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Abstract

Background: Identifying genetic interactions in data obtained from genome-wide
association studies (GWASs) can help in understanding the genetic basis of complex
diseases. The large number of single nucleotide polymorphisms (SNPs) in GWASs
however makes the identification of genetic interactions computationally challenging.
We developed the Bayesian Combinatorial Method (BCM) that can identify pairs of
SNPs that in combination have high statistical association with disease.

Results: We applied BCM to two late-onset Alzheimer’s disease (LOAD) GWAS
datasets to identify SNPs that interact with known Alzheimer associated SNPs. We
also compared BCM with logistic regression that is implemented in PLINK. Gene
Ontology analysis of genes from the top 200 dataset SNPs for both GWAS datasets
showed overrepresentation of LOAD-related terms. Four genes were common to
both datasets: APOE and APOC1, which have well established associations with LOAD,
and CAMK1D and FBXL13, not previously linked to LOAD but having evidence of
involvement in LOAD. Supporting evidence was also found for additional genes
from the top 30 dataset SNPs.

Conclusion: BCM performed well in identifying several SNPs having evidence of
involvement in the pathogenesis of LOAD that would not have been identified by
univariate analysis due to small main effect. These results provide support for applying
BCM to identify potential genetic variants such as SNPs from high dimensional GWAS
datasets.

Keywords: Genome-wide association study, Epistasis, Alzheimer’s disease, Bayesian
networks
Introduction
Elucidating the genetic basis of common diseases will lead to an understanding of the

biological mechanisms that underlie such diseases and can help in risk assessment,

diagnosis, prognosis and development of new therapies. During the past several

decades genetic linkage studies have been effective in mapping genetic loci respon-

sible for many Mendelian diseases that are caused by a single genetic variant [1].

More recently, genetic studies have indicated that most common diseases are likely

to be polygenic where multiple genetic variants acting singly and in combination

underlie the expression of disease [2].

The commonest type of genetic variation is the single nucleotide polymorphism

(SNP) that results when a single nucleotide is replaced by another in the genome
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sequence. The development of high-throughput genotyping technologies has led to a

flurry of genome-wide association studies (GWASs) with the aim of discovering SNPs

that are associated with common diseases. GWASs have been moderately successful in

identifying SNPs associated with common diseases and traits. However, in most cases

the identified SNPs have small effect sizes, and the proportion of heritability explained

is quite modest. One view is that SNPs may interact in subtle ways that lead to

substantially greater effects than the effect due to any single SNP. Another view is

that common diseases may be due to rare and usually deleterious SNPs that cause

disease in individual patients and that in different individuals or subpopulations the

disease is caused by different deleterious SNPs.

This paper addresses the challenge of identifying interacting SNPs that may have

small effects and describes a Bayesian combinatorial method (BCM) for identifying

such interactions that are associated with disease. This method has been shown

empirically to perform well on low dimensional synthetic data [3]. However, to our

knowledge BCM has not been applied to real-world datasets with a large number of

SNPs. In this paper we apply BCM to two late-onset Alzheimer’s disease GWAS

datasets to identify SNPs that interact with known Alzheimer associated SNPs.

As background, we provide brief summaries about GWASs, genetic interactions, and

Alzheimer’s disease in the following sections.
Genome-wide association studies

The development of high-throughput genotyping technologies that assay hundreds of

thousands of SNPs or more, along with the identification of SNPs in the human

genome by the International HapMap Project led to the emergence of GWASs.

GWASs are typically case–control studies aimed at discovering SNPs – either as

disease causing variants or as markers of disease – that are associated with a common

disease or trait. The success of GWASs is based in large part on the common disease -

common variant hypothesis. This hypothesis posits that common diseases in most indi-

viduals are caused by relatively common genetic variants that have low penetrance and

hence have small to moderate influence in causing disease. An alternative hypothesis is

the common disease - rare variant hypothesis, which posits that many rare variants under-

lie common diseases and each variant causes disease in relatively few individuals with high

penetrance. Both these hypotheses likely contribute to common diseases with genetic

variants may range from rare to the common SNPs.

GWAS data is typically analyzed for univariate associations between SNPs and the

disease of interest; the statistical tests used include the Pearson’s chi-square test, the

Fisher’s exact test, the Cochran-Armitage trend test, and odds ratios [4]. SNPs identi-

fied as significant by univariate analyses may be further examined for interactions

among them using methods such as logistic regression.
Genetic interactions

Genetic interactions, also known as epistasis, can be defined biologically as well as

statistically. Biologically, epistasis refers to gene-gene interaction when the action of

one gene is modified by one or several other genes. Statistically, epistasis refers to inter-

action between variants at multiple loci in which the total effect of the combination of
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variants at the different loci may differ considerably from a linear combination of the

effects of individual loci. The detection of statistical epistasis has the potential to

indicate genetic loci that have a biological interaction [5].

Statistical methods for identifying genetic interactions can be broadly divided into

exhaustive and non-exhaustive methods. Exhaustive methods examine all possible

SNP-subsets and examples include Multifactor Dimensionality Reduction (MDR) [6,7]

and the BCM [3] that we describe in the next section. Examples of non-exhaustive

methods include BOolean Operation-based Screening (BOOST), SNPHarvester, and

SNPRuler. We briefly describe these methods below.

