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ABSTRACT Aspirin is a chemopreventive agent for colorectal adenoma and cancer
(CRC) that, like many drugs inclusive of chemotherapeutics, has been investigated
for its effects on bacterial growth and virulence gene expression. Given the evolving
recognition of the roles for bacteria in CRC, in this work, we investigate the effects
of aspirin with a focus on one oncomicrobe—Fusobacterium nucleatum. We show
that aspirin and its primary metabolite salicylic acid alter F. nucleatum strain Fn7-1
growth in culture and that aspirin can effectively kill both actively growing and sta-
tionary Fn7-1. We also demonstrate that, at levels that do not inhibit growth, aspirin
influences Fn7-1 gene expression. To assess whether aspirin modulation of F. nuclea-
tum may be relevant in vivo, we use the ApcMin/1 mouse intestinal tumor model in
which Fn7-1 is orally inoculated daily to reveal that aspirin-supplemented chow is
sufficient to inhibit F. nucleatum-potentiated colonic tumorigenesis. We expand our
characterization of aspirin sensitivity across other F. nucleatum strains, including
those isolated from human CRC tissues, as well as other CRC-associated microbes,
enterotoxigenic Bacteroides fragilis, and colibactin-producing Escherichia coli. Finally,
we determine that individuals who use aspirin daily have lower fusobacterial abun-
dance in colon adenoma tissues, as determined by quantitative PCR performed on
adenoma DNA. Together, our data support that aspirin has direct antibiotic activity
against F. nucleatum strains and suggest that consideration of the potential effects
of aspirin on the microbiome holds promise in optimizing risk-benefit assessments
for use of aspirin in CRC prevention and management.

IMPORTANCE There is an increasing understanding of the clinical correlations and
potential mechanistic roles of specific members of the gut and tumoral microbiota
in colorectal cancer (CRC) initiation, progression, and survival. However, we have yet
to parlay this knowledge into better CRC outcomes through microbially informed
diagnostic, preventive, or therapeutic approaches. Here, we demonstrate that aspirin,
an established CRC chemopreventive, exhibits specific effects on the CRC-associated
Fusobacterium nucleatum in culture, an animal model of intestinal tumorigenesis,
and in human colonic adenoma tissues. Our work proposes a potential role for aspi-
rin in influencing CRC-associated bacteria to prevent colorectal adenomas and can-
cer, beyond aspirin’s canonical anti-inflammatory role targeting host tissues. Future
research, such as studies investigating the effects of aspirin on fusobacterial load in
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patients, will help further elucidate the prospect of using aspirin to modulate F.
nucleatum in vivo for improving CRC outcomes.

KEYWORDS Fusobacterium nucleatum, aspirin, colon cancer

The microbiome and specific members thereof are increasingly recognized for
their potential contributions to the initiation and progression of colorectal cancer

(CRC). CRC-associated microbes—including Fusobacterium nucleatum, enterotoxi-
genic Bacteroides fragilis, and colibactin-producing Escherichia coli—influence carcinogen-
esis through a number of mechanisms, such as: inducing host cell DNA damage (1), shap-
ing the tumor-immune microenvironment (2–4), and promoting metastasis (5, 6). Thus,
these bacteria are an increasing focus for CRC diagnostics and therapeutics.

F. nucleatum is a Gram-negative anaerobe found commonly in the human oral cav-
ity but rarely in stool. F. nucleatum is specifically enriched in colonic adenomas and
CRC compared with normal colonic tissues (3, 7–11). In cell culture and animal models,
F. nucleatum increases intestinal cancer cell proliferation (12, 13), localizes to CRC tis-
sues (14), and influences immune responses within the tumor microenvironment (3, 4).
Intratumoral fusobacterial burden is associated with poorer patient prognosis (15, 16)
and CRC recurrence after treatment (17). These observations support the idea that F.
nucleatum is a potential target for CRC prevention and treatment. A preclinical study
using metronidazole demonstrated slower growth of mouse-implanted patient-
derived xenografts harboring F. nucleatum (18), providing a proof of concept that mod-
ulating F. nucleatum levels could slow CRC growth. However, antibiotic resistance and
antibiotic-induced dysbiosis highlight the need to identify alternative agents that
might similarly be used without such concerns.

Aspirin, acetylsalicylic acid, is a nonsteroidal anti-inflammatory drug (NSAID) that
targets cyclooxygenase-2 (COX-2; or prostaglandin-endoperoxide synthase 2) to inhibit
prostaglandin biosynthesis (19, 20). Widely used for pain and inflammation, aspirin is
recommended by the United States Preventive Services Task Force to prevent CRC and
cardiovascular disease in certain populations (21). Meta-analyses support aspirin as a
highly effective CRC chemopreventive treatment (22, 23). However, conflicting results
in mouse models (24–26), as well as a recent work in which concurrent antibiotic treat-
ment was necessary to observe aspirin’s antitumoral effects (27), suggest that part of
aspirin’s efficacy as a CRC chemopreventive may be mediated by the microbiota.
Aspirin and other NSAIDs cause shifts in the microbiota (28–30). Aspirin and salicylic
acid, its primary bioactive metabolite, directly affect bacteria by inhibiting growth (31,
32) and altering virulence factor expression (33–37). While some bacteria have specific
salicylic acid-responsive regulators (38, 39), how aspirin and salicylic acid drive these
changes in other bacteria is less understood. Given these responses, the microbiota
has been proposed as a potential mechanism for aspirin chemoprevention and a rich
target for precision prevention biomarkers (40).

