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Low bone mass is often associated with elevated bone marrow adiposity. Since osteo-
blasts and adipocytes are derived from the same mesenchymal stem cell (MSC) progen-
itor, adipocyte formation may increase at the expense of osteoblast formation. Leptin is 
an adipocyte-derived hormone known to regulate energy and bone metabolism. Leptin 
deficiency and high-fat diet-induced obesity are associated with increased marrow 
adipose tissue (MAT) and reduced bone formation. Short-duration studies suggest that 
leptin treatment reduces MAT and increases bone formation in leptin-deficient ob/ob 
mice fed a regular diet. Here, we determined the long-duration impact of increased 
hypothalamic leptin on marrow adipocytes and osteoblasts in ob/ob mice following 
recombinant adeno-associated virus (rAAV) gene therapy. Eight- to 10-week-old male 
ob/ob mice were randomized into four groups: (1) untreated, (2) rAAV-Lep, (3) rAAV-green 
fluorescent protein (rAAV-GFP), or (4) pair-fed to rAAV-Lep. For vector administration, 
mice were injected intracerebroventricularly with either rAAV-leptin gene therapy (rAAV-
Lep) or rAAV-GFP (9 × 107 particles) and maintained for 30 weeks. In a second study, the 
impact of increased hypothalamic leptin levels on MAT was determined in mice fed high-
fat diets; ob/ob mice were randomized into two groups and treated with either rAAV-Lep 
or rAAV-GFP. At 7 weeks post-vector administration, half the mice in each group were 
switched to a high-fat diet for 8 weeks. Wild-type (WT) controls included age-matched 
mice fed regular or high-fat diet. High-fat diet resulted in a threefold increase in MAT in 
WT mice, whereas MAT was increased by leptin deficiency up to 50-fold. Hypothalamic 
leptin gene therapy increased osteoblast perimeter and osteoclast perimeter with minor 
change in cancellous bone architecture. The gene therapy decreased MAT levels in ob/
ob mice fed regular or high-fat diet to values similar to WT mice fed regular diet. These 
findings suggest that leptin plays an important role in regulating the differentiation of 
MSCs to adipocytes and osteoblasts, a process that may be dysregulated by high-fat 
diet. However, the results also illustrate that reducing MAT by increasing leptin levels 
does not necessarily result in increased bone mass.
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inTrODUcTiOn

Adipose tissue in bone marrow may contribute to metabolic 
health through its effects on local energy balance and/or its 
actions as an endocrine organ (1). Low bone mass is often 
associated with elevated bone marrow adiposity (2, 3). Bone 
marrow contains mesenchymal stem cells (MSCs) capable 
of differentiating into cells of the osteoblastic and adipocytic 
lineages (4). A reciprocal relationship between the number of 
mature osteoblasts and bone marrow adipocytes may occur as a 
consequence of differentiation of MSCs toward one lineage at the 
expense of the other lineage (5, 6). Mechanistically, peroxisome 
proliferator-activated receptor gamma (PPARγ), a transcription 
factor that plays a key role in regulation of adipogenesis and lipid 
uptake, has been implicated as a factor controlling MSC differen-
tiation. Inhibition of PPARγ increases osteoblast differentiation 
while decreasing adipocyte differentiation. Osteoblast-targeted 
overexpression of PPARγ inhibits bone mass gain in male mice 
and increases ovariectomy-induced osteopenia in female mice 
(5). Furthermore, cultured adipocytes release factors capable of 
inducing osteoblast linage cells to differentiate into an adipo-
cyte-like phenotype (7). Thus, excessive marrow adipose tissue 
(MAT) has the potential to directly and/or indirectly reduce 
bone mass by inhibiting osteoblast differentiation. As such, an 
increase in MAT may contribute to osteoporosis in conditions, 
such as menopause, skeletal disuse, alcohol abuse, and eating 
disorders (3, 8, 9).