The software package PLINK that is used widely for the analysis of GWAS datasets

implements logistic regression for the detection of SNP-SNP interactions in either all

or specific sets of SNPs in a dataset [8].

MDR exhaustively evaluates all 1-, 2-, 3-, ..n-SNP subsets where n is specified by the

user. It combines the variables in a SNP subset to construct a single binary variable and

uses classification accuracy of the binary variable to evaluate a SNP-subset. Since MDR

does not scale up beyond a few hundred SNPs, for high dimensional data a multivariate

filtering algorithm called ReliefF is applied to reduce the number of SNPs to a few

hundred [5,6,9,10].

BOOST uses a two-step procedure [11]. In the screening step, it uses an approximate

likelihood ratio statistic that is computationally efficient and computes it for all pairs of

SNPs. Only those SNPs that pass a threshold in the first step are examined for signifi-

cant interaction effect using the classical likelihood ratio test that is computationally

more expensive.

SNPHarvester is a stochastic search algorithm that uses a two-step procedure to

identify epistatic interactions [12]. In the first step it identifies 40–50 significant SNP

groups using a stochastic search strategy, and in the second step, it fits a penalized

logistic regression model to each group.

SNPRuler searches in the space of SNP rules and uses a branch-and-bound strategy

to prune the huge number of possible rules in GWAS data [13]. An example of a rule

is X1 = 0 ^ X2 = 2⇒ Z = 1 (X1 and X2 are SNPs, the three genotypes that a SNP can take

are coded as 0, 1 and 2 and Z is a binary outcome variable). The quality of a rule is

evaluated with the chi-square statistic.

Alzheimer’s disease

Alzheimer’s disease (AD) is the commonest neurodegenerative disease associated with

aging and the commonest cause of dementia [14]. AD affects about 3% of all people

between ages 65 and 74, about 19% of those between 75 and 84, and about 47% of

those over 85. AD is characterized by adult onset of progressive dementia that typic-

ally begins with subtle memory failure and progresses to a slew of cognitive deficits

like confusion, language disturbance and poor judgment [15].

AD is typically divided into early-onset Alzheimer’s disease (EOAD) in which the onset

of disease is before 60 years of age and late-onset Alzheimer’s disease (LOAD) in which

the onset is at or after 60 years of age. EOAD is rare and exhibits an autosomal dominant

mode of inheritance. The genetic basis of EOAD is well established, and mutations in

one of three genes (amyloid precursor protein gene - APP, presenilin 1 gene - PSEN1,

or presenilin 2 gene - PSEN2) account for most cases of EOAD [16].
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LOAD is widespread and is estimated to strike almost half of all people over the age

of 85. LOAD is believed to be a disease with both genetic and environmental influ-

ences, and elucidating the role of genetic factors in the pathogenesis and development

of LOAD has been a major focus of research for more than a decade. One genetic risk

factor for LOAD that has been consistently replicated is the apolipoprotein E (APOE)

locus determined by the combined genotypes at the loci rs429358 (APOE*4) and

rs7412 (APOE*2) [17]. In the past few years, GWASs have identified several additional

genetic loci associated with LOAD [18-22].

Bayesian combinatorial method

BCM uses a Bayesian network (BN) to model a set of SNPs and interactions among them

and their association with disease, and the model is evaluated with a Bayesian score. It

then exhaustively searches a space of all possible models to identify high scoring models.

Bayesian network model and score

For a dataset D that contains a set of n SNPs {X1, X2, …, Xn} and a binary outcome

variable Z (e.g., disease or phenotype) on N individuals, BCM’s goal is to identify a set

of SNPs that together are most predictive of Z in D. We model the effects of SNPs on

Z with a BN that has n SNP-nodes and an additional node for Z. In this BN, which we

call a SNP-BN, a subset of the n SNPs is modeled to have an effect on Z and every

node in that subset has an arc to Z and every node not in the subset does not have an

arc to Z. Also, there are no arcs between the SNP-nodes since we do not model the

relations among the SNPs. Figure 1 gives an example of a SNP-BN where SNPs X2 and

X3 are modeled to have a joint effect on Z (as shown by the arcs connecting them to Z)

and the remaining SNPs do not have an effect on Z.