As aspirin is already employed for CRC prevention, although it is underutilized, and
can influence other bacteria through both its antimicrobial and regulatory effects, we
posited that aspirin might affect F. nucleatum growth or behavior. Here, we examine
the effects of aspirin on F. nucleatum both in culture and during tumorigenesis to as-
certain if aspirin holds potential for modulating F. nucleatum-associated CRC
outcomes.

RESULTS
Aspirin and salicylic acid alter Fn7-1 growth in culture. To probe whether aspirin

affects the well-studied F. nucleatum strain Fn7-1, we assayed growth in media supple-
mented with increasing aspirin concentrations comparable to those used in prior stud-
ies (31, 33, 41) (Fig. 1A). We adjusted the pH of all media after aspirin or salicylic acid
addition to match the control medium, to avoid conflating aspirin-specific and pH-
based responses. In 1mM aspirin, Fn7-1 growth mildly increased, as determined by
maximum optical density (optical density at 600 nm [OD600]), despite indistinguishable
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log-phase growth from Fn7-1 grown in control medium (supplemented tryptic soy
broth [sTSB]) (Fig. 1A). However, higher levels of aspirin slowed or entirely inhibited
Fn7-1 growth. Because OD600 is a proxy for bacterial abundance and affected by aggre-
gation and cell morphology, we determined growth yield by CFUs from cultures grown

FIG 1 Fn7-1 responses to aspirin and salicylic acid in culture. (A and C) Growth curve as determined by OD600

for Fn7-1 grown in sTSB supplemented with different concentrations of aspirin or salicylic acid. (B and D) Fn7-1
growth after 24 h in indicated media, as determined by final CFUs per ml of culture. (E and F) Fn7-1 growth at
t0 and after 24 h in indicated media, as determined by CFU per ml of culture. For actively growing cells (E),
cultures were inoculated 1:100 from an overnight preculture into indicated media. For stationary-phase cells
(F), cells were pelleted and washed into fresh, prereduced indicated media. All data represent the mean 6 SEM
for at least 6 cultures. For A and C, data were analyzed by two-way repeated measures analysis of variance
(ANOVA) with post hoc Dunnett’s test. For aspirin, samples are significantly different from sTSB at P values of
,0.05 beginning at 7.5 h (5mM and 10mM), 9.5 h (2.5mM), or 17 h (1mM). For salicylic acid, samples are
significantly different from sTSB at P values of ,0.05 beginning at 8 h (10mM), 8.5 h (5mM), or 11.5 h
(2.5mM). For B and D, ** indicates P values of ,0.01 and **** indicates P values of ,0.0001 as determined by
Kruskal-Wallis test with post hoc Dunn’s test for multiple comparisons to the control medium sample. For E and
F, Wilcoxon signed-rank test was performed for each condition at 24 h compared with t0. *, P, 0.05.
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in the presence or absence of aspirin for 24 h (Fig. 1B). Beginning at 2.5mM aspirin, we
observed decreased growth yield (4-fold, but not statistically significant) compared
with that in sTSB. In 5mM and 10mM aspirin, Fn7-1 growth yield was significantly
reduced by 388-fold and over 106-fold, respectively. These data demonstrate that aspi-
rin can inhibit Fn7-1 growth in culture.

We next probed whether salicylic acid, aspirin’s primary metabolite, affected Fn7-1
growth. In OD600 and growth yield experiments (Fig. 1C and D), we observed similar in-
hibition of Fn7-1 growth. While there are subtle differences between the responses to
aspirin and salicylic acid, such as greater sensitivity to 10mM aspirin than to 10mM sal-
icylic acid, the responses to both compounds were largely similar. Because of the clini-
cal relevance of aspirin in contrast to salicylic acid, we focused on aspirin in further
studies.

We next investigated if aspirin could efficiently kill Fn7-1. We tested actively grow-
ing cells by subculturing Fn7-1 into sTSB or media supplemented with 5mM or 10mM
aspirin (Fig. 1E). There was a significant decrease in CFU for both aspirin media, sug-
gesting that aspirin was not only inhibiting growth but also reducing culture viability.
In 10mM aspirin, cell viability was reduced by ;3 logs from the time of inoculation
(t0). To address if aspirin could kill stationary cells, we grew Fn7-1 overnight in the ab-
sence of aspirin and then transferred cells into media containing aspirin (Fig. 1F).
Under these conditions, Fn7-1 growth yield doubled only over 24 h in sTSB, supporting
the conclusion that these cells were not rapidly growing and were likely in stationary
phase, despite being washed into fresh medium to allow pH matching with the aspi-
rin-supplemented media. In 5mM aspirin, there was effectively no change in CFU over
24 h. However, when cells were washed into 10mM aspirin, there was a 6-log decrease
in Fn7-1 CFUs compared with those of t0, a reproducible but surprising result given the
results for 5mM. These data support that, in addition to inhibiting Fn7-1 growth, aspi-
rin is able to reduce viable Fn7-1 cells, under both actively growing and stationary
states.