Interestingly, anorexia and obesity both result in increased 
MAT (10, 11). Anorexia is commonly associated with reduced 
bone mineral density (BMD) and increased fracture risk. By 
contrast, being overweight is generally associated with increased 
BMD and reduced fracture risk. However, recent studies suggest 
that morbid obesity has negative effects on bone quality (12, 13). 
Thus, it is possible that the increase in MAT plays a role in the 
detrimental skeletal changes associated with both extremes in 
body weight.

Leptin, an adipokine produced in proportion to fat mass, plays 
a critical role in central nervous system-mediated regulation of 
energy homeostasis (14). Additionally, leptin plays an important 
positive role in skeletal growth and maturation (15, 16). Indeed, 
leptin signaling deficiency results in abnormal growth plate 
development (17) and mild osteopetrosis (18).

Leptin suppresses PPARγ expression and increases lipolysis 
in adipose tissue in rodents (19). In parallel, leptin increases 
longitudinal bone growth, osteoblastogenesis and bone 
formation (15, 16). Thus, the low leptin levels resulting from 
insufficient adipose tissue observed in anorexia may contribute 
to increased MAT and decreased bone formation. In contrast 
to anorexia, obesity typically results in increased leptin levels 
which, in turn, should suppress MAT. Many authors have con-
cluded that leptin resistance plays an important role in hyper-
phagia and weight gain associated with obesity (20). Thus, leptin 
resistance may counteract the expected response to elevated 
leptin levels and thereby contribute to an increase in MAT 
during obesity. However, some new studies question whether 
resistance to endogenous leptin contributes to development of 
diet-induced obesity in mice (21, 22). If leptin resistance is a 

major contributor to the etiology of obesity, it may be overcome 
in normal rodents, at least in part, by increasing hypothalamic 
leptin levels. Whatever its precise role in diet-induced obesity, 
it is clear that leptin resistance resulting from loss of function 
of the leptin receptor (db/db mice), in addition to inducing 
morbid obesity, results in profound negative effects on the skel-
eton. Furthermore, some of these negative skeletal effects (e.g., 
reduced bone formation) are recapitulated, without impacting 
energy metabolism, following adoptive transfer of bone marrow 
from db/db mice into wild-type (WT) mice (16).

Leptin-deficient ob/ob and leptin receptor-deficient db/db 
mice exhibit excessive MAT in long bones (16). Short-term 
delivery of leptin into the hypothalamus was shown to reduce 
peripheral fat depots as well as MAT (23, 24). However, the long-
term effects of increased leptin levels on MAT have not been well 
characterized. Hypothalamic leptin gene therapy has been shown 
to result in life-long reductions in body weight in ob/ob mice (25). 
The goal of the present study was to determine the long-duration 
effects of increased hypothalamic leptin, using recombinant 
adeno-associated virus leptin gene therapy (rAAV-Lep), on bone 
marrow adiposity in morbidly obese ob/ob mice. Given that the 
energy density of a diet impacts weight gain and MAT levels (26), 
the effects of a regular and high energy density (high fat) diet were 
also evaluated.

MaTerials anD MeThODs

experimental animals
Eight- to 10-week-old male WT C57BL/6J (B6) and leptin-
deficient ob/ob mice on the same genetic background were 
obtained from Jackson Laboratory (Bar Harbor, ME, USA). This 
age corresponds to peak cancellous bone volume fraction in the 
femur metaphysis (27). The mice were maintained in accord-
ance with the NIH Guide for the Care and Use of Laboratory 
Animals and the experimental protocols were approved by the 
Institutional Animal Care and Use Committee at the University 
of Florida. The mice were housed individually in a temperature 
(21–23°C) and light-controlled room (lights on 6:00 a.m. to 6:00 
p.m.) under specific pathogen-free conditions.