We evaluate the goodness of fit of a SNP-BN to data using an efficiently computable

Bayesian score that computes the posterior probability of the BN given the data. In par-

ticular, we compute the BDeu (Bayesian Dirichlet equivalence uniform) score described

in [23] which is commonly used in BN learning from data. This score is computed effi-

ciently in closed form as follows:

PðMjDÞ ¼ P Mð Þ
Ynþ1

i¼1

YJ i
j¼1

Γ αij
� �

Γ nij þ αij
� �YKi

k¼1

Γ nijk þ αijk
� �
Γ αijk
� � ð1Þ
Figure 1 A SNP Bayesian network model. In this model SNPs X2 and X3 have an effect on Z and the
remaining SNPs do not have an effect on Z. The table gives counts for the states of Z conditioned on the
joint states of X2 and X3.
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where, Γ(⋅) is the gamma function, M is a SNP-BN, P(D | M) is the posterior probability

of M given D, P(M) is the prior probability of M, Ki is the number of states of variable

Xi represented by node i, Ji is the number of joint states of the parents of node i, nijk is

the number of times in the data that node i is in state k given parent state j, αijk are the

parameter priors in a Dirichlet distribution which define the prior probability over the

BN parameters. Also, nij ¼
XKi

k¼1

nijk ; αij
XKi

k¼1

αijk , and αijk ¼ α
J i⋅Ki

, where α is a single user-

defined parameter prior. The nijk are obtained from the data and stored in a counts

table that is associated with each node (an example of a counts table for node Z is

shown in Figure 1). We make the following assumptions and simplifications: (1) model

the prior probability P(M) as a constant, i.e., a priori we consider all models to be

equally plausible, (2) set α = 1 which is a commonly used non-informative parameter

prior, (3) use the logarithmic form to simplify computations when dealing with very

small numbers, and (4) assign the score for a SNP-BN model to be the BDeu score

attributable to just node Z [24]. The reason for assumption (4) is as follows. The BDeu

score decomposes over the nodes in the BN and each node makes an independent con-

tribution to the overall score. In the space of SNP-BNs, the score contributions of the

SNP-nodes is a constant since they have no incoming arcs, and hence variation in the

scores for distinct SNP-BNs is due only to the score attributable to Z. Thus, the score

we use for a SNP-BN is given by the following expression (index i is absent since there

is only one node under consideration, namely, Z, and K = 2 since Z is binary):

score Mð Þ ¼
XJ

j¼1

log
Γ αj
� �

Γðnj þ αjÞþ
X2
k¼1

log
Γ njk þ αjk
� �
Γ αjk
� � ð2Þ

We have evaluated the BCM score in low dimensional synthetic data and found that
in such data it has significantly greater power and is computed more efficiently than

MDR [3,25,26].

In addition to computational efficiency and statistical power BCM has several add-

itional advantages. The BCM score can be adapted to combine knowledge with data

which has the potential to enhance the analysis of high dimensional GWAS datasets.

Biological knowledge or results from analyses of earlier studies can be encoded in P(M)

as a prior distribution over the models. The BN model used by BCM can be used for

non-genetic variables such as environmental effects of disease. Thus, BCM can be used

to identify combinations of genetic and environmental effects on disease. Finally, BCM

can handle unbalanced datasets and its applicability is not restricted to datasets with

approximately equal cases and controls.

Materials & methods
This section describes the GWAS datasets, the experimental methods, and previously

identified LOAD SNPs.

GWAS dataset

We used two different LOAD GWAS datasets in our experiments. The first dataset

was part of the University of Pittsburgh Alzheimer’s Disease Research Center (ADRC)

that is described elsewhere [20]. This dataset consists of 2,245 individuals, of which
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1290 had LOAD and 955 did not. For each individual, the genotype data consists of

682,685 SNPs on autosomal chromosomes.

The second dataset was collected by the Translational Genomics Research Institute

(TGen) [22]. This dataset consists of 1,411 individuals, of which. 861 had LOAD and

550 did not. For each individual, the imputed genotype data consists of 234,665 SNPs

on autosomal chromosomes. For each individual, the genotype data consists of 502,627

SNPs; the original investigators analyzed 312,316 SNPs after applying quality controls.

We used those 312,316 SNPs, plus two additional APOE SNPs from the same study

namely, rs429358 and rs7412.

The encoding of the genotypes followed the raw file format of the whole-genome

analysis package PLINK, which contains a header line and then one line per individual.

Each line has v + 6 fields (where v is the number of variants); the first six fields contain

identification codes, the sex and the phenotype of the individual. The remaining fields

contain variant genotypes, coded as a single allele dosage number (0, 1, 2 of minor

allele) [8]. The University of Pittsburgh IRB approved the use of the datasets for the

study.

Experimental methods

BCM searches exhaustively over all possible SNP-BN models in a dataset. For a GWAS

dataset with half a million SNPs, the number of SNP-BN models is 2n = 9.95 × 10150514

and the number of SNP-BN models with just 2 SNPs is
500000

2

� �
= 1.25 × 1011.

Thus, the search space is very large and it is computationally infeasible to evaluate

every model in the space [27].

We addressed this challenge by applying BCM to a restricted space of SNP-BN

models that consisted of a subset of all possible 2-SNP models. We considered only

those 2-SNP models where one of the SNPs in a model is a member of a set of

SNPs previously known to be associated with LOAD and the second SNP is any

SNP (excluding the first SNP) in the dataset of interest. Since the number of

known LOAD associated SNPs is much smaller than the number of SNPs in a data-

set, it was computationally tractable to search this space of SNP-BN models. The

selection of the previously identified LOAD SNPs that we used is described in the

next section.

