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Abstract: Progressive Multifocal Leukoencephalopathy (PML) is a fatal demyelinating disease of the
CNS, resulting from the lytic infection of oligodendrocytes by the human neurotropic polyomavirus
JC (JCPyV), typically associated with severe immunocompromised states and, in recent years, with the
use of immunotherapies. Apoptosis is a homeostatic mechanism to dispose of senescent or damaged
cells, including virally infected cells, triggered in the vast majority of viral infections of the brain.
Previously, we showed upregulation of the normally dormant anti-apoptotic protein Survivin in
cases of PML, which—in vitro—resulted in protection from apoptosis in JCPyV-infected primary
cultures of astrocytes and oligodendrocytes. In the present study, we first demonstrate the absence of
apoptotic DNA fragmentation and the lack of caspase activity in 16 cases of PML. We also identified
the viral protein large T-Antigen as being responsible for the activation of the Survivin promoter.
Chromatin Immunoprecipitation assay shows a direct binding between T-Antigen and the Survivin
promoter DNA. Finally, we have identified the specific region of T-Antigen, spanning from amino
acids 266 and 688, which binds to Survivin and translocates it to the nucleus, providing evidence of a
mechanism that results in the efficient replication of JCPyV and a potential target for novel therapies.

Keywords: JC polyomavirus; survivin; progressive multifocal leukoencephalopathy; ChIP assay;
proximity ligation assay; JCPyV; T-antigen

1. Introduction

The human neurotropic virus JC (JCPyV), a member of the Polyomaviridiae family of DNA
viruses, which also includes BKPyV, SV40 and the Merkel cell polyomavirus (MCPyV) [1], is the
well-established opportunistic etiological agent of the fatal, demyelinating disease of the brain
Progressive Multifocal Leukoencephalopathy (PML). Once considered a rare entity, PML became a
common neurologic complication in Acquired Immunodeficiency Syndrome (AIDS) patients after
the Human Immunodeficiency Virus-1 (HIV-1) pandemic in the 1980s and is now considered an
AIDS-defining condition [2,3]. Since then, the incidence of PML has significantly decreased thanks to
the effective control of HIV-1 infections with antiretroviral therapy [4]; however, a new peak of cases
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has emerged with the use of immunotherapies for auto-immune conditions such as multiple sclerosis
and Chron’s disease [5,6]. The pathological features of PML include the presence of demyelinating foci
located in the gray–white matter junction of the brain, predominantly in frontal and parieto-occipital
lobes. Histologically, PML consists of areas of severe demyelination with multiple foamy macrophages,
microglial nodules, perivascular cuffing of lymphocytes, both findings of any CNS viral infection,
and the pathognomonic cells of the disease: enlarged oligodendrocytes harboring intra-nuclear
inclusion eosinophilic bodies and bizarre atypical astrocytes, reminiscent of malignant glial cells [7].
JCPyV is a small (38–40 nm), non-enveloped virus with a double-stranded DNA and a circular genome
of 5130 nucleotides that can be divided into three regions: a non-coding regulatory region that controls
the initiation of replication and viral transcription, which is located between an early and a late
transcriptional region. The early region contains the codifying sequences for the large and small
T-Antigens (T-Ag and t-Ag), and the late region encodes for the late accessory Agnoprotein, and the
capsid proteins (VP-1, VP-2 and VP-3 [8]).

Apoptosis, or programmed cell death, is a mechanism necessary to eliminate senescent cells in
order to keep a balance of tissue renewal. It is also a crucial mechanism for disposing of damaged
and potentially harmful cells, including virus-infected cells, in an effort to prevent the propagation
and spreading of viral infections. On the other hand, viral pathogens can induce apoptosis, necrosis,
or both types of cell death on infected target cells after completing replication and virion formation.
Several viruses can gain access to the Central Nervous System (CNS), produce infection and trigger
programmed cell death [9]. Accordingly, the presence of apoptosis has been described in viral
encephalitis due to herpes simplex [10] and cytomegalovirus [11], measles [12,13], poliovirus [14],
rabies [15], human immunodeficiency virus-1 (HIV-1) [16–18], Coxsackie viruses A and B [19,20],
and arboviruses [21]. However, apoptosis has not been convincingly demonstrated in cases of
Progressive Multifocal Leukoencephalopathy in humans.

Although the lytic death of infected oligodendrocytes is the cause of demyelination in PML, it is
noteworthy that apoptosis has not been described morphologically or observed utilizing ultrastructural
studies in JCPyV-infected cells [22]. In fact, in comparison to other CNS viral infections in which
apoptosis seems to be a common occurrence, JCPyV has been shown to induce non-apoptotic cell death
in in vitro experiments [23]. In a previous study, our group has demonstrated that JCPyV-infection
induces the expression of Survivin, a member of the inhibitor of apoptosis (IAP) proteins, at the
mRNA and protein levels [24]. Survivin is a 142-amino acid, 16.5-kD protein that is widely expressed
during embryogenesis but becomes silenced in adult or fully differentiated tissues [25]. Its functions
include the inhibition of extrinsic and intrinsic apoptotic pathways, and a role in mitotic spindle
formation and cell division [26–28]. Expression of the protein is finely regulated through the cell cycle,
showing a peak at the G2/M phase and low levels at G1 [27]. Activation or repression of Survivin
is governed by its promoter, which contains three cycle-dependent elements (CDE), one cell cycle
homology region (CHR), a 5-C-phospahte-G-3’ (CpG) island, and several binding sites for the Sp1
transcription factor [29]. Interestingly, Survivin promoter activation can be induced by several cell
cycle- and non-cell cycle-related proteins [30–36]. Similarly, some transcription factors may activate the
Survivin promoter and favor aberrant, cell cycle-independent up-regulation of the protein and prevent
apoptotic cell death [37]. This and other factors may promote cancer development since Survivin
overexpression has been observed in several malignancies [38,39].