experiment 1: effects of 30 Weeks of 
hypothalamic leptin gene Therapy on 
Marrow adiposity and cancellous Bone 
histomorphometry in ob/ob Mice
Following arrival, ob/ob mice were randomized by weight into 
four treatment groups: (1) untreated (n  =  6), (2) control vec-
tor encoding green fluorescent protein (rAAV-GFP, n = 7), (3) 
rAAV-Lep (n = 8), or (4) pair-fed to rAAV-Lep (n = 6). The mice 
were maintained on standard mouse chow (LM-485, Teklad, 
Madison, WI, USA) and sacrificed 30  weeks following vector 
administration at 38–40  weeks of age. This age corresponds to 
a period immediately prior to a drastic increase in mortality in 
ob/ob mice – median lifespan in ob/ob mice is 55  weeks com-
pared to 131 weeks in WT mice (25). The effects of treatment on 
hypothalamic leptin gene expression, body weight, food intake, 
hormone levels, organ weights, and cancellous and cortical bone 
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architecture evaluated by microcomputed tomography in this 
study are detailed elsewhere (25, 28).

experiment 2: effects of 15 Weeks of 
hypothalamic leptin gene Therapy and 
8 Weeks of high-Fat Diet on Marrow 
adiposity and cancellous Bone 
histomorphometry in ob/ob Mice
Experiment 2 was conducted using WT and ob/ob mice. Following 
arrival, WT mice (n = 12) were maintained on regular chow (LM-
485, Teklad, Madison, WI, USA; caloric density 3.4 kcal/g, 11% 
of kcal from fat) until 15–17 weeks of age and then randomized 
by weight into two groups: (1) control (n  =  3) or (2) high-fat 
diet (n =  9). Mice in the control group continued to consume 
the regular diet ad libitum while mice in the high-fat group were 
placed on a high-fat diet (caloric density 4.7 kcal/g; 45% of kcal 
from fat, primarily from lard; Research Diets, New Brunswick, 
NJ, USA) fed ad libitum. The mice were sacrificed 8 weeks later at 
23–25 weeks of age – an age corresponding to cessation of linear 
growth in B6 mice (27).

In conjunction, ob/ob mice were randomized by weight into 
two treatment groups: rAAV-Lep (n = 16) or control vector rAAV-
GFP (n = 14). At 7 weeks post-vector administration, rAAV-GFP 
and rAAV-Lep mice were each divided into two groups: one group 
continued to consume regular diet and the other was switched to 
a high-fat diet as described above for WT mice. The mice were 
sacrificed 8 weeks later at 23–25 weeks of age (15 weeks following 
vector administration). The effect of the rAAV-Lep pretreatment 
and high-fat diet on hypothalamic leptin gene expression, body 
weight, food intake, organ weights, hormone levels, and cancellous 
and cortical bone architecture determined by microcomputed 
tomography are detailed elsewhere (28–30).

construction and Packaging  
of raaV Vectors
rAAV-leptin gene therapy and rAAV-GFP vectors were con-
structed and packaged as previously described (31). In brief, 
the vector pTR-CBA-Ob EcoRI fragment of pCR-rOb contain-
ing rat leptin cDNA was subcloned into rAAV vector plasmid 
pAAVβGEnh after deleting the EcoRI fragment carrying the 
β-glucoronidase cDNA sequence. The control vector, rAAV-GFP, 
was similarly constructed to encode the GFP gene.

Vector administration
For vector administration, the mice were anesthetized with 
sodium pentobarbital (60  mg/kg, i.p.), placed on a Kopf stere-
otaxic apparatus with mouse adapter for intracerebroventricular 
injection, and injected intracerebroventricularly with either 
rAAV-Lep (9  ×  107 particles in 1.5  μl) or rAAV-GFP (9  ×  107 
particles in 1.5 μl). The coordinates employed for microinjector 
placement in the third cerebroventricle were 0.3 mm posterior to 
bregma, 0.0 lateral to midline, and 4.2 mm below the dura (29).

Tissue collection and analyses
At the end of each experiment mice were anesthetized with sodium 
pentobarbital (60 mg/kg; i.p.) and euthanized by exsanguination. 

Femora were excised, cleaned of soft tissue, and stored in 70% 
ethanol. Femora were prepared for histomorphometric evalua-
tion as described (32). In brief, distal femora were dehydrated 
in graded increases of ethanol and xylene and embedded unde-
calcified in methyl methacrylate. Frontal sections (4 μm thick) 
were cut with a vertical bed microtome (Leica 2165) and affixed 
to slides precoated with a 1% gelatin solution. One section/
animal was stained for tartrate-resistant acid phosphatase and 
counterstained with toluidine blue (Sigma, St Louis, MO, USA) 
for assessment of bone and cell-based measurements.