We applied BCM to each of the two GWAS datasets separately and analyzed in

detail the top scoring 200 SNP-BN models. We chose to examine the top 200 models

because the model score decreased substantially after the 200 models. From each

SNP-BN model, we extracted the SNP that was not in the set of previously identified

LOAD SNPs. We mapped these SNPs to genes and considered only intragenic SNPs

for further analyses. We performed the SNP to gene mapping with BioQ, a web-

service which uses dbSNP build 135 and Genome Assembly GRCh37.p5 [28]. We

performed enrichment analysis of the annotations of the associated genes in the Gene

Ontology (GO) with the web-based tool GeneCoDis. For a set of genes GeneCoDis

retrieves the associated GO terms, and identifies and ranks those GO terms that are

significantly enriched in the set of genes [29,30]. Enriched functional descriptors

facilitate the interpretation of the gene set. The hierarchical nature of the GO

annotations however means that the set of enriched GO terms may contain terms
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closely related in a parent–child relationship [31]. Such redundant terms confound

the interpretation. Therefore, we further examined the GO terms associated with the

intragenic SNPs using the REViGo webserver. The REViGo software evaluates the se-

mantic similarity between the enriched terms, identifies the most informative com-

mon ancestors and the related redundant GO terms and groups the latter under their

ancestors [32]. The resulting set facilitates simultaneous examination of the enriched

GO terms at two levels: a detailed one, at the lowest level overrepresented term and a

more abstract one at the highest level common ancestor of overrepresented terms.

The detailed level can reveal specific genes of interest whereas the abstract level

serves a compact overview of the processes, functions and cellular compartments

associated with the genes in the set.

In addition to the ontology analysis of the top scoring 200 SNP-BN models, we per-

formed additional analyses of the top scoring 30 SNP-BN models. We analyzed the

genes associated with the intragenic SNPs for differential expression in AD, through

the ArrayExpress web server [33] and biological function analysis. Differential gene

expression in relation to AD aims to integrate experimental evidence from transcrip-

tomic analysis with those of genomic analysis. Up-regulation or down-regulation in

AD of a gene in our results indicates increased biological plausibility for the reported

genetic interaction. Finally, elements from the functional description of a gene

(expression site, function related to the nervous system or pathways of LOAD, previ-

ous literature) were considered as supporting the biological relevance of an identified

interaction.

We also compared BCM with logistic regression (LR) that is implemented in PLINK,

since LR is typically used in genetic epidemiology and association studies. In PLINK,

we used the --epistasis option that provides an LR test for interaction that assumes an

allelic model [4,8]. We applied LR to the ADRC and the TGEN datasets to identify

pairwise interactions between the dataset SNPs and the set of previously identified

LOAD SNPs that was used with BCM.
Previously identified LOAD SNPs

We obtained a set of SNPs that are known to be associated with LOAD from the AlzGene

website. The AlzGene website contains a regularly updated database of SNPs that

have been shown to be associated with LOAD mostly in GWAS studies [34]. The

curators of the AlzGene website use criteria established by the Human Genome Epi-

demiology Network (HuGENet) for assessing the cumulative evidence of associations

of SNPs with disease [35]. We obtained 10 SNPs that were assessed to have suffi-

ciently strong evidence of being associated with LOAD from the AlzGene website in

March 2012. If a previously identified LOAD SNP was not present in our datasets, we

selected a replacement SNP. The replacement SNP was within 500 kb, in the same

gene, as the original SNP with pairwise linkage disequilibrium threshold of r2 ≥ 0.8,

using the SNAP web-based tool [36]. Using this protocol, we were unable to identify

replacement SNPs in the TGen dataset for three previously identified LOAD SNPs; there-

fore we replaced them with SNPs from other genes, also reported as significantly associated

with LOAD in the AlzGene website. Table 1 gives the list of 10 previously identified LOAD

SNPs that we used in the experiments.



Table 1 Previously identified LOAD SNPs

# Gene AlzGene SNP Odds ratio (95% CI) p value ADRC SNP r2 TGen SNP r2

1 APOE 4 rs429358 3.685 (3.30-4.12) <1E-50 Same - Same -

2 CR1 rs3818361 1.174 (1.14-1.21) 4.72E-21 Same - rs6656401 0.840

3 PICALM rs3851179 0.879 (0.86-0.9) 2.85E-20 Same - rs7110631 0.841

4 MS4A6A rs610932 0.904 (0.88-0.93) 1.81E-11 Same - rs574695 0.935

5 CD33 rs3865444 0.893 (0.86-0.93) 2.04E-10 Same - Same -

6 MS4A4E rs670139 1.079 (1.05-1.11) 9.51E-10 rs600550 1 rs676309 1

7 CD2AP rs9349407 1.117 (1.08-1.16) 2.75E-09 rs9296559 1 rs9296558 1

8 GAB2 rs2373115 0.85 (0.76-0.94) Same - Same -

9 SORL1 rs2282649 1.10 (1.03-1.17) rs726601 0.922 rs726601 0.922

10 TF rs1049296 1.18 (1.06-1.31) Same - Same -

AlzGene SNP: the SNP in the AlzGene meta-analysis, along with the relevant odds ratios and p values (the latter for those
SNPs with p values <0.00001); ADRC SNP: the corresponding SNP in the ADRC dataset, along with the r2 scores; TGen SNP:
the corresponding SNP in the TGen dataset, along with the r2 scores for linkage disequilibrium.
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Results and discussion
This section describes the results that were obtained from applying BCM to the ADRC

