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 Abstract: Methamphetamine (Meth) abuse presents a global problem and commonly occurs with 
stress and/or alcohol use disorders. Regardless, the biological causes and consequences of these co-
morbidities are unclear. Whereas the mechanisms of Meth, stress, and alcohol abuse have been exam-
ined individually and well-characterized, these processes overlap significantly and can impact the neu-
ral and peripheral consequences of Meth. This review focuses on the deleterious cardio- and cerebro-
vascular effects of Meth, stress, alcohol abuse, and their comorbid effects on the brain and periphery. 
Points of emphasis are on the composition of the blood-brain barrier and their effects on the heart and 
vasculature. The autonomic nervous system, inflammation, and oxidative stress are specifically high-
lighted as common mediators of the toxic consequences to vascular and perivascular health. A signifi-
cant portion of the Meth abusing population also presents with stress and alcohol use disorders, 
prompting a need to understand the mechanisms underlying their comorbidities. Little is known about 
their possible convergent effects. Therefore, the purpose of this critical review is to identify shared 
mechanisms of Meth, chronic stress, and alcohol abuse that contributes to the dysfunction of vascular 
health and underscores the need for studies that directly address their interactions. 
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1. INTRODUCTION 

Methamphetamine (Meth) is a widely used psychostimu-
lant with high abuse potential. The 2019 National Survey on 
Drug Use and Health reports that 1.7 million Americans over 
the age of 26 have admitted to using Meth within the past 
year, with approximately 500k users presenting with a Meth 
use disorder (MUD) [1]. While these numbers alone are 
alarming, they do not include the homeless or incarcerated 
population, which is reported to have a higher percentage of 
Meth users than the general population [2, 3]. The 2019 
World Drug Report estimated 28.9 million users of amphet-
amines worldwide ranging in ages from 15-64 years, with 
the highest prevalence of amphetamine use in North America 
[4]. The consequences of MUDs manifest in negative conse-
quences, both individual and societal [5]. The long-term tox-
ic effects of Meth-use primarily affect the central nervous 
system, but there is also extensive damage to peripheral or-
gans and systems. A clear understanding of the deleterious 
consequences related to Meth abuse and its potential treat-
ment requires knowledge of co-existing conditions that com-
prise the vast majority of individuals with MUD. 

Meth use disorders are commonly comorbid with alcohol 
and stress. Approximately 80% of amphetamine users also  
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present with an alcohol use disorder (AUD) [6]. Further-
more, these intoxicants are commonly used in tandem that 
may provide a self-medicating loop of a stimulant and a de-
pressant [7]. Stress is a well-documented risk factor for the 
development of addiction and the vulnerability to relapse. 
The effects of stress also influence patterns of alcohol and 
Meth abuse [8] and can further contribute to a triad of Meth, 
alcohol abuse, and stress. 

While the neurotoxicological and addictive effects of 
Meth abuse have received the most attention, vascular and 
perivascular effects contribute to Meth-associated coronary 
risk, hypertension, and cardiomyopathy [9-10] and must be 
considered in understanding the neurotoxicity of Meth. Simi-
larly, alcohol and stress have been shown to contribute to 
deleterious effects on cardio- and cerebrovascular health and 
can impact the neural effects of Meth.  

This critical review will focus on mechanisms underlying 
the toxic consequences of Meth use as they relate to cerebro- 
and cardiovascular integrity. Of particular consideration is 
the contribution from the commonly occurring co-morbid 
disorders of stress and alcohol abuse with Meth.  

2. MECHANISMS OF METH VASCULAR TOXICITY 

2.1. Central Effects of Meth Toxicity  

Meth is known to rapidly accumulate in the brain paren-
chyma of rodents after a systemic administration [11]. The 
small size and lipophilicity of Meth provide a facile transport 
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into the brain. In humans, uptake into the brain accounts for 
10% of a single i.v. dose, whereas most go to the liver (23%) 
and lungs (22%) [12]. Clearance from the brain, however, is 
among the slowest compared to other organs and may con-
tribute to its long-lasting central effects. The slow clearance 
of Meth from the brain may be explained by its accumulation 
and binding to catecholamine-containing vesicles and cate-
cholamine transporters (e.g., noradrenergic, dopamine, and 
serotonin transporters). While Meth clearance from the body 
occurs mainly via excretion through the urine, the mecha-
nisms for clearance from the brain are unknown [13]. Re-
gardless, it is likely that clearance is regulated by drug efflux 
transporter proteins such as P-glycoprotein that actively 
transports large hydrophobic amphipathic drugs from epithe-
lial cells of the BBB out to the peripheral circulation [14].  

The mechanism of action for Meth in the central nervous 
system involves the displacement of intracellular monoam-
ines via the reverse action of plasmalemmal monoamine 
transporters, thereby increasing their concentrations in the 
extracellular synaptic space. The increase in available mono-
amines is potentiated by the inhibition of monoamine oxi-
dases, which typically regulate monoamine degradation and 
reduce synaptic availability of the monoamines [15]. The 
toxicological consequences associated with Meth abuse in-
clude the dysregulation of catecholamine sequestration (e.g., 
displacement of dopamine from intracellular vesicles and 
increased synaptic presence) and catechol-derived reactive 
oxygen species. In the central nervous system, dysregulation 
of dopamine sequestration also occurs with glutamate-
mediated excitotoxicity, mitochondrial dysfunction, mono-
amine terminal damage, neurodegeneration, and aberrant 
inflammatory responses [16]. The resulting decreases in 
markers of dopamine terminals are evident in pre-clinical 
studies as well as in human Meth users[17]. 

The blood-brain barrier (BBB) is comprised of a unique 
neurovascular unit composed of tight junctions within endo-
thelial cell surfaces of the cerebrovasculature, as well as sur-
rounding pericytes and astrocytes that provide protection 
from circulating plasma components that may be toxic to 
neurons while permitting the passage of essential ions and 
signaling molecules [18-20]. A compromised BBB allows 
for the unregulated passage of water, proteins, or inflamma-
tory mediators such as macrophages and neutrophils that 
induce brain edema and can contribute to brain damage or 
neurodegeneration. Meth has been shown and suggested to 
reversibly permeabilize the BBB and aid in the delivery of 
less permeable therapeutics to the brain [21]. However, the 
biological mechanisms that contribute to the Meth-induced 
permeabilization of the BBB, such as hyperthermia, reactive 
oxygen and nitrogen species, mitochondrial dysfunction, and 
inflammation, suggest more long-term permanent effects 
[22-26].  