Histomorphometric data were collected using the 
OsteoMeasure System (OsteoMetrics, Inc., Atlanta, GA, USA). 
The sampling site for the distal femoral metaphysis was located 
0.25–1.25  mm proximal to the growth plate and 0.1  mm 
from cortical bone. Cancellous bone measurements included 
bone area fraction (bone area/tissue area, %) and the derived 
architectural indices of trabecular number (mm−1), trabecular 
thickness (micrometer), and trabecular separation (microm-
eter). Measurements of MAT included overall marrow adiposity 
(adipose area/tissue area, %), adipocyte density (mm−2), and 
adipocyte size (micrometers2). Adipocytes were identified as 
large circular or oval-shaped cells bordered by a prominent 
cell membrane and lacking cytoplasmic staining due to alcohol 
extraction of intracellular lipids during processing. This method 
has been validated by fat extraction and analysis (33). Osteoblast 
and osteoclast perimeters were also measured and expressed as 
% of total bone perimeter. Osteoblasts were identified as plump 
cuboidal cells immediately adjacent to a thin layer of osteoid in 
direct contact with the bone perimeter. Osteoclasts were identi-
fied as multinucleated (two or more nuclei) cells with acid phos-
phatase positive (red-stained) cytoplasm in contact with the bone 
perimeter. Data are reported using standard two-dimensional 
nomenclature (34).

statistical analysis
Mean responses for Experiment 1 were compared among the 
untreated, rAAV-GFP, rAAV-Lep, and pair-fed groups using 
one-way analysis of variance. For Experiment 2, the effects 
of treatment and diet were assessed using two-way analysis of 
variance. Pairwise comparisons were made using t-tests or the 
Wilcoxon–Mann–Whitney test. The required conditions for valid 
use of linear models were assessed using Levene’s test for homo-
geneity of variance, plots of residuals versus fitted values, normal 
quantile plots, and the Anderson–Darling test of normality. The 
Benjamini and Hochberg method (35) for maintaining the false 
discovery rate at 5% was used to adjust for multiple comparisons. 
Data analysis was performed using R version 3.3.2.

resUlTs

experiment 1: effects of 30 Weeks of 
hypothalamic leptin gene Therapy on 
Marrow adiposity and cancellous Bone 
histomorphometry in ob/ob Mice
The effects of treatment on body weight and on cancellous bone 
in the distal femur metaphysis are shown in Table 1. rAAV-Lep 
treatment resulted in lower body weight compared to untreated, 
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TaBle 1 | effects of hypothalamic leptin gene therapy (raaV-lep) on body weight and cancellous bone architecture in distal femur metaphysis in ob/ob 
male mice at 30 weeks post-vector administration.

ob/ob Mice anOVa FDr  
adjusted P

Untreated (n = 6) raaV-gFP (n = 7) raaV-lep (n = 8) Pair-fed (n = 6)

Body weight (g) 70 ± 2 68 ± 2 29 ± 3a–c 63 ± 2 <0.001*
Bone area/tissue area (%) 8.3 ± 1.1 7.2 ± 0.9 5.3 ± 1.0 5.7 ± 0.7 0.225
Trabecular thickness (μm) 35 ± 2 34 ± 1 26 ± 2a,b 31 ± 2 0.009
Trabecular number (mm−1) 2.3 ± 0.2 2.1 ± 0.2 2.0 ± 0.2 1.8 ± 0.2 0.645
Trabecular spacing (μm) 416 ± 42 470 ± 38 542 ± 71 547 ± 73 0.588

Data are mean ± SE.
*Previously reported (28).
aDifferent from untreated, P < 0.05.
bDifferent from rAAV-GFP, P < 0.05.
cDifferent from pair-fed, P < 0.05.
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rAAV-GFP-treated, and pair-fed mice. Significant differences in 
cancellous bone area fraction, trabecular number, or trabecular 
spacing were not detected with treatment. However, trabecular 
thickness was lower in rAAV-Lep-treated mice compared to 
untreated and rAAV-GFP-treated mice, but did not differ from 
pair-fed ob/ob mice.

