi-class

classification by pairwise coupling. J. Mach. Learn. Res. 5, 975–1005. Available

online at: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.10.5389

Xu, L., Krzyzak, A., and Suen, C. Y. (1992). Methods of combining multiple

classifiers and their applications to handwriting recognition. IEEE Trans. Syst.

Man Cybern. 22, 418–435. doi: 10.1109/21.155943

Yin, E., Zeyl, T., Saab, R., Hu, D., Zhou, Z., and Chau, T. (2016). An auditory-tactile

visual saccade-independent P300 brain-computer interface. Int. J. Neural Syst.

26, 1650001. doi: 10.1142/S0129065716500015

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2017 Abou Zeid, Rezazadeh Sereshkeh, Schultz and Chau. This is an

open-access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) or licensor are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Human Neuroscience | www.frontiersin.org 13 May 2017 | Volume 11 | Article 254

https://doi.org/10.1136/jnnp.44.8.735
https://doi.org/10.1515/revneuro-2013-0032
https://doi.org/10.3109/17518423.2012.718293
https://doi.org/10.1142/S0129065713500159
https://doi.org/10.1007/s10462-009-9124-7
https://doi.org/10.1016/j.clinph.2006.09.003
https://doi.org/10.1016/j.clinph.2006.04.025
https://doi.org/10.1007/BF02522861
https://doi.org/10.1142/S0218001409007326
https://doi.org/10.1088/1741-2560/10/3/031001
https://doi.org/10.1016/j.neuroimage.2009.07.045
https://doi.org/10.1109/TBME.2004.826697
https://doi.org/10.1109/34.588027
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.10.5389
https://doi.org/10.1109/21.155943
https://doi.org/10.1142/S0129065716500015
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive

	A Ternary Brain-Computer Interface Based on Single-Trial Readiness Potentials of Self-initiated Fine Movements: A Diversified Classification Scheme
	Introduction
	Methods
	Experimental Setup
	Feature Extraction
	Multiclass Classification
	MCS
	OAO
	OAA
	DBT
	DDAG

	Ordered Diversified Classifier System
	Implementation
	Performance Evaluation

	Results
	Discussion
	Comparing Multiclass and Decomposition Classification
	Comparing Classification Algorithm Selection and Fusion
	Analysis of the Confusion Matrix
	Selection of Classification Algorithms

	Conclusions
	Ethics Statement
	Author Contributions
	Funding
	References