The direct action of Meth on BBB integrity has been 
shown using organ-on-chip models of the human neurovas-
cular unit that includes endothelial cells, pericytes, glia, and 
neurons [27]. By coupling three chips that model diffusion 
between the vascular and perivascular space, a reversible 
Meth dose-dependent loss of barrier function was identified. 
While no mechanism was proposed for the activity of Meth 
at the BBB in this study, mass-spectrometry analysis for 

each cell type revealed a disruption of the integrated signal-
ing mechanisms between neuronal, vascular, and perivascu-
lar components that influence their metabolic states. For ex-
ample, brain endothelial cells and astrocytes primarily de-
pend on glycolysis and provide lactate as an energy source 
for neurons. One effect of Meth in this BBB model was to 
downregulate glycolysis pathways in the vascular and peri-
vascular components with slight upregulation in the neuronal 
component. Other in vitro studies have similarly shown the 
direct effect of Meth on BBB integrity using cultured brain 
microvascular endothelial cells (BMVECs) as a model. Dis-
ruption of the modeled BBB has been attributed to modula-
tion of tight junction protein expression [23] and increases in 
reactive oxygen and nitrogen species [24-25]. Not surpris-
ingly, treatment with antioxidants during and after Meth at-
tenuates BBB dysfunction. Similarly, Meth-induced genera-
tion of ROS has been linked to mitochondrial dysfunction 
and ER stress in cultured BMVECs that decreased cell via-
bility, induced apoptosis, and disrupted tight junctions. In 
one study, the use of an ER-stress inhibitor, 4-phenylbutyric 
acid, before Meth administration blocked BBB disruption in 
C57BL/6J mice [28]. 

While Meth accumulation in the brain may provide a 
mechanism for the disruption of the BBB, peripheral factors 
are also implicated. A study by Northrop et al. identified the 
role of liver-derived ammonia in the permeabilization of the 
BBB via activation of matrix metalloproteinases (MMP9) 
[29]. In this study, treatment with lactulose prior to a Meth 
binge dose administration increased ammonia excretion and 
blocked MMP9 activation and BBB dysfunction. Additional-
ly, work from this group found that local administration to 
the brain of ammonia and Meth, but not either species alone, 
produced neuronal damage similar to that seen with a sys-
temic administration of Meth, collectively highlighting the 
role that peripheral mediators play in this toxic outcome 
[30].  

Chronic methamphetamine induces hyperthermia in ro-
dents and humans. Hyperthermia alone induces disruption of 
the BBB. Studies by Urakawa et al. indicate that localized 
hyperthermia (i.e., the heating of rats’ heads using flood-
lamps) increased the extravasation of systemically adminis-
tered horseradish peroxidase (HRP) into the brain parenchy-
ma [31]. A necrotic zone contained the highest HRP extrava-
sation and also a loss of cell structure, capillary damage, and 
a reported “spongy” state. The reactive (2nd most affected) 
zone showed evidence of neuronal loss or shrinkage, infiltra-
tion of macrophages, and swelling of astrocytic endfeet, 
while the permeable (3rd most affected) zone only showed 
slightly swollen astrocytic endfeet. It was reported that HRP 
extravasation at the more highly disrupted zones was due to 
damaged endothelial cells and the induction of pinocytotic 
vesicles. A similar effect of Meth on the integrity of the 
blood-spinal cord barrier (BSCB) has been reported. A study 
by Kiyatkin and Sharma illustrated that a single subcutane-
ous injection of 9mg/kg Meth resulted in permeabilization of 
the BSCB and was associated with glial cell activation and 
edema [32]. Furthermore, they report that the effect on 
BSCB integrity was enhanced when the ambient temperature 
was increased. Interestingly, serum from mice that under-
went a model of heatstroke (i.e., 2h exposure to 40.1°C, 50% 
humidity environment) impaired the BBB integrity of iPS 
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cell-derived brain microvascular endothelial cells [33]. It is 
known that liver enzymes are increased in serum from heat-
stroke patients, and severe liver failure has been reported in 
heatstroke patients [34]. Furthermore, heat stress increases 
circulating ammonia in humans [35]. Thus, it is possible that 
Meth-induced hyperthermia in humans may influence BBB 
integrity by heat-induced liver toxicity that releases neuro-
toxic ammonia.  

The gut-brain axis has been implicated in health and dis-
ease, including the effects of Meth. The bi-directional signal-
ing that occurs between the GI tract and the central nervous 
system is largely mediated by the microbiome (e.g., bacteria, 
fungi, and yeasts) that reside within the gut [36]. In addition, 
microbiome-derived mediators (e.g., xenobiotic metabolites, 
short-chain fatty acids, and neurotransmitters) are known to 
influence the development, maintenance, and integrity of 
major organs such as the brain, including the BBB [37].  
These mediators reach the brain via systemic circulation or 
through the vagus nerve, which originates in the brainstem 
and innervates the viscera, extending to the colon. Further-
more, the role of the gut microbiome and the gut-brain axis 
on psychological and pathological health has been associated 
with mood disorders and vulnerability to neurodegenerative 
diseases (e.g., Alzheimer’s, Parkinson’s, and Lou Gehrig’s 
disease) [38-39]. Meth exposure (2 mg/kg; s.c. b.i.d. for 14 
days) has been shown to alter the composition, but not the 
abundance, of gut bacteria in male Sprague-Dawley rats. 
These changes were associated with depressive-like behav-
ior, as assessed by the forced swim test [40]. Interestingly, a 
study performed in neonatal Wistar rats (PD 1-11) showed 
that exposure solely via breast milk from dams that were 
administered with Meth resulted in reduced spatial learning 
and memory formation in adulthood, suggesting a role for 
the gut-brain axis in neurodevelopment [40]. Indeed, multi-
ple rodent studies have also identified a role for the microbi-
ota in depressive behavior, social cognition, and the stress 
response, all of which are associated with the onset and per-
sistence of addiction [41-42]. A study of the gastrointestinal 
microbiome among young homosexual men who frequently 
use Meth showed that those Meth users exhibited a microbial 
imbalance that favored pro-inflammatory bacteria, thus im-
plicating the gut-brain axis in Meth use and behavior [43]. A 
study by Chen et al. showed that elevated levels of pathogen-
ic bacteria in the colon were associated with decreased do-
paminergic terminal integrity and increased markers of au-
tophagy in the striatum of adult BALB/c mice treated with 
an escalating multiple-dose- binge Meth. Furthermore, an 
increase in intestinal autophagy flora and an accumulation of 
metabolites associated with the autophagy pathway was re-
ported in fecal samples, indicating a potential gut-brain axis 
role in autophagy signaling [44]. Meth-induced changes in 
the gut microbiome have also been shown in female rodents. 
A study by Angoa-Perez et al. reported that a binge regimen 
of Meth in female mice induced a change in diversity and 
taxonomic structure of gut microbiota, following a binge 
regimen of Meth [45]. This study tracked dynamic changes 
in the microbiome composition for Meth and other drugs of 
abuse including substituted cathinones. 