LOAD dataset and from applying BCM to the ADRC and the TGen GWAS datasets.
Top scoring SNP-BN models

Each SNP-BN model includes two SNPs: one SNP is a previously identified LOAD SNP

and the other is any SNP from the dataset. We call the former SNP a known SNP and

the latter SNP a dataset SNP. The known SNP and the dataset SNP from the top

scoring 200 SNP-BN models are given in Additional file 1: Table S1 (for ADRC) and

Additional file 1: Table S2 (for TGen) in the Supplemental Tables. A plot of the scores

of the top scoring 200 SNP-BN models for the two datasets is shown in Figure 2.

In the ADRC dataset, the known SNP in each of the top scoring 200 SNP-BN models

is rs429358 (APOE*4). The dataset SNPs from the top scoring 200 models included 92

intragenic SNPs mapping to 77 genes.

In the TGen dataset, the known SNP in SNP-BN models ranked 1 and 10 to 200 is

rs429358 and the dataset SNPs included 82 intragenic SNPs that mapped to 69 genes.

In the 8 SNP-BN models ranked 2–9 the known SNP was located on genes GAB2,

MS4A6A, MS4A4E, CR1, PICALM, SORL1, TF and the dataset SNP for all 8 models is

rs7412. SNPs rs429358 and rs7412 are located on the APOE gene and their combined

genotypes determine the APOE allelic status which is known to be the strongest

genetic variant that is predictive of LOAD.

A comparison of the top scoring 200 SNP-BN models for the ADRC and TGEN

datasets shows that they have in common two dataset SNPs, rs7412 (APOE gene) and

rs4420638 (APOC1 gene). Additionally, two of the intragenic dataset SNPs from each

dataset map to genes CAMK1D (rs11257738 in ADRC and rs17151584 in TGen) and

FBXL13 (rs7779121 in ADRC and rs17475512 in TGen).
GO term analysis

The most informative common ancestors of the overrepresented GO terms obtained

from GeneCoDis for the ADRC dataset are given in Additional file 1: Table S3 and for



Figure 2 Top 200 BCM model scores plot for both datasets tested. Plots of the distribution of BCM
model scores for the top ranked 200 SNP-BN models for the two datasets, ADRC and TGen. The scores for the
ADRC dataset (blue points) correspond to the left hand Y axis, while those for the TGen dataset correspond to
the right hand Y axis. The dotted vertical line marks the top ranked 200 SNP-BN models.

Floudas et al. BioData Mining  (2014) 7:35 Page 9 of 19
the TGen dataset are given in Additional file 1: Table S4 in the Supplemental Tables.

In both sets nervous system-related terms are enriched (e.g., regulation of dendrite

development, nervous system development, regulation of axon extension, short term

memory), as well as terms related to cholesterol and lipid metabolism (e.g., lipid

metabolic process, chylomicron), beta amyloid (beta amyloid binding) cell membranes

(e.g., integral to membrane, plasma membrane, postsynaptic, clathrin-coated endocytic

vesicle), calmodulin and intracellular calcium homeostasis (e.g., calmodulin binding,

cytosolic calcium ion transport) and the immune system (immunoglobulin binding).

Overrepresentation of these terms shows that the identified genes from both datasets

include genes that are members of biochemical pathways involved in LOAD patho-

physiology [17,37].

Expression analysis

The 15 genes corresponding to the 18 dataset intragenic SNPs from the top scoring 30

models in the ADRC dataset and the 19 genes corresponding to the 19 dataset intra-

genic SNPs from the top scoring 30 models in the TGen dataset were examined for

relative expression in AD (see Table 2 for the ADRC dataset and and see Table 3 for the TGen

dataset). In these tables, the second to last column gives the rank of the corresponding

SNP based on the model score obtained by applying BCM to 1-SNP models. For some

of the SNPs the rank based on the 1-SNP model is very low compared to the score of



Table 2 Functional description and expression of genes associated with the top 30 dataset SNPs in the ADRC dataset

Gene symbol (SNP) Name Description Expression in AD 1-SNP model rank p value of pair from PLINK

APOC1 (rs4420638) Apolipoprotein C-I Appears to modulate the interaction of APOE
with beta-migrating VLDL. Binds free fatty acids.

Overexpressed [38] 2 0.3326

TOMM40 (rs157582) Translocase of outer mitochondrial
membrane 40 homolog

Channel-forming subunit of the translocase of the
mitochondrial outer membrane (TOM) complex,
essential for protein import into mitochondria.

Underexpressed [38] 3 0.4139

APOE (rs7412) Apolipoprotein E APOE is essential for the normal catabolism of
triglyceride-rich lipoprotein constituents. Known
risk factor for LOAD.