In our previous study, we showed the presence of Survivin in the nuclei of JCPyV-infected
oligodendrocytes and in the cytoplasm of JCPyV-infected astrocytes, while both phenotypes of glial
cells outside plaques of demyelination remained negative. Then, we corroborated the activation
of transcription and Survivin production in primary cultures of astrocytes and oligodendrocytes
upon JCPyV infection. The activation of the normally dormant Survivin resulted in the inhibition of
natural and staurosporine-induced apoptosis and, finally, to prove that the protection from apoptosis
upon JCPyV infection was Survivin related, siRNA inhibition of the anti-apoptotic protein resulted
in catapulting the number of apoptotic cells [24]. Based on these results, we hypothesized that the
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activation of Survivin may be beneficial for JCPyV in order to increase cell survival and thus allow
time for an efficient viral replication and propagation of viral particles once the lytic cycle is completed.

Indeed, viruses have developed ways to prevent the programmed cell death of infected cells in
order to sustain cell viability until completion of their infectious cycles. This virus-mediated resistance
may be coordinated by viral and/or cellular mediators through direct activation or overexpression
of anti-apoptotic proteins, including Survivin [40–44]. In fact, Survivin up-regulation has also
been observed in viral infection processes, including PML, as mentioned above [24,45]. However,
the mechanism by which Survivin production is activated in PML remains elusive, but is logical to
assume it depends upon expression of JCPyV regulatory proteins, such as large T-Antigen or the
late accessory Agnoprotein. Within this context, it has been previously shown that T-Antigen can
induce the activation or repression of several cellular genes by direct or indirect interaction with
enhancer/promoter regions, including in its own promoter [46,47], suggesting that the viral early protein
may be responsible for the Survivin over-expression found in PML. In this manuscript, we explore the
molecular mechanisms involved in the activation of Survivin by JCPyV proteins.

2. Materials and Methods

Histology and immunohistochemistry: A total of sixteen formalin-fixed, paraffin-embedded PML
samples, HIV-E and control brains have been collected from the pathology departments of the University
of Laussane, Switzerland, Thomas Jefferson University (Philadelphia, PA, USA), Temple University
(Philadelphia, PA, USA), Louisiana State University (New Orleans, LA, USA), and the Manhattan
Brain Bank at Mount Sinai Medical center (New York, NY, USA). Hematoxylin & Eosin staining
was performed for routine histological evaluation of sixteen PML samples. Immunohistochemistry
was performed using the avidin–biotin peroxidase methodology, according to the manufacturer’s
instructions (Vectastain ABC Elite Kit, Vector Laboratories, Burlingame, CA, USA). Our modified
protocol includes deparaffination in xylenes, rehydration through descending grades of ethanol up
to water, non-enzymatic antigen retrieval with 0.01 M sodium citrate buffer pH 6.0 at 95 ◦C for
25 min, endogenous peroxidase quenching with 3% H2O2 in methanol, blocking with normal horse
serum (for mouse monoclonal antibodies) or normal goat serum (for rabbit polyclonal antibodies)
and incubation with primary antibodies overnight at room temperature in a humidified chamber.
After rinsing in Phosphate Buffer Solution (PBS), sections were incubated with biotinylated secondary
antibodies for 1 h, followed by incubation with avidin–biotin peroxidase complexes for 1 h. Finally,
the peroxidase was developed with diaminobenzidine (Boehringer, Mannheim, Germany) for 3 min,
and the sections were counterstained with Hematoxylin and mounted with Permount (Fisher Scientific,
Pittsburgh, PA, USA). Antibodies for apoptotic and anti-apoptotic proteins were as follows: a rabbit
polyclonal anti-cleaved caspase-3 (Asp175, 1:400 dilution, Cell Signaling Technology, Danvers, MA,
USA); a rabbit polyclonal anti-cleaved caspase-9 (Asp330, 1:250, Cell Signaling Technology, Danvers,
MA, USA); and a mouse monoclonal anti-Survivin (Clone D-8, 1:100, Santa Cruz Biotechnology,
Santa Cruz, CA, USA). Antibodies against JCPyV proteins included a mouse monoclonal anti-SV40
T-Antigen (Ab-2) (Clone pAb416, 1:100, Calbiochem, San Diego, CA, USA), which cross-reacts
with JCPyV T-Antigen, and a rabbit polyclonal antibody against the capsid protein VP-1 (CR7947,
1:4000, courtesy of Dr. Walter Atwood, Brown University, Providence RI). Photomicrographs were
taken with an Olympus DP72 Digital Camera using an Olympus BX70 microscope (Olympus,
Center Valley, PA, USA).

TUNEL assay: A peroxidase in situ Terminal dUTP Nick-End Labeling (TUNEL) assay
was performed in archival paraffin-embedded PML samples. Tissues were rehydrated as
previously described for immunohistochemistry and the TUNEL assay was performed according
to the manufacturer’s instructions (ApopTag® Peroxidase In Situ Apoptosis Detection Kit,
Chemicon International, Inc., Billerica, MA, USA). Slides were developed with diaminobenzidine
(Boehringer), counterstained with HHematoxylin and mounted with Permount (Fisher Scientific,
Pittsburgh, PA, USA).
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Infection of primary astrocytic cultures: Human astrocytes and growth medium were purchased
from Cambrex Bio Science, Inc. (Clonetics astrocyte cell systems, Walkersville, MD, USA). Cells were
infected with 100 hemagglutination units of the Mad1/SVE∆ strain of JCPyV, equivalent to a multiplicity
of infection (m.o.i.) of 1, in the absence of serum for 3 h at 37 ◦C. The features of this hybrid JCPyV have
been previously described [24]. Cells were washed and re-fed with growth media supplemented with
15% Fetal Bovine Serum (FBS) after infection. Efficiency of viral gene expression and viral replication
was evaluated by Western blot and immunocytochemistry using antibodies against T-Antigen and
VP-1, respectively.