 The role of gut-derived mediators in Meth-induced BBB 
toxicity has similarly received much attention. Normally, the 
gastrointestinal (GI) mucosa is the intestinal barrier that nec-

essarily separates pro-inflammatory luminal contents from 
the systemic circulation [46]. The breakdown of the gut-
blood barrier can induce an enterogenic infection that occurs 
by the invasion of pro-inflammatory intestinal bacteria into 
circulation. These infections can be exacerbated by the 
Meth-induced decreases in circulating leukocytes [47]. This 
can contribute to the disruption of vascular integrity both 
centrally and peripherally. Indeed, it is reported that Meth 
use can induce paralytic ileus, intestinal infarction, and is-
chemic colitis, all of which are associated with increased 
inflammatory mediators which compromise intestinal barrier 
integrity and produce downstream general vascular dysfunc-
tion [48-51]. Of particular interest has been the release of 
gut-derived serotonin (5-HT) into circulation that may con-
tribute to BBB disruption. It has been shown that increases in 
circulating 5-HT result in hyperthermia, oxidative stress, and 
BBB integrity disruption. The systemic administration of a 
5-HT receptor antagonist and a 5-HT synthesis inhibitor pro-
vided a protective effect from increased circulating 5-HT, 
further implicating the role of 5-HT in BBB breakdown [52]. 
Studies performed in anaesthetized rats have similarly shown 
that intravenous infusion of 5-HT increased BBB permeabil-
ity (by Evans Blue infiltration analysis), and pretreatment 
with a 5-HT receptor antagonist prevented this effect [53].  

2.2. Peripheral Effects of Meth Toxicity 

The peripheral and vasoactive effects of Meth are largely 
ignored as contributors to neurotoxicity, but like the central 
nervous system, effects of Meth are also regulated by in-
creases in circulating catecholamines. The acute peripheral 
effects of Meth use include increases in heart rate and hyper-
tension [54] due to the increases in circulating catechola-
mines that activate peripheral alpha 1- and beta 1-
adrenoceptors [55]. Furthermore, the central effects of am-
phetamine on the peripheral cardiovascular system are large-
ly due to the increased activity of noradrenergic signaling in 
the brainstem that can result in toxic consequences to organs 
densely innervated by sympathetic neurons, such as the heart 
[56-57]. Moreover, catecholaminergic neurons in the brain 
stem are distinctly vulnerable to Meth and are linked to car-
diovascular collapse [58-59]. Meth acutely increases the ac-
tivity of norepinephrine in the medulla that results in hyper-
tension and tachycardia, while long-term Meth use and sub-
sequent sensitization may contribute to hypotension and 
bradycardia that may be lethal. In fact, chronic Meth expo-
sure to rats leads to hypoperfusion and striatal hypoxia with 
evidence of neuronal damage [60].  

Adrenergic signaling and Meth-induced activation of the 
sympathetic nervous system have been implicated in Meth-
induced cardiomyopathies. Adrenergic neurons in the brain-
stem largely regulate blood pressure through activation of 
pre-ganglionic vasomotor neurons via adrenergic signaling 
and vasopressin release [61]. High levels of vasopressin in-
duce vasoconstriction that, in some cases, is sufficient to 
induce myocardial ischemia [62]. Activation of cardiac α- 
and β-adrenoreceptors by an adrenergic agonist is largely 
responsible for the increase in heart rate, and sustained or 
chronic activation can elicit fibrosis, limited contractile func-
tion, and necrosis such as that seen in pulmonary arterial 
hypertension (PAH). In fact, a retrospective study of Meth 
patients with clinically determined PAH and cardiomyopathy 
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showed that these comorbidities contributed to significant 
mortality risk and disease burden [9]. 

Long-term users of Meth commonly present with PAH 
[63]. Since Meth administered i.v, accumulates in the lungs, 
the mode of ingestion, i.e., smoking vs. i.v., is not a primary 
mediator of this effect. Changes in the Meth-metabolizing 
enzyme carboxylesterase 1 (CES1) have been associated 
with PAH severity in Meth users. Sequencing data from 18 
Meth-PAH patients revealed a single nucleotide variant in 
the CES1 gene that is predicted to reduce its activity [64]. 
The consequence of this loss of function was verified in 
pulmonary microvascular endothelial cells (PMVECs) that 
were transfected with the mutant enzyme resulting in re-
duced activity, whereupon treatment with Meth resulted in 
increases in ROS and apoptosis of PMVECs.  

Chronic Meth use has been associated with increased 
atherosclerotic plaque formation associated with increased 
endothelial cell and macrophage activation and a consequent 
enhanced inflammatory response [65-66]. Nazari et al. have 
shown that plasma levels of endothelial-derived microparti-
cles (EMPs) as markers of vascular injury are increased in 
rats that were administered Meth [67]. The increases in cir-
culating EMPs were detected alongside increases in bi-
omarkers of inflammation and oxidative stress. While Meth 
users typically lack the traditional atherosclerotic risk factors 
such as obesity and elevated serum cholesterol [68], increas-
es in endothelial cell activation, inflammatory proteins and 
cytokines, oxidative stress, and the recruitment of activated 
macrophages and white blood cells provide a local environ-
ment that is conducive to atherosclerosis [69]. A study con-
ducted using atherosclerosis-prone apolipoprotein E-
deficient (ApoE-/-) mice showed that chronic administration 
of Meth (i.e., 4 or 8 mg/kg/day i.p. for 24 weeks) promotes 
atherosclerotic aortic lesions in a dose-dependent manner 
[70]. Furthermore, plasma and aortic levels of pro-
inflammatory mediators such as C-reactive protein, TNF-α, 
and INF-γ were similarly increased. Further studies by this 
group showed atherosclerosis-prone mice fed a high choles-
terol diet also exhibited increases in splenic pro-
inflammatory leukocytes and cytokines and a decrease in 
anti-inflammatory leukocytes and cytokines in response to 
chronic Meth [71]. 

Clinical studies have also reported Meth-induced vascu-
lar toxicity in humans. A retrospective review of Meth-
related deaths in Australia from 2000 and 2005 showed that 
coronary artery atherosclerosis was detected in 54% of the 
371 study cases, where 14% of all study cases reported car-
diovascular events as the direct cause of death [72]. Similar-
ly, a study of Meth-related deaths from 2009-2015 identified 
cardiovascular disease as a major cause of death [73]. The 
primary and secondary causes of death for this cohort were 
accidental drug toxicity and cardiovascular disease, respec-
tively. This study also identified clinically significant en-
larged hearts and left ventricular hypertrophy, severe coro-
nary artery disease, and evidence of earlier ischemic events. 
When only patients in whom cardiovascular illness was not 
the primary cause of death were examined, the trends re-
mained the same. Similar long-range studies have identified 
higher incidences of cardiovascular disease and stroke events 
that include arrhythmia and hemorrhagic stroke in Meth us-
ers [74]. Despite the apparent association with Meth, it re-

mains to be definitively determined if Meth is a direct cause 
or whether the generally compromised health status of Meth 
abusers is the main contributor to the cardiovascular disease 
of these individuals.  

