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Hereditary sensory and autonomic neuropathies (HSAN) are clinically and genetically heterogeneous disorders characterized by
axonal atrophy and degeneration, exclusively or predominantly affecting the sensory and autonomic neurons. So far, disease-
associated mutations have been identified in seven genes: two genes for autosomal dominant (SPTLC1 and RAB?7) and five
genes for autosomal recessive forms of HSAN (WNK1/HSN2, NTRK1, NGFB, CCT5 and IKBKAP). We performed a systematic
mutation screening of the coding sequences of six of these genes on a cohort of 100 familial and isolated patients diagnosed
with HSAN. In addition, we screened the functional candidate gene NGFR (p75/NTR) encoding the nerve growth factor receptor.
We identified disease-causing mutations in SPTLC1, RAB7, WNK1/HSN2 and NTRK1 in 19 patients, of which three mutations
have not previously been reported. The phenotypes associated with mutations in NTRK1 and WNK1/HSN2 typically consisted
of congenital insensitivity to pain and anhidrosis, and early-onset ulcero-mutilating sensory neuropathy, respectively. RAB7
mutations were only found in patients with a Charcot-Marie-Tooth type 2B (CMT2B) phenotype, an axonal sensory-
motor neuropathy with pronounced ulcero-mutilations. In SPTLC1, we detected a novel mutation (S331F) corresponding
to a previously unknown severe and early-onset HSAN phenotype. No mutations were found in NGFB, CCT5 and NGFR.
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Overall disease-associated mutations were found in 19% of the studied patient group, suggesting that additional genes are
associated with HSAN. Our genotype-phenotype correlation study broadens the spectrum of HSAN and provides additional

insights for molecular and clinical diagnosis.
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Abbreviations: AD=autosomal dominant; AR =autosomal recessive; CIPA = congenital insensitivity to pain and anhidrosis;
CMT = Charcot-Marie-Tooth disease; HMSN = hereditary motor and sensory neuropathy; HSAN = hereditary sensory and autonomic
neuropathy; NCV =nerve conduction velocity; STRs=short tandem repeats; TM =transmembrane domain; SF=Rab subfamily
domain; PG/M = conserved domain implicated in binding of phosphate/Mg2+ and guanine binding; F=Ras family domain;

PK = protein kinase domain; Al =autoinhibitory domain; CC=coiled coil domain; SP=signal peptide; Cys=cysteine cluster;

LRM = leucine rich motif; Ig=immunoglobulin-like domain

Introduction

Hereditary sensory and autonomic neuropathies (HSAN) are a
clinically and genetically heterogeneous group of inherited
peripheral neuropathies, primarily affecting the peripheral sensory
and autonomic neurons (Dyck, 1993). Patients usually exhibit
prominent distal sensory loss with manifest insensitivity to pain
in some. The prominent distal sensory loss frequently leads to
chronic ulcerations in feet and hands, sometimes resulting in
severe complications such as extensive soft tissue infections,
osteomyelitis necessitating amputations of toes and fingers or, in
rare instances, even of more proximal parts of the extremities
(Dyck, 1993). Autonomic dysfunction, such as anhidrosis, fever,
blood pressure fluctuations and gastro-intestinal disturbances are
present in some patients. Electrophysiologically, axonal nerve
damage of the sensory neurons is often found, but additional
demyelination may also be present (Auer-Grumbach et al., 2003).

HSAN can be transmitted as an autosomal dominant (AD) or
autosomal recessive (AR) trait. Isolated patients have also been
described (Dyck, 1993; Auer-Grumbach, 2004). The AD types of
HSAN usually present in the second or third decade of life with
marked sensory involvement and minimal autonomic and variable
motor involvement, while AR HSAN present either as congenital
syndromes with striking sensory and autonomic abnormalities or
as almost pure autonomic disorders (Verpoorten et al., 2006a).

A classification of the hereditary sensory neuropathies into
types HSAN |-V (Dyck, 1993) was made based on age at onset,
inheritance pattern and additional features. Although the clinical
classification of these HSAN types is based on a small number of
individuals, it still stands after the molecular characterization of the
subtypes in recent years. There is variable motor involvement in
the AD form of HSAN, making the distinction with hereditary
motor and sensory neuropathies (HMSN) or Charcot-Marie-
Tooth disease (CMT) difficult. In CMT2B, sensory loss and the
associated ulcerations are such prominent phenotypic features
that inclusion within the HSAN-spectrum is justified (Vance
et al., 1996; Verpoorten et al., 2006a). However, due to the
concomitant motor involvement with distal muscle atrophy and
weakness, this phenotype was originally classified as HMSN
(Kwon et al., 1995).