Transfection of mice and human tumor cell lines: 100-mm dishes with 1 × 106 BsB8 cells were
transiently transfected with 10 µg of a human Survivin expressing plasmid (pCMV-Survivin), and same
quantity of U87-MG cells were transiently co-transfected with same 10 µg of pCMV-Survivin and 10 µg
of a expressing vector containing the JCPyV large T-Antigen, pcDNA3.1/Zeo(+)/JCT (KpnI-EcoRI into
pcDNA3.1/Zeo(+)) using the CaPO4 transfection method [48]. DNA amounts were standardized for
each cell line using a pcDNA3.1 empty vector.

Chromatin Immunoprecipitation assay: A Chromatin Immunoprecipitation (ChIP) assay was
performed according to the manufacturer’s instructions (EZ-ChIP, Millipore/Sigma, St. Louis, MO,
USA). Primary cell lines were cultured as described above. After fixation, 1× 106 cells were washed with
PBS. Chromatin was isolated by the addition of lysis buffer (1% SDS, 10 mM EDTA, 50 mM Tris-HCl,
pH 8.1) with 1 mM phenylmethylsulfonyl fluoride, 1 mg/mL aprotinin, and 1 mg/mL pepstatin A,
followed by disruption with a Dounce homogenizer. Lysates were sonicated and the DNA sheared to an
average length of ~350–500 bp. Genomic DNA (input) was prepared by treating aliquots of chromatin
with RNase, proteinase K and heat for de-crosslinking, followed by ethanol precipitation. Pellets were
resuspended and the resulting DNA was quantified on a NanoDrop spectrophotometer. Extrapolation
to the original chromatin volume allowed quantitation of the total chromatin yield. An aliquot of
chromatin (30µg) was precleared with protein, and the described mouse monoclonal anti-T-Antigen
was utilized. Pellets were resuspended in TE buffer and subjected to PCR amplification using forward
and reverse primers (5′-GATTACAGGCGTGAGCCACT-3′ and 5′-ATCTGGCGGTTAATGGCGCG-3′)
selected from the survivin core promoter sequence (−253 to −234 and −11 to +10, respectively).

Survivin promoter constructs and Luciferase assay: In order to identify the region of the Survivin
promoter responsible for the activation of the Survivin gene during the course of JCPyV infection, we
cloned different deletion mutants of the promoter into a pGL3 vector to be used for transcription studies.
Primary human astrocytes were then transiently transfected with these constructs in the presence
and absence of plasmids expressing T-Antigen and Agnoprotein. All cells were also transfected with
pRL-TK-LUC and were used to normalize the Luciferase data. Promoter activity was analyzed by
Luciferase assay, using the Promega kit as recommended by the manufacturers. The relative light units
(RLU) obtained from Luciferase emission were divided by the RLU from Renilla emission to obtain the
normalized data points. All transfection and Luciferase assays were performed three times in order to
obtain statistically significant data.

Primary fetal astrocytes were plated in 100-mm dishes at 80% confluence and maintained in media.
Cells were transfected with 10 µg of firefly luciferase reporter construct and 10 µg of Renilla Luciferase
construct (pRL-TK, Promega, Madison, WI, USA) along with increasing amounts of JCPyV T-Antigen
expression plasmid. Cells were harvested 36 h later, lysed, and dual Luciferase assays were performed
following the manufacturer’s instructions. Luciferase activity was normalized to total protein levels,
as well as to Renilla Luciferase activity.

Western blot and co-immunoprecipitation: For these experiments, we used the commercially
available malignant glial cell line U87-MG, and BsB8 cells, a clonal cell line isolated from JCPyV
transgenic mice brain tumors [49]. Transiently transfected U87-MG and BsB8 cells were lysed in
TNN buffer (50 mM Tris, pH 7.4, 150 mM NaCl, 5 mM MgCl2, 0.5% NP-40) and centrifuged for
10 min at 4 ◦C. Whole cell extracts (150 µg) were immunoprecipitated overnight at 4 ◦C with a
mouse monoclonal anti-Survivin antibody (10 µL, Santa Cruz Biotechnology, Santa Cruz, CA, USA)
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using 50 µL of protein A-Sepharose beads (GE Healthcare, Buckinghamshire, UK). The following day,
extracts were separated using a 10% SDS-denaturing polyacrylamide gel and transferred to a pure
nitrocellulose membrane (Trans blot® Transfer Medium, Bio-Rad Laboratories Inc., Hercules, CA,
USA). A monoclonal mouse antibody against SV40 T-Antigen (Calbiochem) was incubated overnight
at 4 ◦C at a 1:1000 dilution, and an anti-mouse horseradish peroxidase-conjugated secondary antibody
(Thermo Scientific, Waltham, MA, USA) was used at a 1:10,000 dilution. Negative controls were carried
out by incubating same amounts of protein extracts with 10 µL of a non-specific mouse IgG and/or in
absence of primary antibody. All experiments were performed in duplicate.