The effects of treatment on MAT in the distal femur metaphy-
sis are shown in Figure 1. Marrow adiposity (adipose area/tissue 
area) (Figure 1A), adipocyte density (Figure 1B), and adipocyte 
size (Figure 1C) were lower in rAAV-Lep-treated mice compared 
to untreated, rAAV-GFP-treated, and pair-fed mice. Significant 
differences among untreated, rAAV-GFP-treated, and pair-fed 
mice were not detected for any of the MAT measurements. The 
effects of rAAV-Lep treatment on marrow adiposity can be read-
ily appreciated in Figures 1D–G.

The effects of treatment on osteoblast perimeter and osteoclast 
perimeter in the distal femur metaphysis are shown in Figure 2. 
Osteoblast perimeter (Figure  2A) and osteoclast perimeter 
(Figure 2B) were higher in rAAV-Lep-treated mice compared to 
untreated, rAAV-GFP-treated, and pair-fed mice. Significant dif-
ferences among untreated, rAAV-GFP-treated, and pair-fed mice 
were not detected for either of the cellular endpoints evaluated. 
The effects of rAAV-Lep treatment on osteoblast and osteoclast 
perimeter can be appreciated in Figures 2C–F.

experiment 2: effects of 15 Weeks of 
hypothalamic leptin gene Therapy and 
8 Weeks of high-Fat Diet on Marrow 
adiposity and cancellous Bone 
histomorphometry in ob/ob Mice
The effects of rAAV-Lep pretreatment and high-fat diet on body 
weight and on cancellous bone in distal femur metaphysis are 
shown in Table 2. Body weight was higher in WT mice fed high-
fat diet compared to WT mice fed regular diet. Body weight was 
also higher in ob/ob mice fed high fat compared to ob/ob mice 
fed regular diet and rAAV-Lep treatment resulted in lower body 
weight. Cancellous bone area fraction, trabecular thickness, and 
trabecular number were higher and trabecular spacing was lower 
in WT mice fed high-fat diet compared to WT mice fed regular 
diet. rAAV-Lep treatment in ob/ob mice resulted in lower can-
cellous bone area fraction and trabecular thickness. Significant 

differences in trabecular number or trabecular spacing were not 
detected with treatment in the ob/ob mice. With the exception 
of trabecular thickness, which was lower, significant differences 
between WT mice and rAAV-Lep-treated ob/ob mice fed regular 
diets were not detected for any of the remaining cancellous 
endpoints evaluated.

The effects of treatment on marrow adiposity in distal femur 
metaphysis are shown in Figure 3. Marrow adiposity and adipo-
cyte size were higher in WT mice fed high-fat diet compared to 
mice fed regular diet. Significant differences in adipocyte density 
were not detected with diet in WT mice. rAAV-Lep treatment 
in ob/ob mice resulted in lower marrow adiposity due to lower 
adipocyte density as well as lower adipocyte size. Significant 
differences in marrow adiposity, adipocyte density, or adipocyte 
size were not detected between WT and rAAV-Lep-treated ob/ob 
mice fed regular diet.

DiscUssiOn

Leptin-deficient ob/ob mice were heavier and had increased MAT 
in distal femur metaphysis compared to WT mice. Consumption 
of high-fat diet resulted in increased body weight in both WT 
mice and ob/ob mice but increased MAT and cancellous bone 
in WT mice only. rAAV-Lep treatment decreased MAT in ob/
ob mice. The reduction in MAT in rAAV-Lep-treated ob/ob mice 
was accompanied by increases in osteoblast-lined and osteoclast-
lined bone perimeter but not by an increase in cancellous bone.

Continuous and once daily intracerebroventricular admin-
istration of leptin were similarly effective in reducing MAT in 
long bones of ob/ob mice (23, 24, 36, 37). Based on lower adipo-
cyte number and size and increased concentration of apoptosis 
marker caspase-3 in bone marrow adipocytes, the reduction 
in MAT was likely due to a combination of reduced adipocyte 
differentiation, increased fat oxidation, and increased adipocyte 
apoptosis. A similar reduction in MAT was observed following 
subcutaneous leptin administration (36).