The contribution of gut-derived serotonin (5-HT), which 
accounts for 95% of the total 5-HT in the body, has received 
much attention due to its involvement in cardiovascular dis-
eases and the regulation of peripheral and central vascular 
membrane permeability [75]. High circulating 5-HT levels 
have been significantly associated with coronary artery dis-
ease and the occurrence of deleterious coronary events [76]. 
It has been shown that 5-HT signaling regulates cardiovascu-
lar tissue remodeling and can result in cardiac hypertrophy, 
fibrosis, and valve degradation [77]. Interestingly, the distri-
bution of 5-HT receptors mimics that of adrenergic receptors 
in the heart, and the role of 5-HT receptors in vascular wall 
remodeling and atherosclerosis has also been identified. A 
study by Hayashi et al. showed that the administration of a 
5-HT receptor antagonist attenuated the progression of ath-
erosclerosis in a high cholesterol-induced rabbit model of 
cardiotoxicity [78]. Furthermore, a study performed in mon-
keys showed that atherosclerosis potentiates the vasocon-
strictor response to circulating 5-HT, implicating the neuro-
modulator in chronic peripheral vascular pathology [79]. 

3. MECHANISMS OF STRESS AND METH VASCU-
LAR TOXICITY 

3.1. Central Effects of Stress Toxicity 

It is well accepted that stress is a part of life and, in some 
cases, results in favorable adaptability to unexpected condi-
tions or stimuli. Allostasis refers to the collection of physio-
logical responses that the body engages to maintain or regain 
homeostasis in the presence of a stressor. Chronic stress or 
allostasis overload is associated with psychological, metabol-
ic, and cardiovascular diseases, among others [80-83]. Fur-
thermore, chronic stress can result in a maladaptive response 
to stress which induces long-term metabolic dysfunction that 
contributes to disease states [84]. The stress response is 
largely regulated by the autonomic nervous system and the 
hypothalamic-pituitary-adrenal (HPA) axis. Activation of 
these systems results in the production and release of hor-
mones, peptides, inflammatory mediators, glucocorticoids, 
and other stress-molecules that activate biological systems 
for escaping or adapting to the stressor, all of which overlap 
with the effects of Meth (Fig. 1) [85]. 

Similar to Meth, chronic stress alters the integrity of the 
BBB. Using in vivo two-photon microscopy, Lee et al. 
showed that chronic restraint-stress of mice results in a gen-
eral cortical decrease in cerebrovascular diameter and vol-
ume and extravasation of a 40-kDa fluorescence-conjugated 
dextran, indicating BBB permeability [86]. They further re-
port increases in expression of vascular endothelial growth 
factor α (VGEFα) and decreases in the tight junction protein 
claudin-5. The authors suggest that a sustained decrease in 
blood flow to the brain results in a hypoxic state that increas-
es vascular endothelial growth factor (VEGF) and its recep-
tor, VEGFR2. Not surprisingly, the animals in this study also 
displayed depressive behavior in an elevated plus-maze and 
increased corticosterone plasma levels. Although VEGF 
promotes angiogenesis to restore blood supply in hypoxic 
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Fig. (1). Mechanistic overlap between Methamphetamine, chronic alcoholism, and stress that includes increases in reactive oxygen/nitrogen 
species, ER and mitochondrial stress, an exacerbated inflammatory response, and heightened adrenergic response provides insight into the 
toxicological consequences of their comorbidity in A) disruption of the blood-brain barrier and B) cardiovascular dysfunction. (A higher reso-
lution/colour version of this figure is available in the electronic copy of the article). 
 
conditions, preclinical studies have shown it promotes BBB 
permeability through the breakdown of tight junction pro-
teins [87, 88]. Likewise, a study reported by Menard et al. 
showed that chronic social defeat stress reduced BBB integ-
rity, the tight junction protein claudin-5, increased the infil-
tration of the peripheral cytokine interleukin-6 into the brain 
parenchyma and produced depressive-like behavior [89].  

The role of inflammation in stress-mediated BBB dys-
function has also been widely reported. The role of tumor 
necrosis factor-α (TNFα) in the disruption of the BBB and 
prolonged depressive-like behavior in mice was reported by 
Cheng et al. [90]. Mice that displayed prolonged depression 
after a learned-helplessness depression paradigm exhibited 
high levels of TNFα, activated glycogen synthase kinase -3 
(GSK3), and interleukins in the hippocampus. Increased 
BBB permeability and reduced levels of tight junction pro-
teins were similarly reported. Pharmacological inhibition of 
GSK3 during recovery reversed depressive-like behavior, 
reduced inflammatory cytokine levels, and recovered the loss 
of tight junction proteins. Similar results were obtained by 
administration of a TNFα inhibitor. The contribution of 
GSK3 to depression behavior in different stress models has 
been reported [91-92]. Its increased signaling interplay with 
corticosterone has also been shown in various studies [93-
94]; however, the mechanism by which corticosterone modu-
lates GSK3 activity is not known. Regardless, GSK3 activa-
tion regulates the immune response in the presence of stress 
[95]. For example, toll-like receptor 4 (TLR4) signaling can 
activate GSK3 that in turn mediates stress-induced increases 
in chemokines, cytokines, nuclear factor kappa B (NF- κB), 
and the NOD-like receptor family, pyrin domain containing 
3 (NLRP3) inflammasome [96]. 

Stress is a common risk factor in the development of ad-
diction and relapse behavior. In Meth users, this may be due 
to various lifestyle factors that include childhood events, 
financial and housing insecurity, or poor nutrition and sleep 
[97-98]. While acute stress can reduce the subjective effects 
of a low dose of Meth in a clinical study [99], anecdotal evi-
dence suggests that chronic stress or a maladaptive response 
to stress contributes to addiction behavior [100]. A longitu-
dinal study of long-term Meth users in prolonged abstinence 

reported stress as one of the most common themes in barriers 
to abstinence[98]. In a population of gay adult men who use 
Meth, there was a significant association between both poor 
mental health and alcohol use disorder (AUD), such that 
Meth and AUD severity were associated with comorbid 
mental health disorders [101]. Similarly, a comparison of 
individuals with previous life trauma to those that also self-
report post-traumatic stress disorder (PTSD) showed that 
those with PTSD were more likely to report Meth use than 
those without PTSD [102]. Indeed, unresolved PTSD is 
largely considered to be a chronic stress disorder [103].  
These studies are paralleled by pre-clinical studies in rodents 
reporting that stress triggers relapse to Meth and increases 
drug-seeking [8, 104].  