Subinhibitory concentrations of aspirin affect Fn7-1 gene expression.We observed
subtle changes in phenotypes associated with autoaggregation when Fn7-1 was
grown in subinhibitory levels of aspirin. In 1mM aspirin, cells still formed aggre-
gates, as Fn7-1 does under these conditions, but they appeared looser (see Fig. S1A
in the supplemental material). Unlike Fn7-1 grown in the sTSB where clumping
leads to large fluctuations in OD600 during stationary phase (Fig. S1B), the OD600 of
Fn7-1 grown in 1mM aspirin remained more consistent (Fig. S1C). As aspirin and
salicylic downregulate surface proteins in some bacteria (35, 36), we posited that
aspirin may have similar effects on Fn7-1 gene expression, as suggested by these
autoaggregation observations.

To address this possibility, we performed RNA sequencing (RNA-seq) on Fn7-1 cells
grown overnight in sTSB and sTSB supplemented with 1mM aspirin (Fig. 2A; Data Set
S1 in the supplemental material). Consistent with prior studies (33, 42), we observed
that this subinhibitory level of aspirin led to a largely downregulatory shift in gene
expression. Using a cutoff P value of ,0.05 and a 2-fold change, we observed 53 genes
with significantly lower expression and only 2 genes (both encoding proteins of
unknown function) with significantly higher expression when Fn7-1 was grown in
1mM aspirin. Genes with reduced expression in 1mM aspirin include fap2, encoding
an autotransporter with important roles in CRC and other host interactions (4, 14, 43,
44), as well as FSDG_01349 and FSDG_01370, also encoding autotransporters, a class of
potential virulence factors abundant in F. nucleatum genomes (45). In Fn23726, the
FSDG_01349 homolog (Gene_2067) is also genomically linked to fap2 (45). Another
downregulated gene, FSDG_00378, encodes a b-barrel protein, like the autotransport-
ers, and is similarly predicted to localize to the outer membrane. Given their subcellular
localization, one of these genes may be responsible for the altered autoaggregation,
but Fn7-1’s lack of genetic tractability makes it difficult to functionally test. Expression
of housekeeping genes involved in transcription (rpoC), translation (rpsE and rplF), and
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cell division (mreB) were also reduced in response to aspirin, which may provide insight
into how aspirin reduces Fn7-1 growth. Other downregulated genes include genes in
the f Funu1 phage locus (46), a gene upregulated during Caco2 infection (oppD5) (47),
and macB, encoding an efflux pump predicted to play a role in macrolide export and
consistent with aspirin and salicylic acid altering antibiotic sensitivity in other bacteria
(48–51). Overall, these results support a conclusion that subinhibitory aspirin alters
Fn7-1 gene expression; however, our interpretation is limited by homology-based
inferred functions and an overrepresentation of genes of unknown function.

To further probe how aspirin inhibits Fn7-1 growth, we assessed gene expression in
2.5mM aspirin, a dosage at which Fn7-1 growth was reduced (Fig. 1A) while providing
sufficient RNA yield. In response to 2.5mM aspirin, 55 genes were significantly upregu-
lated and 155 genes significantly downregulated using the same cutoff (Fig. 2B; see
Data Set S2 in the supplemental material). These changes represent over 8% of the
predicted coding sequences in Fn7-1, suggesting that global changes in response to

FIG 2 Downregulation of Fn7-1 gene expression in response to aspirin in culture. Volcano plots of
RNA-seq expression data from Fn7-1 grown in sTSB compared with media supplemented with 1mM
aspirin (A) or 2.5mM aspirin (B) for 24 h. Data represent 2 replicates for Fn7-1 grown in sTSB and 3
replicates each for Fn7-1 grown in 1mM or 2.5mM aspirin. Cutoffs indicate 2-fold changes in
expression and P values ,0.05 as described in the Materials and Methods. A full list of differentially
expressed genes can be found in Data Set S1 and S2.
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this higher dosage are indicative of a general stress response. Consistent with this hy-
pothesis, we observed upregulation of several chaperone-related genes, including
groS, groL, clpB, and dnaK. Of the genes downregulated in 1mM aspirin, 15 are also
downregulated in 2.5mM and may represent an aspirin-specific response as opposed
to a general stress or death response. These genes include macB and its neighboring
genes FSDG_01346 and FSDG_01347, as well as fepC, predicted to be involved in iron
transport. In contrast to the downregulation of macB, another gene predicted to
encode an efflux pump protein, FSDG_00191, is upregulated in 2.5mM aspirin, which
together could conversely affect how aspirin might alter antibiotic sensitivity in F.
nucleatum. As with 1mM aspirin, we observed downregulation of potential virulence
factors in 2.5mM aspirin, including two genes encoding FadA-like domains (12, 52)
(FSDG_02507 and FSDG_02530), multiple autotransporters (FSDG_00622, FSDG_01631,
and FSDG_02492), and a locus of genes (FSDG_01675-01678) predicted to encode
MORN domain-containing proteins that are overrepresented in invasive F. nucleatum
strains (52). These data support that aspirin alters expression of Fn7-1 genes that have
the potential to affect how Fn7-1 behaves and interacts with host cells.