Double-labeling immunofluorescence: Deparaffination and rehydration of tissues were performed
as described for immunohistochemistry above. After overnight incubation with the first primary
antibody (a rabbit monoclonal anti-Survivin, abcam, cloneEP2880Y, 1:500 dilution), sections were
rinsed with PBS, and an Alexa Fluor 488-tagged anti-rabbit secondary antibody was incubated for
2 h at room temperature in the dark. After washing thoroughly with PBS, a second primary antibody
(mouse monoclonal anti-SV40 T-Antigen) was incubated overnight at RT. Finally, a second Alexa Fluor
568-conjugated anti-mouse secondary antibody was incubated for 2 h at RT in the dark, and sections
were coverslipped with an aqueous-based mounting media (Vectashield® Hard Set with DAPI; Vector
Laboratories). Visualization and image capture was done on an Olympus FV1000 confocal microscope
and Fluoview software.

Proximity Ligation Assay: An in situ Proximity Ligation Assay was performed according to
the manufacturer’s instructions (DuoLink, Millipore-Sigma, Burlington, MA, USA). Briefly, primary
glial cell cultures, infected with JCPyV as described above, were fixed and incubated with a primary
anti-mouse anti-T-Antigen antibody and after through rinsing with a rabbit monoclonal anti-Survivin
recombinant antibody. Next, oligonucleotide-labeled secondary anti-mouse and anti-rabbit antibodies
were incubated. Next, hybridizing connector probes are incubated with a ligase in a ligation buffer.
Amplification is done with Polymerase in an amplification buffer. Finally, a DouLink red detection
reagent is incubated. Slides were then washed, and coverslipped with an aqueous mounting media
containing DAPI. A DouLink PLA Control kit/slide containing SK-OV3 human ovarian cancer cells
and antibodies for EGFR-HER2 was used as a positive and negative control (data not shown).

Glutathione S-transferase (GST) pulldown assay using 35[S]-radiolabeled in vitro Survivin: GST
and GST-T-Antigen fusion proteins (full length and deletion mutants) were obtained from bacterial
cultures after sonication (constant duty cycle for 4–5 s, 3 times) in cold NETN buffer (100 mM
NaCl, 1 mM EDTA, 20 mM Tris, pH 8.0, 0.5% NP-40) with protease inhibitor cocktail (1:10 dilution,
SIGMA-Aldrich, Saint Louis, MO, USA) and lysozyme (1:100 dilution, 200 mg/mL stock). After
centrifugation for 30 min at 4 ◦C, supernatants were incubated with 300 µL of pre-washed glutathione
sepharose 4B beads (GE Healthcare) overnight at 4 ◦C. The next day, GST beads and GST fusion proteins
were washed in NETN buffer and eluted in GST elution buffer (50 mM Tris, pH 8.0, 5 mM DTT, 2 mM
reduced glutathione) and stored at −70 ◦C. For the generation of 35[S]-radiolabeled in vitro-translated
(IVT) Survivin, we used TNT® Quick Coupled Transcription/Translation Systems according to the
manufacturer’s instructions (Promega) Survivin mRNA. In total, 5 µL of the 35[S]-radiolabeled
IVT-Survivin were incubated for 2 h at 4 ◦C with equal amounts of GST and GST-T-Antigen fusion
proteins along with 25 µL of BSA, 25 µL of GST beads, 300 µL of lysis buffer 150 (LB150; 50 mM
Tris-HCl, pH 7.4, 150 mM NaCl, 5 mM EDTA, 0.1% NP-40, 50 mM NaF) and mammalian protease
inhibitor cocktail (1:100, SIGMA). After this, beads were centrifuged and washed with 300 µL of
LB150 with protease inhibitors. GST fusion proteins were then separated in a 10% SDS- denaturing
polyacrylamide gel, which was stained with Coomassie Blue stain and rinsed with distilled water. The
gel was soaked in Autofluor® (National Diagnostics, Atlanta, GA, USA) for 1 h, dried for another hour,
and placed into an X-ray cassette with overnight film exposure at −70 ◦C. GST was run as a negative
control, whereas 1/10 of the 35[S]-IVT protein (input) was run as a positive control.
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3. Results

3.1. Expression of Survivin But Not Apoptotic Proteins in JCPyV-Infected Cells of PML

Characterization of PML was established by histopathological analysis of Hematoxylin &
Eosin (H&E) tissue sections, where frequent hallmark cells of the disease, oligodendrocytes with
intranuclear eosinophilic inclusion bodies and bizarre astrocytes, were observed (Figure 1, Panel A,
left). Corroboration of the infection of these cells was established by detection of the viral proteins,
T-Antigen and capsid VP-1, by immunohistochemistry (Panel A, middle). Expression of T-Antigen is
frequently observed in early lesions of PML in the nucleus of oligodendrocytes and in the cytoplasm
and nucleus of bizarre astrocytes; conversely, in late lesions, T-Antigen is less frequently observed,
but the detection of capsid proteins with an anti-VP1 antibody is a reliable indicator of active JCPyV
infection. We performed immunohistochemistry for the anti-apoptotic protein Survivin in 16 cases
of PML and in normal human brain tissues. As previously demonstrated by our group [24], robust
expression of the anti-apoptotic protein is detected in the intranuclear inclusion bodies and cytoplasm
of infected oligodendrocytes, and predominantly in the cytoplasm of bizarre astrocytes (Panel A,
right). In contrast, Survivin is absent in adjacent non-affected areas of PML and in adult normal brain
samples (Panel A, inset). Furthermore, we performed TUNEL assay for the detection of apoptosis in
PML but no DNA laddering was observed in any cells. To corroborate the effects of the presence of
Survivin, we performed a TUNEL assay for the detection of apoptosis in our 16 PML samples, and no
DNA laddering was observed in any cells in any case. In contrast, apoptosis was detected in two
cases of HIV encephalopathy we used as controls. Finally, expression of cleaved caspase-3 and -9 was
not detected by immunohistochemistry in JCPyV-infected oligodendrocytes, nor bizarre astrocytes
(Panel B). Table 1 shows the results the clinical information of the cases studied and the results from
the immunohistochemistry and TUNEL assay.