Overexpressed [38] 5 0.8172

SNTG1 (rs16914489) Gamma-1-syntrophin Specifically expressed in the brain, highly expressed
in the cortex. Organizes the subcellular localization
of a variety of proteins.

Overexpressed [38] 24906 0.004546

TMEM217 (rs9470543) Transmembrane protein 217 Expressed in the brain - 4584 0.004643

SMAD6 (rs3934907) Mothers against DPP homolog 6 Negative regulation of BMP and TGF-beta/activin-
signaling. BMP-6 is increased in AD brains and leads
to impaired neurogenesis [39]. Reduced TGF-beta
signaling is involved in neurodegeneration and
promotes AD like changes in mice [40].

Underexpressed [38] 41282 0.0000998

NPAS3 (rs4981180) Neuronal PAS domain protein 3. Transcription factor. May regulate genes involved
in neurogenesis. Associated with schizophrenia
and mental retardation

Overexpressed [38] 1086 0.1225

NTM (rs11222692) Neurotrimin May promote neurite outgrowth and adhesion.
NTM lies at locus 11q25, which has been associated
with AD [41,42].

Overexpressed [38] 12209 0.1422

PPAPDC1A (rs4752432) Phosphatidic acid phosphatase
type 2 domain containing 1A

- - 6852 0.3963

NPFF (rs8192593) Neuropeptide FF-amide peptide
precursor

Modulation of morphine-induced antinociception. - 3981 0.1251

SLC25A21 (rs7140725) Solute carrier family 25 Known also as ornithine decarboxylase (ODC).
Mitochondrial oxoadipate carrier, part of polyamine
synthesis pathway.

Overexpressed [43,44] 444 0.06767
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Table 2 Functional description and expression of genes associated with the top 30 dataset SNPs in the ADRC dataset (Continued)

RAB23 (rs182662) Member RAS oncogene family Intracellular protein transportation. Regulated by
miRNA155, which also regulates PICALM (a known
AD association).

Underexpressed [38] 96 0.08251

UNC5D (rs4577954) unc-5 homolog D (C. elegans) Netrin receptor: netrins are secreted proteins that
direct axon extension and cell migration during
neural development. APP also binds Netrin-1 and
in transgenic mice this suppresses amyloid beta
peptide production [45].

- 63972 0.6731

CHD9 (rs3852742) Chromodomain helicase DNA
binding protein 9, PPARA -interacting
complex 320 kDa protein

Transcriptional co-activator for PPARA. The APOE
gene promoter has a binding site for PPAR alpha.
Low CHD9 activity could reduce APOE levels. Increase
in APOE transcription has been shown to clear
amyloid beta in AD mouse models [46].

Overexpressed [38] 1061 0.04696

CNTN4 (rs9819935) Contactin 4, Brain-derived immunoglobulin
superfamily protein 2

Mainly expressed in brain. Neuronal membrane
protein that may play a role in the formation of
axon connections in the developing nervous system.
Associated with Spinocerebellar Ataxia, Amyotrophic
Lateral Sclerosis, 3p deletion syndrome.

- 2149 0.002386

1-SNP model rank: rank of the corresponding SNP in terms of univariate 1-SNP model score.
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Table 3 Functional description and expression of genes associated with the top 30 dataset SNPs in the TGen dataset

Gene symbol (SNP) Name Description Differential expression in AD 1-SNP model rank p value of pair from PLINK

APOE2 (rs7412) Apolipoprotein E APOE is essential for the normal catabolism
of triglyceride-rich lipoprotein constituents.
Known risk factor for LOAD.

Overexpressed [38] 1 0.05993

APOC1 (rs4420638) Apolipoprotein C-1 Appears to modulate the interaction of APOE
with beta-migrating VLDL. Binds free fatty acids.

Overexpressed [38] 3 0.705

C10orf11 (rs7079348) Chromosome 10 open reading
frame 11

A brain-expressed gene. Haploinsufficiency of
C10orf11 contributes to the cognitive defects
in 10q22 syndrome [47].

- 4 0.009623

VWC2 (rs10499687) von Willebrand factor C
domain-containing protein 2
(Brorin, Brain-specific chordin-like
protein)

Encodes a secreted bone morphogenic protein
(BMP) antagonist. The encoded protein is possibly
involved in neural function and development and
may have a role in cell adhesion. BMP-6 is
increased in AD brains and leads to impaired
neurogenesis [39].

Underexpressed [48] 12 0.7698

PSD3 (rs17126808) Pleckstrin and Sec7 domain
containing 3

Guanine nucleotide exchange factor for ARF6
that contributes to the regulation of dendritic
branching [49].

Overexpressed [38] 34 0.001623

GXYLT2 (rs3732443) Glucoside xylosyltransferase 2 Elongates the O-linked glucose attached to
EGF-like repeats in the extracellular domain of
Notch proteins [49], which are substrates of
γ-secretase, the enzyme involved in amyloid
beta production [50].

Underexpressed in a
murine AD model [51]

6 0.211

GABBR2 (rs2779550) Gamma-aminobutyric acid
(GABA) B receptor, 2

Target for autophagy regulation in
neurodegenerative diseases [52].