Aspirin treatment reduces Fn7-1-potentiated tumorigenesis in the ApcMin/1

model. We next sought to determine if aspirin might affect Fn7-1-potentiated intesti-
nal tumorigenesis, given (i) the pleiotropic effects of different levels of aspirin on Fn7-1
in culture, (ii) the difficulty of determining colonic intraluminal aspirin concentration to
investigate in culture-based experiments, and (iii) noted discrepancies in how bacteria
respond to antimicrobial compounds in vivo and in vitro (53, 54). Using the ApcMin/1

mouse model of intestinal tumorigenesis in which Fn7-1 is orally inoculated into con-
ventionally reared mice daily beginning at 6weeks of age (3), we concurrently transi-
tioned mice to either a control chow or one supplemented with 200 ppm aspirin, a
dosage used in previous studies that demonstrated mild, if any, effects on tumorigene-
sis (24, 25). After 8weeks of treatment, consistent with our prior study (3), we observed
that Fn7-1 treatment led to a significant increase in colonic adenoma burden in mice
on the control chow, compared with mice orally inoculated with medium alone (sham
mice) on the control chow that rarely develop colonic adenomas in our facility (Fig. 3).
Similarly, sham mice placed on the aspirin chow seldomly developed colonic adeno-
mas. In contrast, when mice treated with Fn7-1 were placed on the aspirin-supple-
mented chow, we saw complete abrogation of colonic adenoma development. These
in vivo results suggest a specific role for aspirin in blocking Fn7-1-potentiated intestinal
tumorigenesis.

FIG 3 Colonic adenoma burden in the murine ApcMin/1 model in response to daily Fn7-1 instillation
and aspirin supplementation. Conventional specific-pathogen-free ApcMin/1 mice were orally
inoculated with Fn7-1 or a sham control (sTSB) daily and simultaneously maintained on either a
control chow or a chow supplemented with 200 ppm aspirin, with both treatments beginning at 6
weeks of age and continuing until 14 weeks. Mice were then sacrificed, and the colons were
prepared for histological analysis for enumeration of colon adenomas. Data points represent
adenoma counts from individual mice, bars indicate the mean 6 SEM, and statistical analysis was
performed by Kruskal-Wallis test with post hoc Dunn’s test for multiple comparisons. ****, P, 0.0001.

Brennan et al. ®

March/April 2021 Volume 12 Issue 2 e00547-21 mbio.asm.org 6

https://mbio.asm.org


Comparative survey of aspirin sensitivity in F. nucleatum ATCC strains and
clinical tumor isolates. Given our results in culture and in mice, we next explored how
aspirin might affect F. nucleatum as it relates to human CRC by assessing the sensitivity
of other F. nucleatum strains, including isolates from human CRC tissues. We first exam-
ined how aspirin affects the ATCC strains Fn23726 (F. nucleatum subsp. nucleatum) and

FIG 4 Growth inhibition of aspirin on ATCC and CRC isolates of F. nucleatum. Growth of ATCC strains
Fn23726 and Fn10953 in response to aspirin as determined by optical density (A) and growth yield (CFU
per ml) at 24 h (B). (C) Growth of the CRC F. nucleatum isolates FnCTI-1 and FnCTI-2 in response to aspirin
as determined by optical density. (D) Growth yield of FnCTI-1, -2, -3, -5, -6, and -7 in response to 2.5mM
aspirin after 24 h as determined by CFU per ml. All data represent the mean 6 SEM for at least 6 cultures.
Growth curves were analyzed by two-way repeated measures ANOVA with post hoc Dunnett’s test. Growth
was significantly different from sTSB at Pvalues of ,0.05 for each of the following strains at the indicated
time points and concentrations: Fn23762 (1mM and 2.5mM at 7.5 h), Fn10953 (1mM at 6.5 h and 2.5mM
at 5.5 h), FnCTI-1 (1mM at 17.5 h and 2.5mM at 7 h), and FnCTI-2 (1mM at 9 h and 2.5mM at 7 h).
Analysis of growth yield data was performed by Mann-Whitney test. **, P, 0.01; ***, P, 0.001.
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Fn10953 (F. nucleatum subsp. polymorphum). We performed growth curve assays for
these strains in sTSB or in the presence of 1mM and 2.5mM aspirin (Fig. 4A). Unlike
Fn7-1 which exhibited a slight growth increase at this dosage (Fig. 1A), even 1mM as-
pirin was sufficient to fully inhibit Fn23726 growth. Similarly, Fn10953 demonstrated
reduced growth at 1mM and no appreciable growth at 2.5mM aspirin. These observa-
tions were supported by strong decreases in yield (.5 logs lower CFU/ml than that in
sTSB) for both Fn23276 and Fn10953 in 2.5mM aspirin (Fig. 4B). These phenotypes
demonstrated that these F. nucleatum strains are more sensitive to aspirin in culture
than Fn7-1, for which we observed only ;4-fold reduction in CFU in 2.5mM aspirin
(Fig. 1B).