3.2. Activation of the Survivin Promoter by JCPyV T-Antigen

In order to demonstrate if the early transcriptional protein of JCPyV, T-Antigen, is responsible for
the activation of the normally dormant anti-apoptotic Survivin promoter, we performed a Chromatin
Immunoprecipitation Assay in primary human glial cells infected with the Mad1/SVE∆ strain of
JCPyV. Figure 2A shows the results of the ChIP assay demonstrating a clear band of T-Antigen bound
to the Survivin DNA. HeLa cells were used as a PCR positive control. These results constitute the
first evidence of the physical binding between T-Antigen and the Survivin promoter. Then, in order
to determine if JCPyV T-Antigen or the Agnoprotein are responsible for the activation of Survivin
expression in PML, we performed Luciferase assays in the same human fetal glial cell cultures. Primary
astrocytes were co-transfected with either the −1066 to +45 (1111 bp length) or the −622 to +45 kb
(667 bp length) Survivin promoter constructs driving the Luciferase reporter gene, and with two
different amounts (0.5 and 1.5 µg, respectively) of a plasmid expressing either the JCPyV T-Antigen or
the Agnoprotein, and Luciferase activity measured after 36 h. Surprisingly, the ectopic production
of T-Antigen resulted in significant activation of Survivin promoter transcription compared to basal
Luciferase activity (Figure 2B, Lanes 1 to 6). Furthermore, it appears that the activation of the promoter
is directly proportional to the amount of T-Antigen present in the cells, as cells transfected with 0.5 µg
of LT showed an average of 10-fold activation of the promoter (Lanes 2 and 5), whereas cells transfected
with 1.5 µg of LT exhibited an average of 20-fold activation (Figure 2B, Lanes 3 and 6). Another
significant observation is the fact that cells transfected with the longer length promoter construct
(−1066 to +45, blue bars) were activated more efficiently by T-Antigen compared to the shorter length
construct (−622 to +45, red bars). On the contrary, expression of two different amounts of AGNO failed
to induce the Luciferase activity of any of the promoter constructs (Lanes 7 to 9). These data strongly
suggest that activation of the Survivin promoter and Survivin protein expression most likely occurs
due to a T-Antigen-specific mechanism upon JCPyV infection, and also that T-Antigen is sufficient to
up-regulate the Survivin promoter region, even in the absence of the complete JCPyV genome.
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Figure 1. Expression of Survivin and absence of caspase activity in cases of Progressive Multifocal
Leukoencephalopathy (PML). (Panel A) Pathognomonic histological findings in PML include the
presence of enlarged oligodendrocytes harboring intra-nuclear eosinophilic inclusions bodies (upper left
panel, H&E, 1000×magnification) and bizarre-shaped, transformed astrocytes (lower left panel, H&E,
400×magnification) within demyelinated plaques. Expression of T-Antigen and the capsid protein
VP-1 are observed in infected oligodendrocytes and astrocytes of PML lesions (middle panels, 600×).
Immunohistochemical analysis of Survivin demonstrates the anti-apoptotic protein is abundantly
expressed in both subtypes of JCPyV-infected cells, oligodendrocytes (upper panel) and astrocytes
(lower panel). Importantly, no expression of Survivin was detected in normal brain, nor brains
undergoing other pathologies (inset), nor in the astrocytes and oligodendrocytes in non-demyelinated
plaques. Survivin is present in the nuclear inclusion bodies and cytoplasm of infected oligodendrocytes,
and mostly in the cytoplasm of bizarre astrocytes (right panel, 400×). (Panel B) In addition to the
up-regulation of Survivin, no detection of DNA laddering (TUNEL assay) was found in any cell type of
the disease (right panel, 200×), and the cleaved forms of caspase-3 or caspase-9 were absent in inclusion
bodies of infected oligodendrocytes (middle and right panel, 1000×).
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Table 1. Clinical Data and immunohistochemical Results from PML Samples and Controls: Age, gender, diagnosis and associated diseases are listed. Results from
immunohistochemistry quantification are shown for viral proteins VP-1 and T-Antigen, and for Survivin, and cleaved caspases 3 and 9, as well as results from the
TUNEL assay. PML = Progressive Multifocal Leukoencephalopathy. AIDS = Acquired Immunodeficiency Syndrome.