Rodent studies have elucidated the interaction between 
stress and Meth on BBB integrity and identified mediators 
that are distinct to the comorbidity (i.e., absent with either 
condition alone). Work by Northrop and Yamamoto indi-
cates that neuroinflammation may be a point of convergence 
underlying the comorbidity that results in BBB dysfunction 
[105]. Rats exposed to a paradigm of chronic unpredictable 
stress (CUS) exhibited a decrease in the tight junction pro-
teins occludin and claudin-5 and an increase in degradation 
of β-dystroglycan as an indicator of loss of the astrocytic 
endfeet component to the BBB after a Meth-binge dosage 
paradigm. Aside from the effects for claudin-5 and β-
dystroglycan, these effects were absent in the CUS and 
Meth-alone cohorts, thereby indicating a synergistic toxico-
logical profile. Not surprisingly, these results were accompa-
nied by a loss of BBB integrity marked by extravasation into 
the brain of a peripherally administered fluorescein isothio-
cyanate (FITC)-dextran complex and evidence of brain ede-
ma. The effects on tight junction proteins and BBB integrity 
persisted for at least 7 days of withdrawal. While no increas-
es in inflammatory markers were detected after 24h of with-
drawal, the CUS-Meth cohort exhibited increases in the in-
flammatory marker cyclooxygenase-2 (COX-2), the induci-
ble rate-limiting enzyme in the production of prostaglandins 
from arachidonic acid, after 7 days of withdrawal. Increases 
in COX-2, decreases in tight junction proteins, and extrava-
sation of FITC-dextran were all prevented when ketoprofen, 
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a COX inhibitor, was given before and after a Meth 
binge.Surprisingly, the administration of ketoprofen during 
the Meth-binge did not block these effects, highlighting the 
temporal, progressive, and synergistic nature of the CUS-
Meth toxicity to BBB integrity. This study also reported the 
protective effect of the prostaglandin receptor 1 (EP1) antag-
onist administered during withdrawal on the extravasation of 
FITC-dextran, further implicating the prostaglandin-
mediated inflammatory response to BBB dysfunction in the 
CUS-Meth paradigm.  

A similar study also highlights the role of COX-2 in 
CUS-Meth mediated dysregulation of the BBB. Natarajan et 
al. reported that rats that underwent a paradigm of 10 days of 
CUS followed by 7 days of unrestricted Meth self-
administration (SA) exhibited decreases in tight junction 
proteins that were mediated by COX-2 [106]. This study 
identified increases in COX-2 and degradation of β-
dystroglycan in cortical isolated capillaries at 3 days after the 
last day of Meth SA that persisted for at least 7 days, at 
which time point decreases in occludin were also apparent. 
Furthermore, these effects were detected in the CUS-Meth 
cohorts only and not with either drug alone. Administration 
of the COX-2 specific inhibitor nimesulide during withdraw-
al blocked the aforementioned effects. In contrast, a study of 
lipopolysaccharide (LPS)-mediated BBB disruption reported 
that permeability is exacerbated in COX-2 -/- vs. COX-2 +/+ 

mice when compared to similar COX-1 mice models, sug-
gesting that COX-2 maintains BBB integrity [107]. This 
seemingly contradictory involvement of COX-2 suggests its 
differential role in initiating or responding to BBB permea-
bility by a drug (i.e., Meth) vs. an inflammatory insult (i.e. 
LPS) and provides further evidence of a novel response to 
this comorbidity. 

3.2. Peripheral Effects of Stress Toxicity 

Similar to Meth, stress poses a risk for peripheral cardio-
vascular disease. Several clinical studies have identified a role 
for social stress in poor cardiovascular outcomes, including 
hypertension, cardiovascular disease, stroke, and sudden car-
diac death [108]. Retrospective analyses of clinical reports 
show a correlation between adverse life events and cardiac 
pathologies. These include, among others, bereavement of a 
loved one, loneliness, difficult work environment, financial 
and home life stress, and natural disasters [109-111]. 

The effects of chronic stress on cardiovascular diseases 
can be partially attributed to the imbalance of the autonomic 
nervous system imposed by the activation of the sympathetic 
nervous system. A study by Costoli et al. reported that a 
mouse model of repeated social defeat episodes concurrent 
with the constant threat of further attack by a dominant 
mouse resulted in a 6-fold increase in cardiac reparative tis-
sue throughout the ventricular wall when compared to mice 
in a controlled social environment [112]. Furthermore, real-
time electrocardiogram (ECG) measurements via radiote-
lemetry indicated a shift toward increases in the sympathetic 
response with subsequent stress. As fibrosis of cardiac tissue 
is a common cause of cardiac arrhythmia, the authors claim 
that the increased fibrosis in socially defeated mice may be 
due to adrenergic stimulation and ventricular remodeling. 
The deleterious effects of adrenergic catecholamines on car-
diocyte health and myocardial remodeling have been re-

viewed and reported elsewhere [113-115], but one central 
mechanism may involve calcium dysregulation via L-type 
voltage-gated calcium channels (L-VGCC) [116-117]. A 
likely scenario underlying both stress and Meth with regard 
to cardiovascular disease is that β-adrenergic stimulation 
increases L-VGCC phosphorylation, which increases chan-
nel availability and subsequent intracellular calcium, exacer-
bates cardiac activity, and induces arrhythmic behavior [118-
119] upon exposure to Meth.  

Similar to the effects on cerebrovascular integrity, stress-
induced inflammation also plays a role in cardiovascular 
health. Chronic inflammation is a landmark of cardiac disease 
and is correlated with chronic stress [120]. Activation of the 
HPA axis induces a release of glucocorticoids (GC) that inhib-
its the expression of inflammatory mediators such as TNF-a 
and interleukin 6 (Il-6) [121, 122], which can further act to 
increase GC release. In the case of cytokine overload, this 
negative feedback loop is dysregulated due to decreases in 
GC-responsiveness that result in a chronic state of inflamma-
tion. Indeed, circulating levels of IL-6 have been reported as 
associated with or predictive of atherosclerosis [123]. 