In normal female rats, hypothalamic delivery of rAAV-Lep 
was shown to maintain lower body weight, WAT weight, and 
serum leptin levels (2.7 ± 0.3 versus 1.0 ± 0.1 ng/ml) for at least 
18 weeks following vector administration. By contrast, rAAV-Lep 
transiently reduced MAT; MAT levels were reduced at 5 weeks 
but returned to normal levels by 10  weeks following vector 
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administration (38). Also, hypothalamic rAAV-Lep gene therapy 
was ineffective in lowering MAT in ovariectomized rats (39). In 
the present study, MAT levels in rAAV-Lep-treated ob/ob mice, 
evaluated 15 and 30 weeks following vector administration, were 
much lower than age-matched ob/ob controls and comparable to 
WT mice in Experiment 2. These findings suggest that (1) while 
very important, the physiological actions of leptin on MAT are pri-
marily manifested at low hormone levels and (2) hyperleptinemia 
has little further effect on MAT. If correct, this could help explain 
why some studies fail to detect a relationship between blood leptin 
levels and MAT (1). The findings regarding the actions of leptin 
on MAT are remarkably similar to the actions of the hormone on 
bone growth, maturation, and turnover. Whereas hypothalamic 
rAAV-Lep gene therapy corrected the skeletal abnormalities in 
ob/ob mice, it had minimal long-term impact on bone in rodents 
capable of producing leptin (16, 18, 28, 39).

It was initially hypothesized that the complex skeletal phenotype 
of ob/ob mice was due to opposing actions of peripheral and central 
leptin on bone formation (40, 41). However, subcutaneous and 
intracerebroventricular delivery of leptin were found to similarly 
increase bone formation in ob/ob mice (36). Additionally, long-
duration hypothalamic leptin gene therapy was shown to normal-
ize bone microarchitecture in ob/ob mice; specifically, increasing 
hypothalamic leptin levels resulted in increased femur length and 
total femur bone volume but decreased cancellous bone volume 
fraction in lumbar vertebra (28). These latter findings imply that, 

in addition to increasing longitudinal bone growth, delivery of 
leptin into the hypothalamus results in increased bone formation 
as well as increased bone resorption. Thus, an imbalance between 
bone formation and resorption related to local environment (e.g., 
precursor cell populations, mechanical loads, paracrine factors, 
etc.) potentially explains the contrasting phenotypes that have 
been identified in bones of the limb and spine in ob/ob mice (41).

Bone- and bone compartment-specific changes in microarchi-
tecture in response to hormonal regulators of bone metabolism 
and mechanical loading environment are not unique to leptin. 
For example, by regulating longitudinal and radial bone growth 
and bone turnover balance, estrogens, and androgens contribute 
to sexual dimorphism of the skeleton. In this regard, administra-
tion of estrogen to growing ovariectomized rats results in shorter 
bones with lower total bone mass but higher site-specific can-
cellous bone volume (42). Ovariectomized rats also experience 
increased MAT expansion (39). ob/ob mice of both genders are 
hypogonadal due to reduced GnRH secretion (43), a defect that 
is reversed following leptin treatment (25, 29). Thus, it is possible 
that hypogonadism contributes to MAT expansion in ob/ob mice. 
Expansion of MAT during caloric restriction in WT mice was 
associated with increased circulation of glucocorticoids, while 
caloric restriction resulted in a further increase in the already 
high levels of MAT in leptin-deficient ob/ob mice (1, 18). These 
findings provide evidence that multiple factors, including leptin, 
regulate MAT levels.

http://www.frontiersin.org/Endocrinology/
http://www.frontiersin.org
http://www.frontiersin.org/Endocrinology/archive


0

1

2

3

4

5

6

ob/ob
Untreated

ob/ob
rAAV-GFP

ob/ob
rAAV-Lep

ob/ob
Pair-fed

O
c.