No. Age Gender Diagnosis Underlying Disease Immunohistochemistry

VP-1 T-Antigen Survivin C/Caspase-3 C/Caspase 9 TUNEL Assay
1 44 y/o Male AIDS-PML HIV+/AIDS ++++ +++ ++++ - - -
2 6 y/o Male AIDS-PML HIV+/AIDS +++ +++ ++++ - - -
3 48 y/o Male AIDS-PML HIV+/AIDS ++++ ++++ +++ - - -
4 36 y/o Male AIDS-PML HIV+/AIDS +++ +++ ++++ - - -
5 33 y/o Male AIDS-PML AIDS + CNS Lymphoma ++++ +++ ++++ - - -
6 73 y/o Female Non-AIDS PML Renal Transplant ++++ ++++ ++++ - - -
7 46 y/o Male Non-AIDS PML Lymphocytic Leukemia ++++ +++ ++++ - - -
8 31 y/o Female AIDS-PML HIV+/AIDS ++++ ++++ ++++ - - -
9 35 y/o Male AIDS-PML HIV+/AIDS ++++ ++++ ++++ - - -

10 37 y/o Male AIDS-PML HIV+/AIDS +++ ++ +++ - - -
11 48 y/o Female AIDS-PML HIV+/AIDS ++++ ++++ +++ - - -
12 44 y/o Male AIDS-PML HIV+/AIDS ++++ ++++ ++++ - - -
13 57 y/o Male AIDS-PML HIV+/AIDS +++ +++ ++++ - - -
14 35 y/o Female AIDS-PML HIV+/AIDS ++++ ++++ ++++ - - -
15 45 y/o Female Non-AIDS PML Chron’s Dis/Natalizumab ++++ +++ ++++ - - -
16 52 y/o Male AIDS-PML HIV+/AIDS ++++ ++ +++ - - -
1 41 y/o Male HIV-Encephalitis HIV+/AIDS - - - +++ ++ ++++
2 45 y/o Male HIV-Encephalitis HIV+/AIDS - - - +++ ++ +++
3 32 y/o Male Normal Brain Drug Overdose - - - - - -
4 75 y/o Female Normal Brain Breast Cancer - - - - - -
5 52 y/o Female Normal Brain Myocardial Infarction - - - - - -
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Figure 2. (A)Human neurotropic polyomavirus JC (JCPyV) T-Antigen transactivates the Survivin
promoter. Chromatin Immunoprecipitation (ChIP assay) of primary astrocytic cell cultures infected
with JCPyV shows a direct binding between T-Antigen and the Survivin promoter DNA, demonstrating
a physical binding between the two elements. (B) Luciferase activity of primary astrocytic cell cultures
co-transfected with two Survivin promoter constructs of different lengths (−1066 to +45 and −622
to +45), and either a plasmid expressing T-Antigen or the Agnoprotein, demonstrate a significant
transactivation of the Survivin promoter by T-Antigen (Lanes 2, 3 and 5, 6), in comparison to basal
Luciferase activity (Lanes 1 and 4). Interestingly, activation of the Survivin promoter region was
directly proportional to the concentration amount of T-Antigen (0.5 or 1.5 µg) used with both constructs,
independently of their length. In contrast, no changes on Survivin promoter activation occurred when
Agnoprotein was present at any concentration (Lanes 8 and 9). These data indicate that up-regulation
of Survivin is specifically mediated by T-Antigen and not by the late accessory protein. Luciferase
activity was measured 36 h after transfection and the results are expressed as the means ±SD from
three experiments.

3.3. Co-Localization and Physical Interaction between T-Antigen and Survivin in Cell Cultures

We have previously shown that Survivin mRNA and protein expression is induced upon
JCPyV-infection in primary oligodendroglial and astrocytic cell cultures, and that Survivin is
mostly found in the nucleus of these cells [24]. Survivin, however, is a predominantly cytoplasmic
protein (it contains a nuclear export signal) with still uncertain functions within the nuclear
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compartment [38,50–52]. Interestingly, double labeling immunofluorescence experiments conducted
in our JCPyV-infected astrocytic cultures 5 days post-infection, showed expression of T-Antigen in the
nuclei of infected cells, in which Survivin was also present, co-localizing in the nucleus (Figure 3A).
In contrast, neither Survivin nor T-Antigen expression was found in uninfected cell cultures (data not
shown). These observations suggest a direct interaction between both proteins.

Figure 3. Physical interaction between JCPyV T-Antigen and Survivin in in vitro experiments.
(A) Double-labeling immunocytochemistry of JCPyV-infected primary astrocytes demonstrates the
co-localization of the anti-apoptotic protein Survivin (green) and large T-Antigen (red) in the nuclei
of infected cells (All panels original magnification is 200×). (B) Proximity Ligation Assay (DuoLink)
demonstrates the physical interaction between these two proteins in the nuclei of JCPyV-infected
cells (left panel original magnification is 100×, right panel 1200×). (C) Furthermore, and to
corroborate the phenotype of the infected cells, immunolabeling with Glial Fibrillary Acidic Protein
(GFAP) was performed following DuoLink, demonstrating the glial nature of the cells in which the
Survivin-T-Antigen interaction occurs. (D) Co-immunoprecipitation analyses demonstrate a physical
interaction between T-Antigen and Survivin in cell cultures. A band the same size as T-Antigen
(~90 kDa, positive control lane) was observed in the protein extracts immunoprecipitated with an
anti-Survivin antibody, but not when pre-immune serum was added to the samples (negative control),
in two different cell lines (BsB8 and U87-MG). BsB8 is a murine neuroectodermal tumor cell line
that expresses constant levels of T-Antigen, and U87-MG is a glial tumor cell line in which transient
co-transfection with T-Antigen and Survivin plasmids was performed.



Viruses 2020, 12, 1253 11 of 16

To determine if a real physical interaction between JCPyV T-Antigen and Survivin exists,
we performed co-immunoprecipitation assays with whole-cell extracts from BsB8 cells transiently
transfected with a Survivin plasmid vector. BsB8 cells are a primitive neuroectodermal neoplastic cell
line grown from a tumor developed in a JCPyV transgenic mouse, which contains the early gene of the
Archetype strain under the control of its own promoter, and expresses high levels of T-Antigen [49].
By Western blot analysis, a band corresponding to T-Antigen was detected in the immuno-complex
pulled down using an anti-Survivin antibody, while there was no band observed in the lane containing
extract incubated with pre-immune control serum, indicating a specific interaction between these
two proteins (Figure 3B). Likewise, extracts from U87-MG cells, a neoplastic cell line of glial origin,
co-transfected with a plasmid vector expressing Survivin and the T-Antigen, respectively, yielded
similar results, with T-Antigen detection in complex with Survivin (Figure 3B).