Little is known regarding the contribution of stress to the 
perivascular effects of Meth, but preclinical studies provide 
insight into the potential mechanisms that result in cardiotoxi-
city. A study by Tomita et al. reported mice that were admin-
istered Meth and exposed to a subsequent water-restraint 
stress exposure for 1, 3, and 6h exhibited a significant increase 
in serum markers of cardiotoxicity at all time points [124]. 
Histological examination of cardiac muscle confirmed this 
effect. Furthermore, significant increases in circulating TNF-α 
and IL-6 were reported in the stress+Meth group when com-
pared to either condition alone. Additionally, cardiac RNA 
expression for the inducible heat shock protein 70 (Hsp 70) 
was increased specifically in the Meth-only group that may 
reflect its attempt at cardioprotection [125, 126]. The protec-
tive role of Hsp70 in cardiotoxicity has been shown in various 
studies. Indeed, a study by Song. et al. reports that cultured 
neonatal rat cardiomyocytes that underwent a model of ische-
mia-reperfusion-induced injury exhibited increased Hsp70 
expression, phosphorylated MAPK, calcium overload, mark-
ers of apoptosis, and expression of IL-1β and IL-6 [126]. 
While transfection with a short-hairpin RNA against Hsp70 
exacerbated these outcomes, incubation with a MAPK inhibi-
tor blocked the exaggerated effects of Hsp70 knockdown, im-
plicating a protective role for Hsp70 and a deleterious role for 
MAPK signaling. The well-established role of MAPK in the 
regulation of chronic inflammation may provide an explana-
tion for its role in cardiotoxicity [127]. A further study on the 
combined effects of stress and Meth reports that acute stress 
inhibits the Meth-induced increases in Hsp70 that results in 
enhanced myocardial damage in mice. Furthermore, chronic 
exposure to a stress+Meth paradigm resulted in a further re-
duction in Hsp70 expression in cardiac tissue, accompanied by 
an exacerbated histopathological damage to cardiac muscle 
[128]. While these studies indicate a shared mechanism that 
includes the inflammatory and heat-shock response, further 
studies are required to identify mechanisms underlying addi-
tive versus synergistic interactions.  

Interestingly, clinical studies also implicate Hsp 70 levels 
with chronic stress and drug-induced mortality. A study of 
steelworkers who self-report chronic exposure to industry-
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related stressors (e.g., severe noise, dust, heat) showed high 
incidences (~26-40%) of plasma antibodies to Hsp 70, com-
pared to control office workers (18%) [129]. Furthermore, 
there was a significant correlation between the presence of 
antibodies and hypertension, even when correcting for work 
stress. Similarly, a retrospective analysis of organ samples 
from 50 autopsy cases of toxicologically proven drug-
induced mortality found high immunoreactivity for Hsp70 in 
heart, brain, and kidney of Meth, morphine, and alcohol cas-
es [130]. While these results are not surprising for the Meth 
cases, since the induction of Hsp70 is considered to provide 
cells resistance to stressful conditions and impart thermotol-
erance [131], the authors report that high levels for Hsp70 
were present in tissues regardless of reported hyperthermia, 
indicating an alternative mechanism underlying the induction 
of Hsp70. Indeed, adrenergic receptor stimulation has been 
reported to increase Hsp70 expression in vascular tissues in 
rats, which may explain an increase that is independent of 
hyperthermia [132].  

The role of stress on the gut-blood barrier integrity and 
downstream effects has recently received attention among 
researchers. Numerous gastrointestinal diseases and compli-
cations arise from chronic stress [133]. Chronic stress in-
creases inflammation in the gut mucosa and increases co-
lon/gut-blood barrier permeability, as well as modifying the 
composition of the gut microbiome [134-135]. The damage 
produced by chronic stress initiates a pro-inflammatory cas-
cade of cytokines such as IL-1β and TNFα released from the 
epithelium that ultimately degrades the tight junctions of the 
GI barrier to cause “Leaky Gut Syndrome” [136]. Conse-
quently, bacteria-derived toxins such as lipopolysaccharide 
(LPS) are leaked into the systemic circulation and result in 
endotoxemia. Unsurprisingly, endotoxemia is associated 
with chronic non-communicable diseases that include coro-
nary artery disease and arteriosclerosis[137]. This is likely 
due to the commonly occurring theme of an unmitigated 
hyper-inflammatory state that contributes to the pathology in 
these diseases. The endotoxin LPS resides on the membrane 
of gram-negative bacteria and binds to toll-like receptor 4 
(TLR4) to induce an innate immune response that signals the 
activation of NFκB and COX-2 and the release of cytokines 
IL-1β and TNF-α [138]. Importantly, peripheral circulating 
cytokines and LPS can enter the brain via the lymphatic sys-
tem or by crossing the blood-brain barrier [139-140] to cause 
neuroinflammation and promote BBB disruption [141]. 
While the combined effects of Meth and chronic stress and 
the contribution of gut-derived mediators on vascular dys-
function remain largely understudied, it is possible that their 
shared mechanisms in the gut-barrier breakdown and pro-
inflammatory status would exacerbate peripheral and central 
vascular integrity. An additional point of convergence may 
reside in the interactions between circulating 5-HT known to 
directly modulate microbial growth [142] and changes in the 
gut microbiome that are induced by Meth or stress-alone. 

4. MECHANISMS OF AUD AND METH VASCULAR 
TOXICITY 

4.1. Central Effects of AUD Toxicity 

Multiple lines of evidence suggest an interaction between 
AUD and Meth-induced vascular toxicity (Fig. 1). For the 

purpose of this review, alcohol and ethanol (EtOH) will be 
used interchangeably with the understanding that ethanol is 
the component of interest, whereas traditional consumption 
of alcohol by humans may contain various byproducts. In-
deed, beneficial contributions from de-alcoholized red wine 
have been shown in human subjects [143]. Alcohol use dis-
orders are defined as chronic diseases marked by the im-
paired ability to stop or control use despite recurring nega-
tive consequences [144]. The 2019 National Survey on Drug 
Use and Health (NSDUH) reported that 14.1 million (5.6%) 
of American adults aged 18 years or older self-reported with 
an alcohol use disorder (AUD). Furthermore, it is reported 
that approximately 80% of Meth users also present with an 
AUD and are commonly used in tandem [6-7, 145]. The 
popularity of the co-use of these drugs stems from the re-
ported increases in the positive subjective effects compared 
to either drug alone [146] as well as the use of alcohol to 
blunt the negative stimulant effects of Meth. Irrespective of 
the reasons for their co-abuse, the high incidence of the 
comorbidity between alcohol and Meth imparts particular 
obstacles to addiction profile identification, treatment com-
pliance and presents unique toxicological outcomes [147-
149].  

EtOH easily enters the brain and bypasses most biologi-
cal membranes and the BBB due to its small size and lipo-
philicity. EtOH is metabolized and converted to acetalde-
hyde (Ach) by oxidative enzymes, including the inducible 
cytochrome P450 E1 (CYPE1) isoform, alcohol dehydrogen-
ase (ADH), and catalase. The oxidative reaction of CYP2E1 
is easily decoupled, resulting in the production of reactive 
oxygen species (ROS) such as superoxide [150]. Haorah et 
al. used a human BMVEC model of the BBB and showed 
that in vitro exposure to a physiologically relevant concen-
tration of EtOH resulted in increases in CYP2E1 and ADH 
and the production of ROS [151]. These changes were ac-
companied by myosin light chain (MLC)–mediated phos-
phorylation of tight junction proteins, decreased BBB integ-
rity, and monocyte migration across the BBB. Furthermore, 
Ach and exogenous ROS treatment recapitulated these ef-
fects. It is important to note that Ach alone, similar to Meth, 
increases mitochondrially-derived ROS as well as covalently 
modify proteins or compete with the metabolism of endoge-
nous aldehydes [152, 153]. A similar study using the 
BMVEC model extended the above findings and identified 
decreases in the expression of tight junction proteins after 
long-term EtOH exposure that was mediated by PKC-α 
phosphorylation of the tight junction proteins [154]. 