Pm
/B

.P
m

 (
%

)

Osteoclast Perimeter

0

2
4

6
8

10

12
14

ob/ob
Untreated

ob/ob
rAAV-GFP

ob/ob
rAAV-Lep

ob/ob
Pair-fed

O
b.

P
m

/B
.P

m
 (

%
)

Osteoblast Perimeter
A B

a,b,c
a,b,c

rAAV-GFP rAAV-Lep Pair-fed

Bone

D FE

Bone Bone

Osteoclast

**

*

*

Osteoclast

Osteoclast

*

*

UntreatedC

Bone

*

* Osteoclast

*

FigUre 2 | effects of hypothalamic leptin gene therapy (raaV-lep) on osteoblast perimeter, an index of bone formation, and osteoclast perimeter, 
an index of bone resorption, in distal femur metaphysis in male ob/ob mice at 30 weeks post-vector administration. Osteoblast perimeter (a) and 
osteoclast perimeter (B) were increased with rAAV-Lep treatment. The effects of treatment on osteoclast perimeter, an index of bone resorption, can be readily 
appreciated in representative micrographs from an untreated (c), rAAV-GFP-treated (D), rAAV-Lep-treated (e), and pair-fed to rAAV-Lep (F) mouse. Data are 
mean ± SE (n = 6–8/group). aDifferent from untreated, bdifferent from rAAV-GFP, and cdifferent from pair-fed, P < 0.05. Asterisks demarcate adipocytes.

6

Lindenmaier et al. Leptin and Marrow Adiposity

Frontiers in Endocrinology | www.frontiersin.org August 2016 | Volume 7 | Article 110

As previously mentioned, short-duration delivery of leptin 
into the hypothalamus increased bone formation (36). Similarly, 
hypothalamic leptin gene therapy increased serum osteocalcin 
levels and osteoblast perimeter in lumbar vertebra of ob/ob mice 
(16, 44). In the present study, hypothalamic leptin gene therapy 
increased osteoblast perimeter in distal femur metaphysis in ob/
ob mice 30 weeks following vector administration. These findings 
indicate that leptin promotes higher levels of bone formation 
prior to and following restoration of normal body weight and 
bone mass in ob/ob mice (28).

The increased cancellous bone volume fraction observed 
at selected skeletal sites (lumbar vertebrae) in ob/ob mice was 
initially attributed to increased bone formation, suggesting that 
leptin was antiosteogenic (45). However, subsequent studies 
consistently reported decreased bone formation in ob/ob mice 
and leptin receptor-deficient db/db mice, and increased bone 
formation following intracerebroventricular delivery of leptin, 
leptin gene therapy, or subcutaneous administration of leptin 
in ob/ob mice (16, 37, 44). Leptin signaling-deficient (ob/ob and 
db/db) mice have normal or increased osteoclast number but 
exhibit evidence for impaired osteoclast function (16, 18). As a 
consequence, these mice exhibit impaired skeletal maturation 
due to defective resorption of calcified cartilage. Specifically, 
the high cancellous bone volume fraction represents mild 

osteopetrosis. In the present study in ob/ob mice, rAAV-Lep 
resulted in increased osteoclast-lined bone perimeter. Thus, the 
failure to detect an increase in cancellous bone volume fraction in 
the femur metaphysis in response to higher leptin levels is likely 
due to parallel increases in bone formation and bone resorption.

High MAT levels in ob/ob mice are associated with low cancel-
lous bone turnover (16). In the present study, rAAV-Lep resulted 
in increases in osteoclast-lined perimeter as well as osteoblast-
lined bone perimeter and greatly reduced MAT with minimal 
change in cancellous bone area fraction. High MAT levels are not 
unique to leptin deficiency. Growth hormone deficiency in rats 
and mice induced by hypophysectomy or deletion of the gene for 
growth hormone, respectively, is also associated with high MAT 
and low bone turnover. In the case of growth hormone deficiency, 
parathyroid hormone was found to increase bone formation in 
hypophysectomized rats without impacting MAT levels, demon-
strating that bone formation induced by bone anabolic agents is 
not suppressed by high levels of MAT (33). Similarly, although 
bone formation was increased, the absence of MAT in kitW/W-v 
mice did not protect against ovariectomy-induced bone loss (46). 
Taken together, these findings suggest that bone resorption as well 
as bone formation can be impacted during changes in MAT levels 
and interventions that target MAT may not necessarily change 
bone turnover balance.
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Vector Diet interaction