So far, seven genes have been identified for the different types
of HSAN (http://www.molgen.ua.ac.be/CMTMutations/). Two
genes have been associated with AD HSAN: missense mutations

in serine palmitoyltransferase long chain subunit 1 (SPTLCT) are
found in families and individuals with HSAN type I, an adult-onset
sensory neuropathy (Bejaoui et al., 2001; Dawkins et al., 2001).
Mutations in the small GPTase late endosomal protein RAB7,
cause CMT2B (Verhoeven et al., 2003; Meggouh et al., 2006).
Mutations in the WNK7/HSN2 gene [protein kinase with-no-
lysine(K)-1/hereditary sensory neuropathy type 2] cause AR
HSAN type Il, an early-onset ulcero-mutilating sensory neuropathy
(Lafreniere et al., 2004). HSAN type lll, also known as Familial
Dysautonomia or Riley-Day syndrome, presents with typical
prominent autonomic manifestations early in life and is caused
by mutations in the inhibitor of kappa-light polypeptide gene
enhancer in B cells, kinase complex associated protein (/IKBKAP)
(Slaugenhaupt et al., 2001). Mutations in neurotrophic tyrosine
kinase, receptor type 1 (NTRK7) are reported in families with
congenital insensitivity to pain, anhidrosis and mental retardation
(CIPA or HSAN type IV) (Indo et al., 1996). HSAN type V,
a phenotype closely related to CIPA but with normal mental
development and less pronounced anhidrosis, can be caused by
mutations in nerve growth factor beta (NGFB) (Einarsdottir et al.,
2004) but also by NTRK7-mutations (Houlden et al., 2001;
Einarsdottir et al., 2004). Apart from these six HSAN subtypes
other forms with distinct additional features exist, e.g. HSAN
with gastroesophageal reflux and cough (Kok et al., 2003) and
HSAN with spastic paraplegia (Bouhouche et al., 2006b). Recently,
the gene for this last form has been identified as cytosolic
chaperonin-containing t-complex peptide-1 (CCT5) (Bouhouche
et al., 2006a). The identification of causative genes for the
HSAN forms in recent years has provided preliminary insights in
the pathogenesis of these rare neuropathies although the funda-
mental underlying pathomechanisms still remain to be unveiled
(Verhoeven et al., 2006).

In this study, we investigated a cohort of 100 familial and
isolated patients who had a clinical diagnosis compatible with
any of the subtypes of HSAN listed above, and we determined
the contribution of mutations in the known genes associated to
the distinct phenotypes. IKBKAP was not screened since our
cohort did not contain patients with familial dysautonomia. The
cohort included 16 index patients of families that have previously
been reported in manuscripts describing novel genes and related
phenotypes. We broadened the screening of the individual genes
to non-associated phenotypes in order to establish potential new
genotype—phenotype correlations. Furthermore, we performed
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the first large-scale mutation screening of WNK7 and CCT5.
Additionally, we screened the functional candidate gene NGFR
(p75/NTR) because of its importance in development and function
of sensory neurons (Lee et al., 1992).