Overexpressed [38] 391 0.0002945

ENPP2 (rs16892852) Ectonucleotide pyrophosphatase/
phosphodiesterase 2

Hydrolyzes lysophospholipids to produce
lysophosphatidic acid (LPA) in extracellular
fluids. Predominantly expressed in brain,
placenta, ovary, and small intestine. Secreted
by most body fluids including serum and
cerebrospinal fluid [49].

Overexpressed [38] 92 0.04851
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Table 3 Functional description and expression of genes associated with the top 30 dataset SNPs in the TGen dataset (Continued)

GLP1R (rs910171) Glucagon-like peptide 1 receptor Member of the glucagon receptor family (also
includes glucagon, GLP-2, secretin, GHRH and GIP
receptors).In the brain located in hypothalamus
and brainstem. Protective against amyloid beta
accumulation in rats [53].

Overexpressed [38] 193 0.01462

MOSC1 (rs746767) MOCO sulphurase C-terminal
domain containing 1

A mitochondrial oxidoreductase, cofactor:
molybdenum, is expressed in the brain. MOSC1
is a target for miR-129-5p, like GABBR2, and
miR-155, like PICALM.

- 66 0.04507

TM4SF20 (rs4408717) Transmembrane 4 L six family
member 20

Tetraspannin superfamily member. Tetraspanins
are often thought to act as scaffolding proteins,
anchoring multiple proteins to one area of the
cell membrane. Other tetraspanin superfamily
members have been implicated in Notch
signaling and g-secretase activity modulation [54].

- 95 0.004495

1-SNP model rank: rank of the corresponding SNP in terms of univariate 1-SNP model score.
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the corresponding 2-SNP model which implies that these SNPS would not have been

identified by univariate analysis. The last column gives the p values for the pairs of

SNPs that were obtained from using logistic regression in PLINK.
Comparison of BCM with logistic regression applied to the ADRC and TGEN datasets

In the ADRC dataset, comparing the 200 top-ranking SNP-BN models of BCM with

the top 200 SNP pairs of LR we have 5 models in common. In the case of the TGEN

dataset there are 9 models in common between the 200 top-ranking SNP-BN models

of BCM and the top 200 SNP pairs of LR. A comparison of the top 200 SNP pairs

obtained with LR from the ADRC and TGEN datasets reveals no SNP pair in common.
Discussion

Examining all pairs of SNPs in a GWAS dataset for identifying interacting SNP pairs

is usually not computationally tractable due to the large number of SNP pairs. We

addressed this challenge by examining only a subset of all pairs of SNPs where one

member of the pair is drawn from a small set of previously known disease-associated

SNPs and by using a Bayesian score to evaluate that statistical association of a SNP pair

with the disease. We applied this strategy to two LOAD GWAS datasets and our

results show that it can identify interacting SNPs of plausible biological significance.

Moreover, this strategy finds SNPs that would be overlooked in a univariate analysis

because they exhibit small main effects; however, they are detected when paired with

another SNP due to interaction effects.

Evaluation of the identified SNPs did not include experimental validation in the

laboratory. Instead, we gathered evidence from the literature that supports that the

SNPs we identified may play a role in the biological mechanisms underlying LOAD. To

do so, we selected the intragenic SNPs and identified the relevant genes. We used

ontology enrichment analysis of the list of genes to provide an overview of the func-

tions of the identified genes. We then used descriptions in gene databases to examine

each gene for appropriate context (tissue expression, function, product protein interac-

tions). Finally, we examined the literature for studies reporting association of the gene,

of the gene transcript (expression studies) or the encoded protein with LOAD.

In both LOAD GWAS datasets that we examined, the previously known disease-

associated SNP that was identified is either rs429358 (APOE*4) or rs7412 (APOE*2);

these SNPs reside in the APOE gene which is known to be the strongest genetic deter-

minant for LOAD. GO term enrichment analysis of the dataset SNPs identified terms

that are relevant to biochemical pathways implicated in the pathogenesis of LOAD

such as lipid metabolic process, calmodulin binding, nervous system development and

multiple membrane-related terms.

Gene expression analysis of the dataset SNPs showed that for each dataset studied a

majority of the genes corresponding to the top 30 dataset SNPs are differentially

expressed in LOAD. Functional annotations and literature evidence that are presented

with the expression data in the relevant tables further support the role of these genes

in the pathogenesis of LOAD.