Given this observation, we asked if F. nucleatum strains isolated from human CRC
tissues (FnCTI-1, -2, -3, -5, -6, and -7) (4) would behave more like Fn7-1, a clinical iso-
late from a patient with inflammatory bowel disease (55), or like the extraintestinal
and lab-adapted ATCC strains Fn23726 and Fn10953. In growth curve assays, we
observed varied phenotypes. FnCTI-1 exhibited only mildly reduced growth in the
presence of 1mM aspirin and was able to grow slightly in 2.5mM, whereas the
growth of FnCTI-2 was strongly reduced in 1mM aspirin and entirely abrogated in
2.5mM (Fig. 4C). The greater aspirin sensitivity of FnCTI-2 was supported by larger
reductions in viable CFU in the presence of 2.5mM aspirin for FnCTI-2 (.104-fold)
than for FnCTI-1 (;10-fold) (Fig. 4D). FnCTI-3 was the least aspirin-sensitive isolate, as
determined by both minimal effects on growth yield (Fig. 4D) and OD600 (see Fig. S2A
in the supplemental material). FnCTI-5, FnCTI-6, and FnCTI-7 all showed multilog
decreases in growth yield by CFU in 2.5mM aspirin (Fig. 4D) and intermediate OD600

phenotypes for FnCTI-6 and FnCTI-7 (Fig. S2B and C). FnCTI-5 exhibits strong clump-
ing and cannot be accurately measured by OD600. Together, these data demonstrate
that both CRC tumor isolates and ATCC strains of F. nucleatum are sensitive to aspirin
in culture, frequently more than we observed for Fn7-1 (Fig. 1A and B), supporting
the relevance of F. nucleatum aspirin sensitivity as we consider approaches to reduce
fusobacterial burden.

Effect of aspirin on growth of CRC-associated enterotoxigenic B. fragilis and
colibactin-producing E. coli. Beyond F. nucleatum, two of the best-characterized CRC-
associated microbes are enterotoxigenic B. fragilis (ETBF), which drives a strong proin-
flammatory and protumorigenic response, and colibactin-producing E. coli, which indu-
ces DNA damage and a specific mutational signature that can be found in CRC tissues
and increases tumor multiplicity in preclinical mouse models (1, 2, 5, 56–59). We used
growth assays on ETBF and colibactin-producing E. coli, as well as additional B. fragilis
and E. coli strains, to ascertain if these CRC-associated bacteria are similarly sensitive to
aspirin and could represent additional targets for aspirin modulation. For B. fragilis, we
investigated ETBF086, an enterotoxigenic isolate, and BF638R, a nontoxigenic isolate.
Both B. fragilis strains exhibited reduced growth in 2.5mM aspirin (Fig. 5A and B).
However, while statistically significant, the effects were far milder than we observed
for many of the F. nucleatum strains, and represented only less than 3-fold decreases in
growth yield.

For E. coli, we investigated the following: BW25113, a K-12 strain; LF82, an adher-
ent-invasive strain; and CCR20, a colibactin-producing strain isolated from CRC tis-
sues. All strains exhibited reduced growth in 2.5mM aspirin compared with that in
Luria-Bertani (LB) (Fig. 5C and D). Much like B. fragilis, however, the effects were stat-
istically significant but mild, reducing growth yield by ;2-fold. Because we per-
formed the growth assays under anaerobic conditions, even for E. coli, we also deter-
mined growth yield for the E. coli strains in 2.5mM aspirin under aerobic conditions
and again observed minimal aspirin sensitivity (see Fig. S3 in the supplemental mate-
rial). Taken together, these data suggest that, although both B. fragilis and E. coli
exhibited slight growth inhibition in response to aspirin, many F. nucleatum strains
are far more aspirin sensitive, at least under the conditions of our assays. Therefore,
the observations we make using our mouse models and human study regarding the
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effects of aspirin on F. nucleatum in vivo may not extend to these other CRC-associ-
ated microbes.

Fusobacterial abundance is reduced in colonic adenomas from patients who
use aspirin. Given the aspirin sensitivity of F. nucleatum, including isolates from
human CRC tissues, that we observed in culture, we posited that regular aspirin use
may affect fusobacterial load in human tissues. As F. nucleatum is infrequently detected
in healthy human stool samples, we used human colonic adenoma tissues, in which F.
nucleatum is enriched (3, 10, 11), to determine if aspirin affects fusobacterial burden.
We isolated DNA from 36 human adenoma samples and determined Fusobacterium sp.
abundance, normalized to human PGT gene copies as a reference for adenoma DNA
abundance, by quantitative PCR (qPCR) as previously described (8, 16). After data anal-
ysis when we were no longer blind to aspirin use, we compared the relative adenoma
fusobacterial abundance across patients who reported taking aspirin daily and those
whose reported no aspirin use (Fig. 6). We observed a 2.3-fold lower mean fusobacterial
burden for patients taking aspirin. However, if we instead categorized adenomas as
Fusobacterium high or Fusobacterium low/negative, as often done in the epidemiological
literature, we observed 7 of 14 adenomas as Fusobacterium high in the control group and
only 6 of 22 adenomas as Fusobacterium high in the aspirin group, using a relative fuso-
bacterial load cutoff of 0.0001. We further analyzed the data comparing patients reporting
low-dose (,325mg daily) or high-dose ($325mg daily) aspirin use and found no dose-
related differences between the two groups (Mann-Whitney test, P. 0.9999). These data
demonstrate an association between aspirin use and reduced Fusobacterium sp. load in