Body weight (g) 29 ± 1 38 ± 1 0.014 56 ± 2 66 ± 2 28 ± 3 33 ± 2 0.000 0.003 0.307*
Bone area/
tissue area (%)

7.1 ± 1.0 11.5 ± 0.8 0.009 7.9 ± 0.9 9.9 ± 1.0 7.1 ± 0.7 6.6 ± 0.6 0.016 0.486 0.159

Trabecular 
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Trabecular 
spacing (μm)
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Data are mean ± SE.
*Previously reported (30).
aDifferent from WT mice fed regular diet.
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A positive association between body weight and bone mass 
was observed in ob/ob as well as WT mice (30, 47). However, lep-
tin appears to sensitize the skeleton to bone mechanical loading. 
This may explain why leptin-deficient mice have a low total bone 
mass even though they are morbidly obese and why the massive 
weight loss in ob/ob mice following leptin treatment is actually 
associated with a net increase in bone mass (28).

Conditional knockout of the leptin receptor in bone marrow 
stromal cells has been reported to result in local increases in 
osteogenesis and decreased adipogenesis (48). It is difficult to 
reconcile these findings with the skeletal phenotype of leptin 
receptor-deficient mice (16, 49) or with the present results 
demonstrating that increasing hypothalamic leptin levels 
profoundly reduces MAT levels. Evidence that factors second-
ary to leptin deficiency are responsible for the discrepancy, as 
suggested by Yue et  al., are presently lacking and correction 
of many of the metabolic abnormalities associated with leptin 
deficiency (e.g., hyperglycemia), rather than improving, actu-
ally worsens the skeletal phenotype of ob/ob mice (18). Also 
inexplicable by Yue et  al. is the finding that adoptive transfer 

of leptin receptor-deficient db/db bone marrow cells into WT 
mice recapitulates the low bone formation skeletal phenotype of  
db/db mice without impacting food intake or weight gain (16). 
It is possible that the role of leptin receptors in regulating bone 
metabolism depends upon stage of stromal cell differentiation 
(50), but this requires additional research.

A limitation of the present study is that MAT measurements 
were performed at a single skeletal site and MAT subtypes were 
not evaluated. The lipid composition and physiological function 
of MAT can vary with location and/or regulatory factors, such as 
growth hormone status (33, 51). A further limitation of most stud-
ies, including the present study, is that they have been performed 
housing mice at room temperature. Thermoneutral (temperature 
range where basal rate of energy production is at equilibrium 
with heat loss) in mice ranges from 26 to 34°C (52). Mild cold 
stress induced by room temperature housing results in dramatic 
cancellous bone loss at the femur metaphysis. Interestingly, mice 
housed at 32°C consumed ~40% less food (fed ad libitum) but did 
not differ from room temperature-housed mice in weight (53). 
In addition to higher bone mass, mice housed at 32°C had greatly 
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reduced UCP-1 gene expression in brown fat, higher serum lep-
tin, higher MAT levels due to increased adipocyte number, higher 
bone formation rate to due higher osteoblast perimeter, and lower 
osteoclast perimeter. These findings suggest that non-shivering 
thermogenesis substantially influences the association between 
leptin, MAT, and bone cells.

In summary, hypothalamic leptin gene therapy maintained low 
MAT levels in ob/ob mice fed regular or high-fat diet. The reduc-
tion in MAT was accompanied by an increase in osteoblast-lined 
bone perimeter but not an increase in cancellous bone volume 
fraction. The increase in osteoclast-lined bone perimeter suggests 
that the increase in bone formation was matched by an increase 
in bone resorption. These findings provide further evidence 
that a deterministic model where reducing MAT will invariably 
lead to increased bone volume is not tenable. As a consequence, 
interventions targeted at reducing MAT may not be an effective 
strategy for increasing bone mass.
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