3.4. Binding of JCPyV T-Antigen to Survivin

In order to determine the region where Survivin specifically binds to JCPyV T-Antigen, we
performed a GST-pulldown assay using GST-T-Antigen full-length and a series of amino- and
carboxy-terminal mutants of T-Ag fused to GST. We generated an [35S]-radiolabeled in vitro translated
(IVT)-Survivin, which was later incubated with the respective GST-proteins. Survivin was detected in
the fraction containing full-length T-Antigen (Figure 4A, Lane 2), but not GST (Lane 1), indicating that
full-length T-Antigen specifically binds to Survivin. In contrast, the GST-T-Antigen carboxy-terminal
mutants containing residues 1 to 265 lost its binding ability to Survivin (Lanes 3 and 4); however,
mutants 1 to 411, 266 to 688 and 412 to 688 retained the ability to bind Survivin (Lanes 5, 6 and 7),
suggesting that the active binding site for the anti-apoptotic protein is present in the same region of
T-Antigen that contains the p53/ATPase motif (Figure 4B). Finally, the removal of residues 1 to 629
completely abolished the ability of T-Antigen to interact with Survivin (Lane 8).

Figure 4. Survivin binds to the p53/ATP-ase domain of JCPyV T-Antigen. A GST-pulldown
assay in which [35S]-radiolabeled in vitro-translated (IVT) Survivin was incubated either with GST,
GST-T-Antigen full-length, or GST-T-Antigen deletion mutants bound to glutathione beads, was
performed in order to determine the specific domain used by Survivin to bind to the early viral protein
(A). Although binding exists with mutants 1–411 and 412–688, the strongest binding of Survivin appears
to occur with the region spanning amino acids 266–688, which harbors the p53/ATP-ase motif of
T-Antigen (A, Lane 6). A 1/10 input of [35S]-radiolabeled IVT-Survivin is shown. (B) Shows a schematic
representation of JCPyV T-Antigen depicting some important binding motifs, with the spanning regions
of the T-Ag deletion mutants depicted below. The ability of T-Antigen to interact with Survivin is shown
to the right; +++ strong interaction, ++ moderate interaction, + weak interaction, - no interaction.
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4. Discussion

Mechanisms by which viral pathogens can overcome apoptotic cell death are a principal focus
of recent virology research. Several studies point towards Survivin, a member of the inhibitors
of apoptosis family of proteins, as one of the contributors to this process. Survivin up-regulation
has been shown to be induced by viral proteins such as the E6 protein of human papillomavirus-16
(HPV-16) [41], Vpr from the human immunodeficiency virus-1 (HIV-1) [44], the latent membrane protein
2A (LMP-2A) from Epstein–Barr virus [40], the Tax protein from human T-cell lymphotropic virus-1
(HTLV-1) [45] and the Hepatitis B virus X protein (HBV-X) [42] with specific positive repercussions
on viral proliferation. Within this context, we have previously demonstrated aberrant expression of
Survivin in the infected oligodendrocytes and astrocytes of PML [24]. We have also detected increased
levels of mRNA and Survivin protein by Northern and Western blot analyses in primary glial cell
cultures upon JCPyV infection and, furthermore, JCPyV-infected cells were less prone to undergo
physiological and/or experimentally-induced apoptosis when compared to uninfected populations [24].
All these data support the role of Survivin in JCPyV infection and in the pathogenesis of PML. Herein,
we demonstrated the specific detection of Survivin by immunohistochemical analysis in the infected
glial cells of PML but not in normal brain tissue, as well as the absence apoptosis and of caspase activity
in the infected cells, supporting the concept of lytic, non-apoptotic death of infected oligodendrocytes.