FIG 5 CRC-associated microbe B. fragilis and E. coli responses to aspirin. Growth of B. fragilis strains BF638R
and ETBF086 in basal medium (BM) or BM supplemented with 2.5mM aspirin as determined by optical density
(A) and growth yield (CFU per ml; B) after anaerobic growth for 24 h at 37°C. Growth of E. coli strains
BW25113, LF82, and CCR20 and ETBF086 in LB or LB supplemented with 2.5mM aspirin as determined by
optical density (C) and growth yield (CFU per ml; D) after anaerobic growth for 24 h at 37°C. All data represent
the mean 6 SEM for at least 6 cultures. Growth curves were analyzed by two-way repeated measures ANOVA
with post hoc Dunnett’s test, and growth in 1mM aspirin was significantly different from control medium at
P values of ,0.05 for each of the following strains beginning at the indicated time points: BF638R (6 h),
ETBF086 (5.5 h), BW25113 (3 h), LF82 (3.5 h), and CCR20 (3.5 h). Growth yield analysis was performed by Mann-
Whitney test; **, P, 0.01.
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precancerous adenomas and suggest that the aspirin modulation of F. nucleatum we
have described in culture may also occur in humans. Unfortunately, we were unable to
determine the carriage of ETBF or colibactin-producing E. coli in the human adenoma
samples we examined, as growth to enrich for either B. fragilis or E. coli isolates is required
to assess their presence (58, 60) rather than direct lysis of the tissue, as performed for
Fusobacterium sp. quantification. Thus, we could not test if these bacteria are less affected
by aspirin use as our in vitro data might suggest.

DISCUSSION

In this work, we have coupled complementary culture-based experiments, a mu-
rine model of intestinal tumorigenesis, and human tissues to reveal that aspirin, a
CRC chemopreventive drug, has antibacterial activity against F. nucleatum. More
broadly, the effects of aspirin on F. nucleatum we observe demonstrate the merit of
reconsidering existing preventative and therapeutic options and investigating how
they may also be affecting the CRC-associated microbiome beyond their more well-
known mechanisms.

In culture, we demonstrated the sensitivity of F. nucleatum strains and other CRC-
associated bacteria to millimolar levels of aspirin. Although relatively high compared
with more canonical antimicrobial compounds, these levels of aspirin are compara-
ble to those used to study the effect of aspirin on other bacteria and colon cancer
cell lines and those observed in human serum in some studies, supporting their
relevance (31, 41, 61–63). At these levels, all F. nucleatum strains demonstrated as-
pirin sensitivity. The responses of Fn7-1 to aspirin at these doses were often surpris-
ingly stark, such as a 6-log reduction in stationary Fn7-1 CFU in 10mM aspirin com-
pared with no reduction in 5mM aspirin. Similarly, the range of aspirin levels used
in our study often covered the inflection point for sensitivity of other tested strains,
which may partially explain why we were able to observe differences across F.
nucleatum strains. The underlying basis for why some F. nucleatum strains exhibit
stronger aspirin sensitivity may inform the method of action for how aspirin affects
F. nucleatum and help explain the results we observed for Fn7-1. An experimental
evolution study of benzoate tolerance in E. coli observed concomitant salicylic acid
resistance in the benzoate-adapted strains, whose mutations largely mapped to
multidrug efflux systems (64). Variation in either the presence or expression of

FIG 6 Fusobacterial abundance in human colonic adenomas of patients who self-reported aspirin
use. qPCR was performed on DNA isolated from human colonic adenomas using primers targeting
the nusG gene of Fusobacterium spp. and the human PGT gene to normalize for human DNA
abundance. Samples were grouped based on patients who reported daily aspirin use and those who
reported no aspirin use (white data points). For patients reporting daily aspirin use, gray data points
indicate low-dose aspirin (,325mg daily) and black data points indicate those reporting high-dose
aspirin ($325mg daily). Data points (circles) represent individual adenomas, and triangles represent
adenomas for which Fusobacterium sp. abundance was below the limit of detection and marked at
the limit of detection based on the cycle threshold (CT) for hPGT in that individual sample. Bars
indicate the mean 6 SEM. Analysis was performed by Mann-Whitney test, with * indicating P values
of ,0.05.
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these systems, such as the MacB macrolide transporter whose expression in Fn7-1
was downregulated in response to aspirin, across F. nucleatum strains may be one
explanation for different aspirin sensitivity. Isolation and characterization of F.
nucleatum mutants that exhibit improved growth directly in aspirin or salicylic acid,
while beyond the scope of this project, might reveal specific mechanisms underly-
ing fusobacterial aspirin sensitivity and resistance. In addition to directly inhibiting
bacterial growth, aspirin can alter sensitivity to antibiotics (48–51), which could syn-
ergize to further reduce F. nucleatum levels in vivo, although it is yet to be empiri-
cally tested in F. nucleatum.