Pre-clinical studies have also highlighted the vulnerabil-
ity of the BBB to chronic EtOH consumption in vivo. A 
study by Ehrlich and Humpel reports that male Sprague 
Dawley rats exposed to vascular risk factors associated with 
acute ischemic stroke (i.e., homocysteine, cholesterol, and 
20% EtOH each separately for 5-12 months) exhibited BBB 
leakage in the cortex [155]. This treatment paradigm also 
resulted in declined spatial memory in an 8-arm radial maze. 
Blaker et al. have shown that the exposure of male Sprague 
Dawley rats to a 2-bottle choice (intermittent access/every 
other day) of water and 10% EtOH ad libitum for 28-days 
resulted in the detection of LPS in the brain parenchyma 
(i.e., the dorsal striatum), suggestive of BBB permeabiliza-
tion [148]. Similarly, Pen et al. reported that CD1 and B6 
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mice that ingested a 5% EtOH alcohol solution ad libitum for 
2 weeks in a 2-bottle choice paradigm exhibited increased 
albumin and leptin permeation across the BBB [156]. Inter-
estingly, they report that acute exposure to EtOH (i.e., ad-
ministration of a 20% EtOH injection i.p.) did not induce 
BBB disruption. The acute vs. chronic effects of EtOH con-
sumption on the BBB illustrate seemingly contradictory 
findings. For instance, male Sprague Dawley rats that were 
allowed 7.5% EtOH ad libitum in a 2-bottle choice for 12 
months showed no BBB permeability to systemically admin-
istered radiolabeled sucrose [157]. This was also true for the 
acute administration of an anesthetic dose of EtOH. Howev-
er, i.v. administration to adult mongrel dogs of increasing 
amounts of EtOH resulted in the presence of systemically-
administered sodium fluorescein (NaF) in cerebrospinal flu-
id, an indication of BBB disruption [158]. This work also 
showed that the extent of NaF extravasation correlated with 
increasing concentrations of administered EtOH. Additional-
ly, Yorulmaz et al. reports that female adult Wister albino 
rats that were subjected to an EtOH-induced coma (i.e., ad-
ministration of a 4g/kg injection i.p.) did not elicit significant 
BBB permeability [159]. These results indicate that EtOH-
mediated BBB disruption is highly dependent on multiple 
variables such as drinking paradigm (i.e., acute vs. chronic), 
EtOH concentration, method of detection, and model (i.e., in 
vitro vs. in vivo and species or sex). 

No studies have directly identified the consequences of 
EtOH and Meth on BBB integrity but the mechanistic over-
lap of the toxic consequences on the BBB from each drug 
alone indicates that the effect would be at least additive. For 
example, various studies have indicated that Meth increases 
circulating LPS through dysregulation of the intestinal gut-
blood barrier. Studies reported by Singh et al. show male 
alcohol-preferring rats that were allowed 70 days of a 2-
bottle choice between water and 15% EtOH exhibited signif-
icant and persistent (at least 48h) BBB permeability to radio-
labeled-dextran but only when challenged with an i.p. ad-
ministration of LPS [160]. They further report that while 
LPS administration induced a transient effect on BBB integ-
rity, there was no such effect in the rats that only consumed 
EtOH. Furthermore, immunohistochemical analyses of brain 
sections from postmortem alcoholic individuals illustrate 
evidence for BBB disruption in humans [161]. This analysis 
reports a decrease in the BBB proteins collagen-IV and clau-
din-5 and increases in the neuroinflammatory markers glial 
fibrillary acidic protein (GFAP) and allograft inflammatory 
factor 1 (Iba-1) immunoreactivity in the prefrontal cortex of 
alcoholics. Increases in MMP-9 activity and upregulation of 
the mitogen-activated protein kinase (MAPK) signaling 
pathway accompanied these changes. Indeed, Meth has been 
shown to similarly increase c-Jun terminal kinase and 
MAPK activation in human brain endothelial cells [162], 
thus indicating a shared mechanism of BBB disruption. A 
study of mice that were subjected to a binge-drinking 
“Drinking in the Dark” paradigm showed similar decreases 
in collagen-IV and claudin-5 and increases in IgG immuno-
reactivity in the brain parenchyma, signs of BBB 
disruption[161]. These changes were similarly associated 
with markers of MAPK pathway upregulation. Interestingly, 
TLR4-knockout mice that underwent the same paradigm did 
not display these effects, suggestive of the role of TLR4 and 
potentially LPS in the alcohol-induced disruption of the 

BBB. The overlap in inflammatory signaling including the 
roles of TLR4/LPS and MMP9 activation between Meth and 
EtOH, may provide some evidence for their combined ef-
fects on BBB integrity.  

4.2. Peripheral Effects of AUD Toxicity 

Moderate consumption of EtOH is considered to be bene-
ficial with regard to psychological, cognitive, and cardiovas-
cular health [163-164]. A protective effect of EtOH against 
ischemic stroke, myocardial infarction, and hypertension has 
been reported in clinical studies [165-167]. This effect has 
been mostly attributed to decreased stress, anti-inflammatory 
properties, and changes in the circulating lipid profile [168-
169]. However, the effects of chronic or high concentrations 
of EtOH on the cardiovascular system are reported to include 
hypertension, coronary heart disease, and arterial disease, 
among others [170]. 

Chronic alcohol exposure can result in adverse changes to 
the structural and functional aspects of cardiomyocytes [171]. 
In some cases, the result is cardiomyopathy which is common-
ly reported for chronic alcoholics [172]. Cardiomyopathy is 
marked by impaired cardiac contractility that leads to systolic 
dysfunction, left ventricular chamber dilation, and inefficient 
cardiac output that can result in congestive heart failure or 
even sudden death [173, 174]. Clinical studies have shown 
that while EtOH consumption results in vasodilation and an 
increase in heart rate, there was no increase in functional out-
put [175]. Furthermore, evidence of injury to the myocardium 
(i.e., depression of ventricular dysfunction and release of my-
ocardial ions and transaminases) was reported in participants 
that received a higher dose (12oz pour of scotch) of alcohol vs. 
those that received a lower dose (6oz pour of scotch). 