Then, we tried to determine the mechanism for this Survivin up-regulation induced by JCPyV.
Since Survivin levels are regulated through the cell cycle due to the activation/repression of its
promoter, we studied the ability of the two non-structural regulatory proteins of JCPyV, T-Antigen
and Agnoprotein, to transactivate the Survivin promoter. For this, we cloned two different lengths of
the Survivin promoter sequence in a Luciferase reporter vector, and co-transfected primary astrocytes
with each one of these constructs in addition to a JCPyV T-Antigen or a JCPyV Agnoprotein expression
plasmid at different concentrations. Interestingly, T-Antigen, but not Agnoprotein, was capable of
transactivating the Survivin promoter. Moreover, cells transfected with the longer length Survivin
promoter were activated more efficiently than the shorter length construct, and this activation was
dependent on the amount of T-Antigen present within the cells. Increased activation of the longer
construct may indicate the presence of a T-Antigen-dependent activation site at the region, spanning
between nucleotides−1066 and−667, and also that the region spanning the CDEs, CHR and Sp1 binding
sites of the Survivin promoter is sufficient for T-Antigen-mediated transactivation. These functional
data demonstrate, for the first time, that of the JCPyV proteins, T-Antigen alone has the potential
to activate the Survivin promoter in vitro, and strongly point towards the viral regulatory protein
as the cause of the Survivin up-regulation observed in PML. This is not surprising, since T-Antigen
has been shown to activate many other cellular genes [46,47]. Moreover, up-and down-regulation
of several genes (including cell cycle-related genes) can occur upon JCPyV infection in primary
astrocytes [53], and one can hypothesize that some of these genes may become activated by T-Antigen.
Nevertheless, the direct mechanism by which T-Antigen induces activation of the Survivin promoter
remains elusive. Promoter activation could occur through direct binding of the viral protein to
the Survivin promoter DNA or mediated through DNA-binding independent mechanisms, as has
been proven for T-Antigen [46,47]. In this regard, it has been shown that wild-type p53 can induce
transcriptional repression of Survivin through direct binding to specific promoter regions [54] and/or
through chromatin modification of the promoter [55]. On the other hand, it is well-known that JCPyV
T-Antigen can bind and sequester wild-type p53 [56]. Perhaps JCPyV T-Antigen may be able to induce
Survivin activation through direct binding to p53 and thus causing the inhibition of the p53-induced
repression of the anti-apoptotic protein. This mechanism of Survivin up-regulation by T-Antigen
merits further study, including the analysis of both proteins at different cell cycle time points, at
different stages of the viral lytic cycle of JCPyV, and in the presence and absence of p53. Mechanisms
of regulation between these two proteins become more intriguing as T-Antigen is known to drive cells
to enter G1/S phase, but, as mentioned earlier, it is in G1 where Survivin levels decrease the most.
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An interesting finding about Survivin expression in PML is that it predominantly localizes
to the nucleus of infected oligodendrocytes harboring inclusion bodies but remains mainly
cytoplasmic in bizarrely shaped astrocytes (Figure 1). However, JCPyV-infected astrocytes also exhibit
accumulation of Survivin in the nuclear compartment in vitro [24]. Moreover, here we have observed
nuclear co-localization of T-Antigen and Survivin in JCPyV-infected primary astrocytes by double
immunofluorescence. However, Survivin is considered a predominantly cytoplasmic protein that
contains a nuclear export signal, with still uncertain functions within the nuclear compartment [50–52].
One interesting observation is that nuclear Survivin seems to enhance viral oncolysis, at least when
used for adenoviral vector-specific therapies against tumoral cells [50]. Based on these observations,
it can be suggested that DNA viruses, and specifically JCPyV, require nuclear Survivin for completing
their lytic cycles. We hypothesize that Survivin may have a transient nuclear localization, depending
on the stage of viral infection. It may be possible that, at the early stages of infection, where the highest
levels of T-Antigen are available, Survivin could potentially bind more efficiently to T-Antigen and
co-localize to the nucleus (as observed in vitro and in vivo in oligodendrocytes from PML samples
in the current study), with a potential effect on viral replication, whereas at later stages of infection,
when T-Antigen transcription decreases and capsid proteins are produced, Survivin may be in excess,
and therefore retain/recover its normal cytoplasmic localization and function as seen in bizarre
astrocytes of PML. Apart from the nuclear co-localization of both proteins, we have demonstrated
a direct interaction of Survivin and T-Antigen by co-immunoprecipitation and the specific site for
direct binding of Survivin and JCPyV T-Antigen to the p53/ATPase domain by GST-pulldown assay.
That also could lead to the hypothesis that, after interacting with T-Antigen, Survivin is translocated to
the nucleus, as mentioned above. Moreover, the Survivin/T-Antigen interaction may prevent Survivin
ubiquitination and degradation, as occurs with the T-Antigen in complex with β-catenin [57].

Survivin up-regulation by viruses may not only have repercussions on viral proliferation but also
on viral oncogenesis. Increased levels of Survivin have been constantly found in a wide number of
malignancies, including viral-associated tumors. JCPyV is an oncogenic virus in animals and there
is mounting evidence demonstrating its association with certain human neoplasms, especially brain
tumors [8,58,59]. Some of the mechanisms of JCPyV-induced tumorigenesis are mainly related to the
functions of early T-Antigen. As previously mentioned, T-Antigen can bind to p53 and alter its function,
avoiding cells from preventing the accumulation of mutations, originally controlled by p53, and also
leading to the de-repression of Survivin, which may be translated into cell resistance to apoptosis and
progression into cancer.

Lytic infection of oligodendrocytes occurs in PML, whereas astrocytes acquire a transformed
phenotype, becoming pleomorphic and atypical, reminiscent of glial malignant cells. Abnormal mitotic
figures of astrocytes may also be observed [7]. The differences in the pattern of Survivin expression
(nuclear in oligodendrocytes/cytoplasmic in astrocytes) suggest that Survivin may function differently
in each cell type. T-Antigen-mediated up-regulation of Survivin may keep the cell alive and favor
proper replication of the virus in oligodendrocytes, while interaction between T-Antigen and Survivin
in infected astrocytes may alter Survivin function, promoting apoptosis resistance (with increased
cell proliferation), abnormal mitotic spindle formation (with presence of abnormal mitoses) and,
in conjunction with the transforming capacities of T-Antigen, promote the bizarre shape of cells as well
as tumorigenesis.

5. Conclusions

In conclusion, we demonstrate, for the first time, the novel capability of JCPyV large T-Antigen
to bind and activate the Survivin promoter at the level of transcription in primary astrocytes, in a
dose-dependent manner, strongly supporting its role in the PML-associated Survivin up-regulation.
Furthermore, we also found nuclear co-localization of T-Antigen and Survivin in JCPyV-infected
cell cultures as well as direct interaction between these two proteins at specific T-Antigen domains.
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The reason for this interaction is still unknown but may have repercussions in the regulation of the
viral cycle and in the replication of the JCPyV machinery within infected cells.
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