Beyond culture-based experiments, we investigated how aspirin influences F. nucle-
atum in the setting of CRC using a genetically driven mouse model to show that aspirin
abrogated F. nucleatum-potentiated tumorigenesis. Experimental limitations of this
model—including the lack of colonic adenomas in either the absence of Fn7-1 or in
Fn7-1 mice on aspirin chow and the difficulty in isolating viable Fn7-1 from the stool of
conventional (specific pathogen free) mice—left us unable to fully ascertain if this ob-
servation was due to aspirin directly altering Fn7-1 viability or behavior or dominant
effects of aspirin on inflammation and colonic tumor development independent of
Fn7-1. However, aspirin leads to only mild, if any, effects on spontaneous intestinal ad-
enoma formation in ApcMin/1 mice at this dosage (24, 25). Furthermore, a recent study
proposed a role for the microbiota in mediating the response to aspirin in this model,
as intestinal tumor burdens were reduced only when the microbiota was also dis-
rupted by antibiotics (27). Taken together, these studies suggest that it is unlikely
that the anti-inflammatory effects of aspirin alone are sufficient for the strong inhibi-
tion of Fn7-1-potentiated tumorigenesis we observed, and therefore, there likely may
be a role for aspirin modulation of Fn7-1 in this phenotype. F. nucleatum aspirin-re-
sistant mutants, as proposed earlier, would also prove useful in more definitively
probing the role of aspirin-sensitivity in blocking F. nucleatum-potentiating tumori-
genesis in the ApcMin/1 model, representing a potential future direction for in vivo
experimentation. Beyond aspirin sensitivity, our observations could also be influ-
enced by changes in Fn7-1 gene expression in response to lower levels of aspirin,
including downregulation of important virulence factors like fap2, required to medi-
ate CRC tissue localization and anti-tumor immunity (4, 14), and fadA, encoding a
fusobacterial adhesin that engages E-cadherin to promote Wnt/b-catenin signaling
and drive cancer cell proliferation (12).

Using human samples, we demonstrated reduced fusobacterial load in colonic
adenomas for individuals who self-reported daily aspirin use, by both mean fusobacte-
rial burden and categorization as Fusobacterium high or Fusobacterium low/negative.
The poorer prognosis and development of chemoresistance associated with fusobacte-
rial load were determined using analyses with stratification of Fusobacterium-high and
Fusobacterium-low/negative CRC tissues (15, 17) rather than based on correlation to a
continuum of fusobacterial load. Therefore, the categorical threshold differences in
fusobacterial load in response to aspirin use may indicate a greater potential to shape
CRC outcomes than the 2.3-fold difference in mean adenoma fusobacterial abundance
may suggest. Important remaining questions include where in the body (e.g., the oral
cavity, the intestinal tract, or within the tumor microenvironment) and when (relative
to tumor development) F. nucleatum exposure is occurring so that aspirin can be used
most effectively.

The effect of aspirin on F. nucleatum growth and behavior is only one aspect of the
interactions between aspirin and the microbiota in the context of colorectal tumori-
genesis. For example, we previously demonstrated that F. nucleatum drives expression
of Ptgs2 (3), which encodes COX-2, the predominant cellular target of aspirin in its anti-
inflammatory role. Furthermore, a recent study suggested a role of the microbiota in
influencing aspirin bioavailability in intestinal tumor models (27). Thus, the interactions
among aspirin, F. nucleatum, other microbiota constituents, and inflammation in CRC
tissues likely represent a highly complex interplay rather than the reductionist focus
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here. The critical question is how we use our understanding of these interactions to
inform personalized microbiota-based medicine, such as more strongly recommending
aspirin to individuals who harbor detectable fecal F. nucleatum and therefore are at a
higher risk for CRC in a microbiota-based screening (65, 66).

MATERIALS ANDMETHODS
Bacterial strains and growth conditions. F. nucleatum strains Fn7-1 (55); FnCTI-1, -2, -3, -5, -6, and

-7 (4); Fn23726; and Fn10953 (ATCC; Manassas, VA) were grown in Columbia broth or tryptic soy broth
supplemented with hemin (5mg/ml) and menadione (1mg/ml) (sTSB) at 37°C, under anaerobic condi-
tions using a vinyl chamber (Coy Lab Products, Grass Lake, MI). Fastidious anaerobe agar (FAA; Neogen,
Lansing, MI) supplemented with 5% defibrinated sheep blood was used for plating. E. coli strains
BW25113 (67), LF82 (68), and CCR20 (59, 69) were grown in Luria-Bertani (LB) broth at 37°C under aero-
bic or anaerobic conditions, as indicated, and plated onto either LB or MacConkey agar. B. fragilis strains
BF638R (70) and ETBF 086-54443-2-2 (ETBF086) (71) were grown in supplemented basal medium (BM; 20
g/liter proteose peptone, 5 g/liter yeast extract, 5 g/liter sodium chloride, 5 g/liter glucose, 5 g/liter dipo-
tassium phosphate, 0.5 g/liter L-cysteine, 5mg/ml hemin, 2.5mg/ml vitamin K1; modified from reference
72) at 37°C under anaerobic conditions and plated onto FAA supplemented with 5% defibrinated sheep
blood.

All media supplemented with aspirin or salicylic acid were pH adjusted to match the control me-
dium. For growth experiments, bacteria were grown overnight and then subcultured 1:100 into indi-
cated media for 24 h at 37°C, unless otherwise noted. OD600 was measured in 48-well plates, unless oth-
erwise indicated, using a Biotek Eon plate reader (Winooski, VT), located within the anaerobic chamber.

Gene expression studies. Fn7-1 was grown for 24 h under the conditions described. RNA was
extracted from the cultures by using a Directzol RNA Miniprep kit (Zymo Research, Irvine, CA), followed
by Turbo DNA-free treatment (Invitrogen, Carlsbad, CA) and concentration with an RNeasy MinElute
cleanup kit (Qiagen, Germantown, MD). RNA quality assessment (2200 Tapestation; Agilent, Santa Clara,
CA), rRNA depletion (Ribo-Zero rRNA removal kit for bacteria; Illumina, San Diego, CA), library construc-
tion (Wafergen PrepX directional RNA-seq library kit; TaKaRa Bio, Mountain View, CA), and sequencing
(HiSeq 2500; Illumina) were performed by the Harvard Medical School (HMS) Biopolymers Core Facility
using standard techniques to generate 75-base pair paired-end reads.