Among the genes corresponding to the top 200 dataset SNPs, besides the APOE

gene, three other genes are common to both datasets: APOC1, CAMK1D and FBXL13.
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Evidence supporting the interaction of APOC1 with APOE is presented in the

analysis for the top 30 dataset SNPs. The second gene in common is the CAMK1D

(calcium/calmodulin-dependent protein kinase ID) gene that encodes a member

of the Ca2+/calmodulin-dependent protein kinase 1 subfamily of serine/threonine

kinases family of calmodulin kinases [55], which modulate neuronal development

and plasticity [56]. The gene is overexpressed in AD and is expressed in the brain

especially during hippocampal formation with high expression in the pyramidal cell layers

[38,57]. CAMK1D interacts physically with CALM1 (calmodulin), which has been

associated with AD risk [58]. The CAMK1D protein may regulate calcium-mediated

granulocyte function and activates MAPK3 (Mitogen-activated protein kinase 3). It

phosphorylates -in vitro- the transcription factor CREM (cAMP responsive element bind-

ing) isoform beta and probably CREB1 [57]. The CREB pathway is involved in memory

formation and CREB phosphorylation has been proposed as a signalling pathway involved

in the pathogenesis of AD [59], while CREB pathway down-regulation may have a role in

exacerbations of AD [57]. Another member of the serine/threonine kinases family of

calmodulin kinases, the neuronal CaM kinase II phosphorylates tau protein on ser262, an

important step in the formation of neurofibrillary tangles in AD [60]. The third gene in

common between the two datasets is the FBXL13 (F-box and leucine-rich repeat protein

13) gene that encodes a protein belonging to the F-box protein family. Members of this

family have a characteristic approximately 40-amino acid F-box motif and take part in

SCF (SKP1-CUL1-F-box protein) complexes that act as protein-ubiquitin ligases [55]. The

ubiquitin-proteasome system is involved in protein turnover and degradation and is

perturbed in AD [61]. An SCF complex of another F box protein (FBXW7) is probably

involved in the degradation of PSEN1 protein [49].

In addition to the genes corresponding to the top 30 top scoring SNP-BN models in

the ADRC dataset, we found other genes in lower scoring SNP-BN models with plaus-

ible associations with LOAD. In the 80th scoring model (dataset SNP rs7793977), gene

PION [pigeon homolog (Drosophila)], also known as GSAP (gamma-secretase-activat-

ing protein), is known to increase amyloid beta production [55]. In the 196th scoring

model, (dataset SNP rs6534145), the PDE5A (phosphodiesterase 5A, cGMP-specific)

gene could be implicated to LOAD pathogenesis via two different mechanisms. PDE5A

is a substrate of CASP3 (caspase 3) [62], which in turn has been shown to be involved

in the early synaptic dysfunction in a mouse model of AD [51]. It has also been shown

that inhibition of PDE5A results in a decrease in the transcription of Wnt/β-catenin

[63]. A reduction in Wnt signalling has been implicated in the amyloid beta-

dependent neurodegeneration in LOAD [64].

While BCM has been applied to low dimensional synthetic data with good results

[24], in this paper we have applied it to GWAS datasets. BCM has several advantages.

It is computationally more efficient than the widely used MDR [3]. Since BCM uses the

Bayesian paradigm, the BCM score represents a coherent way to combine knowledge

with data. Biological knowledge or results from analyses of earlier studies can be

encoded as a prior distribution over the models that can then be used in Equation 1.

Use of informative priors is becoming common in the analysis of microarray expression

studies, and a similar strategy can be employed for genomic data.

In this paper we applied our method to two GWAS datasets, as replication is consid-

ered to be a necessary step in the validation of GWAS findings [65]. However, many
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markers identified through GWAS have failed to replicate. Proposed explanations for

this include environmental interactions, genetic heterogeneity, inadequate statistical

power and population differences, i.e. inter-population differences in the minor allele

frequencies (MAF). It has been shown that racial differences directly influence the odds

ratios of validated markers, an explanation being the differing MAF among populations

[66]. In addition, results of simulation studies have shown that even small differences

in allelic frequencies can affect the detection of main as well as of interaction effect,

and may lead to non-replication or even reversal of the direction of the association

[67]. Therefore, failure to replicate a finding across two different populations should

not necessarily be viewed as proof of lack of true association of the initial finding.

A limitation of our study is the use of GWAS datasets related to a single disease,

although it is an important disease. In future research, we plan to apply and investigate

the utility of BCM on GWAS datasets related to additional diseases. Another limitation

is the use just 10 previously known LOAD-associated SNPs. In future work, we plan

to explore the use of a larger set of known LOAD associated SNPs that will include

SNPs with weaker evidence of being associated with LOAD. In addition, we plan to

study the effect of excluding the APOE SNPs rs429358 and rs7412 which are present

in every SNP pair we examined for biological plausibility. Another limitation is that we

did not use informative prior probabilities for encoding prior knowledge from the litera-

ture and previous GWASs. BCM can be extended easily to allow the incorporation of

informative priors and inclusion of informative priors in the analysis is an interesting area

for study.
Conclusion
We applied BCM to two LOAD GWAS datasets to identify pairs of SNPs that in

combination have high statistical association with development of LOAD. To reduce

the large search space of all possible parts of SNPs in a GWAS dataset we restricted BCM

to evaluate those SNP pairs where one of the SNP was drawn from a set of 10 previously

known LOAD associated SNPs. Our results identified several SNPs that have biological

evidence of being involved in the pathogenesis of LOAD that would not have been

identified by univariate analysis alone due to small main effect but were identified in

conjunction with another SNP. These results provide support for applying BCM to

identify potential genetic variants such as SNPs from high dimensional GWAs

datasets.
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