Apoptosis of the non-regenerable cardiomyocytes may 
explain the commonly reported alcohol-induced cardiomyo-
pathy. A study by Guan et al. showed that primary rat cardi-
omyocytes treated with increasing amounts of EtOH for 24h 
resulted in concentration-dependent apoptosis, with detecta-
ble necrosis at the highest concentrations [176]. Furthermore, 
intracellular increases in ROS and decreases in mitochondri-
al membrane potential were identified. The protective effect 
of both vitamin E and C on ROS and apoptosis indicated that 
oxidative stress, presumably from mitochondria, was crucial 
in cardiomyocyte cell death. A similar study highlights the 
role of mitochondria in the EtOH-induced apoptosis in cul-
tured cardiac cells [177]. Prolonged exposure of 48h resulted 
in a calcium-induced activation of the mitochondrial perme-
ability transition pore that allowed for the release of the pro-
apoptotic cytochrome c. Immunohistochemical analyses of 
post-mortem cardiac samples from individuals with long-
term alcoholism revealed a significant increase in markers of 
apoptosis when compared to control subjects [178]. The re-
sults from alcoholic individuals were comparable to those 
from non-alcoholic subjects with long-standing hypertension 
and indicated similar stress to cardiac tissue. The onset of 
mitochondria-mediated apoptosis may also be due to the 
EtOH metabolite, acetaldehyde (Ach), in that Ach induces 
mitochondrial dysfunction and increases intracellular ROS 
[179]. Furthermore, inactive polymorphic variants of alde-
hyde dehydrogenase 2 (ALDH2), the metabolizing enzyme 
for Ach, have been implicated in the vulnerability to alcohol-
ic heart disease [180].  
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The contribution of lipopolysaccharides (LPS) to the 
progression and pro-inflammatory state of atherosclerotic 
plaques has also been proposed. Orally ingested alcohol 
compromises the tight junctions of the gut-blood barrier that 
allows for the passage of proinflammatory mediators derived 
from gut bacteria (e.g., LPS) into the circulation. Lipopoly-
saccharides from gram-negative bacteria present as a patho-
gen associated molecular marker (PAMP) that activates an 
immune response marked by increases in cytokines and other 
pro-inflammatory mediators. An analysis of samples from 
carotid and thyroid arteries from clinical patients who un-
derwent a carotid endarterectomy that involves the removal 
of fatty plaque from the carotid artery revealed high immu-
noreactivity for LPS and TLR4 co-localized with the activat-
ed macrophage marker, CD68 [181]. Furthermore, incuba-
tion of human-derived peripheral blood mononuclear cells 
(PBMCs) with concentrations of LPS that mimic the clinical 
observations resulted in a TLR4-mediated increase in the 
superoxide-generating enzyme NADPH oxidase 2. Lehr, et 
al. reported rabbits that received a hypercholesterolemic diet 
and were challenged with a chronic administration of LPS 
(2.5ug, i.p. once a week for 8 weeks) or cutaneous Staphylo-
coccus aureus infection exhibited the formation of athero-
sclerotic plaques that were significantly accelerated when 
compared to control animals [182]. Collectively, these re-
sults provide a mechanism for the pro-inflammatory nature 
of EtOH-induced atherosclerotic plaque pathology.  

While little is known regarding the contribution of chron-
ic EtOH to the perivascular effects of Meth, the mechanistic 
overlap of their individual effects may provide some insight 
and influence the design of necessary experiments. The role 
of inflammation and LPS signaling provides one aspect of 
focus. Persons et al. showed that rats that self-administered 
Meth (2h/day for 21 days) exhibited permeability of the gut 
epithelium that regulates colon barrier integrity [183]. The 
authors claim that dysregulation of the tight junction proteins 
claudin-1 and zonula occludens-1 increases colon permeabil-
ity such that LPS may translocate to the circulation and con-
tribute to systemic inflammation. Similar effects of Meth on 
the gut and intestinal ischemia have been reported [49-50]. 
The effects of EtOH on the gut-blood barrier integrity have 
also been discussed. The presumption is that chronic expo-
sure to these drugs in tandem would have an exacerbated 
effect on the gut-blood barrier that would contribute to in-
flammatory mechanisms that underlie cardiovascular pathol-
ogy. Furthermore, calcium signaling in cardiomyocytes may 
also be a point of convergence. Cardiomyocytes from human 
induced pluripotent stem cells that were treated with physio-
logically relevant doses of EtOH showed dose-dependent 
increases in calcium transients and contractibility [184]. 
These effects were paralleled by increases in ROS, cellular 
damage, and decreased cell viability. Similarly, Meth has 
been shown to induce increases in intracellular calcium lev-
els in cardiomyocytes. Sugimoto, et al. have shown that 
Meth alters the calcium oscillation pattern in cultured cardi-
omyocytes from neonatal rats that were not affected by an 
adrenergic receptor antagonist, indicating a direct role of 
Meth [185]. Meth-induced increases in L-type voltage-gated 
calcium channels (L-VGCC) activity were verified by using 
the L-VGCC inhibitor nifedipine. In fact, calcium dysregula-
tion has negative consequences on cardiomyocyte phenotype 

and function [186]. Moreover, the direct role of Meth identi-
fied in this study is particularly important in the comorbidity 
of EtOH and Meth since EtOH has been shown to inhibit the 
metabolism of Meth and prolong its activity [187-189]. 
Overall, it is clear that EtOH contributes to the perivascular 
effects of Meth, most likely through the mechanisms identi-
fied above. 

Similar to that discussed with chronic stress and Meth, 
the role of gut-derived mediators in chronic alcohol-induced 
disorders have also received attention. Chronic alcohol con-
sumption alters gastrointestinal tract integrity and function 
by modifying intestinal microbiota composition (i.e., increas-
ing “bad” while decreasing “good” bacteria), increasing oxi-
dative stress, and inducing cell death and loss of epithelium 
[190-191]. The alcohol-induced overgrowth of intestinal 
bacteria and dysbiosis has been reported in multiple human 
and animal studies [192-194]. This effect leads to an increase 
in the release of endotoxins like LPS that promotes the in-
flammatory response and contribute to loss of peripheral and 
central vascular integrity. Similarly, the modification of the 
gut microbiome has also been identified for Meth and stress 
[195-196]. While little focus has been placed on their inter-
actions, it can be assumed that effects would be at least addi-
tive and require further investigation. 

CONCLUSION 

The effects of Meth, stress, alcohol, and their comorbid 
effects impart distinct consequences on central and peripher-
al perivascular health. This review focuses on toxicological 
outcomes from exposure to these agents and does not focus 
on aspects of addiction or treatments for ongoing or chronic 
use. The extensive amount of clinical and pre-clinical studies 
that focus on one or the other of these drugs and stress is a 
testament to their impact on individuals, communities, and 
the larger population. There is a wealth of existing evidence 
that identifies parallel mechanisms underlying Meth, chronic 
stress, and alcohol abuse that compromises vascular and gas-
trointestinal health. Regardless, there is a need for studies 
that address their convergent and direct interactions as a ma-
jority of the Meth abusing population present with co-
existing conditions. Fig. (1) illustrates overlapping roles of 
sympathetic activation, inflammatory status, and oxidative 
stress in these disorders that could guide future research that 
examines the vascular and perivascular effects of stress and 
alcohol on the neurotoxicity to Meth.  
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