Raw sequencing reads were quality trimmed using Trimmomatic (73) (v0.39) configured to perform
sliding window scan with the following settings: “ILLUMINACLIP:${adapter_library_FASTA}:2:36:7:1:
keepBothReads LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:36.” Optical and PCR duplicate
sequences were then identified and removed using Clumpify with the option “dedupe optical spany ad-
jacent subs = 0” from the BBTools bioinformatic suite (http://sourceforge.net/projects/bbmap). We
indexed 2,419 Fn7-1 genomic loci identified by the GenBank database (assembly accession GCA
_000158275.2) using Burrows-Wheeler Aligner (BWA; v0.7.17) (74) to create a gene database for short
read alignment. Low-complexity gene subsequences were hard masked with the DUST program (75)
prior to read mapping with the maximal exact match (mem) algorithm and default penalty scoring strat-
egy (76). To maximize the biological interpretation of gene expression data, we used Prokka (77) to rean-
notate genome loci with protein families by incorporating profile hidden Markov model (pHMM) data-
bases from Pfam (78) (prioritized; v33), EggNOG bacteria archaea viruses (79) (v5), KOfam (80) (v96),
TIGRFAMs (81) (v15), and PSORTb (82) (v3.0.2) to predict subcellular localization of proteins in Gram-neg-
ative bacteria. A gene expression matrix was constructed by counting only reads that mapped to a sin-
gle gene (i.e., unambiguous reads) using the htseq-count script included with the HTSeq python library
(83). Read counts were normalized to transcripts per kilobase million (TPM) to equalize variable sequenc-
ing depth across samples for differential gene expression analysis by least square linear regression as
implemented in the limma R/Bioconductor package (84). Fold change between treatment conditions for
each gene was calculated by determining the mean value of all combinatorial pairs of samples that fell
within the interquartile range (85). To ensure robust statistical analysis, we aligned reads against a fuso-
bacterial clade-specific marker gene collection using the ChocoPhlAn pangenome database (v30) (86).

Animal studies. Beginning at 6weeks of age and continuing daily for 8weeks, male and female
ApcMin/1 (sourced from Jackson and bred in-house in a barrier facility) mice were orally instilled with ei-
ther 108 CFU of Fn7-1 (in ,100-ml volume) or medium control (sTSB). Concurrently, animals were placed
on either an AIN-76A diet or AIN-76A supplemented with 200 ppm aspirin (Research Diets, Inc., New
Brunswick, NJ). At 14weeks, mice were euthanized and colons were excised for histological analysis con-
ducted in a blind manner by J.N.G., as previously described (3). All experiments were approved and car-
ried out in accordance with HMS’s Standing Committee on Animals and the National Institutes of Health
guidelines for animal use and care.

Determination of Fusobacterium sp. abundance in human colon adenomas. Human colonic
adenomas were acquired from the Pitt Biospecimen Core (PBC) at the University of Pittsburgh.
Acquisition of the samples was institutional review board (IRB) approved, and informed consent was
received from all participants, who also completed questions about NSAID and aspirin use. All adenomas
were $1 cm in size. Upon endoscopic removal, they were placed into a saline ice bath and transported
to pathology for sectioning. The pathologist allocated tissue for clinical diagnosis and research purposes,
which was flash frozen and stored at280°C.

DNA was isolated from adenoma tissues (;2mm by 2mm by 2mm) by overnight lysis (100mM Tris-
HCl [pH 8.5], 5mM EDTA [pH 8.0], 0.2% sodium dodecyl sulfate, 200mM NaCl, and 1mg/ml proteinase K;
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rotating at 55°C), followed by a standard phenol-chloroform extraction. qPCR was performed on tumoral
DNA (160 ng per reaction, technical duplicates) using the Kapa ProbeFast Rox low kit (Wilmington, MA)
on an Agilent Mx3005P cycler. Primers targeted Fusobacterium spp. (forward, 59-CAACCATTACTTTAAC
TCTACCATGTTCA-39; reverse, 59-GTTGACTTTACAGAAGGAGATTATGTAAAAATC-39; probe, 59-6-6-carboxy-
fluorescein [FAM]-TCAGCAACTTGTCCTTCTTGATCTTTAAATGAACC-black hole quencher [BHQ]1-39) and
human PGT (forward, 59-ATCCCCAAAGCACCTGGTTT-39; reverse, 59-AGAGGCCAAGATAGTCCTGGTAA-39;
probe, 59-6-FAM-CCATCCATGTCCTCATCTC-BHQ1-39) as previously described (8, 16). We were blind to as-
pirin use until after data analysis.

Statistical analysis. Graphs and statistical analysis were generated using Prism 9 (GraphPad
Software, San Diego, CA). Statistical tests used for each analysis are described in figure legends.

Data availability. RNA-seq data used in this study have been deposited in the NCBI SRA database
under the BioProject identifier (ID) PRJNA701284.
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