Patients and Methods

Selection criteria

For this study, we selected a group of 100 individuals from our patient
database. These were individuals presenting with a clinical phenotype
compatible with any of the HSAN subforms described earlier (Dyck,
1993; Auer-Grumbach et al., 2006). The majority of patients
presented with progressive distal sensory loss, often associated with
one or several of the following additional features: skin changes (e.g.
hyperkeratosis, ulcerations), spontaneous fractures, amputations and
autonomic features. Because variable motor involvement under the
form of distal muscle wasting and weakness can be present in some
subtypes of sensory neuropathies, we also included a group of patients
diagnosed with CMT2B, a variant of axonal motor and sensory neuro-
pathy (HMSN 1), with prominent ulcero-mutilations (Vance et al.,
1996; Verpoorten et al., 2006a). To avoid inclusion of classic axonal
CMT variants unrelated to the HSAN spectrum, we only included
patients with motor and sensory neuropathies if their clinical presen-
tation was complicated by the development of ulcerations. Overall,
the cohort in this study could be described as a group of hereditary
ulcero-mutilating and sensory neuropathies. Autonomic symptoms
were only seen in patients who also presented with sensory abnorm-
alities. Our cohort did not contain patients with predominant or pure
dysautonomia, the hallmark feature of HSAN type Ill or Riley-Day
syndrome. Diagnosis was based on clinical presentation, complemen-
ted with nerve conduction velocity (NCV) measurements and EMG.
No strict electrophysiological selection criteria were applied to
our cohort, given the broad range of electrophysiological features
associated with the various HSAN phenotypes. Typically, a predomi-
nantly sensory axonal neuropathy was found, which was often more
severe in the lower limbs. Occasional electrophysiological signs of
demyelination can also be found in HSAN. Electrophysiological
abnormalities in motor nerves such as reduced amplitudes of com-
pound muscle action potentials and slightly reduced motor NCV can
be found, illustrating the overlap between HSAN and HMSN. In CIPA
patients, nerve conduction studies can be within normal range
(Shatzky et al., 2000; Auer-Grumbach et al., 2003; Axelrod and
Gold-von Simson, 2007). In several patients, nerve and skin biopsies
were performed.

Patient cohort

The cohort consisted of 100 index patients who were referred to our
laboratory for molecular genetic testing in the context of HSAN.
Genomic DNA samples were provided through Neurologic and
Paediatric Departments and Neuromuscular Centres worldwide.
The majority of samples were of European origin. In 43 patients,
autonomic features were noted, 44 had a pure sensory neuropathy
and the remaining 13 were diagnosed as sensory-motor neuropathy
with ulcero-mutilations. In two patients, the HSAN phenotype
presented with an associated spastic paraplegia. For 21 out of 100
index patients, a dominant inheritance pattern, based on a parent
to child transmission, could be determined. For eight index patients,
a recessive inheritance pattern characterized by the presence of
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affected siblings in the pedigree could be determined. Twenty-four
patients were referred as ‘isolated’ since they did not have a familial
history of neuropathy in the first- and second-degree relatives. No
family history was available for the remaining 47 patients. In five
index patients, there was a clear indication of consanguinity of the
parents. For 44 patients, detailed information about the age at onset
was available; in nine patients, first symptoms occurred in the first year
of life, in 11 patients the disease started in the first decade and in
12 patients in the second decade. In the remaining 12 patients, onset
was after the age of 20 years. In 35 patients, ulcerations were present
and 17 out of them displayed additional complications such as
osteomyelitis or amputations. Detailed electrophysiological data were
available for 37 patients, the remaining patients had an electrophysio-
logical evaluation by their referring physician but detailed information
was not available. In 17 patients, a nerve biopsy or a combined sural
nerve/muscle biopsy was performed showing abnormalities compatible
with a diagnosis of HSAN. All referring clinicians were neurologists,
orthopaedic surgeons or paediatricians active in the field of rare
neuromuscular diseases and well acquainted with the clinical presen-
tation of HSAN and related phenotypes. The referring clinicians
obtained informed consent from all patients or their legal representa-
tives prior to enrolment in this study.

Molecular genetic analysis

All DNA samples were amplified using the whole genome amplification
kit ‘GenomiPhi V2 DNA Amplication Kit' (GE Healthcare, Waukesha,
USA). The protocol was performed according to the manufacturer's
instruction.

The coding regions and exon-intron boundaries up to 100bp
up- and downstream of the exons of SPTLC1, RAB7, WNK1/HSN?2,
NTRK1, NGFB, CCT5 and NGFR were PCR-amplified using primer
oligonucleotides designed with the Primer3 and SNPbox software
tools (Rozen and Skaletsky, 2000; Weckx et al., 2004). PCR conditions
are available upon request. PCR products were cleaned up using the
Exonuclease I-Shrimp Alkaline Phosphatase enzyme (USB, Cleveland,
USA). Mutation screening was performed by direct sequencing of the
purified PCR fragments using the BigDye® Terminator v3.1 Cycle
Sequencing Kit (Applied Biosystems, Foster City, USA). Fragments
were separated on an ABI3730xI DNA Analyser (Applied Biosystems,
Foster City, USA). The resulting sequences were aligned and analysed
with the novoSNP (Weckx et al., 2005) and SeqMan™Il (DNASTAR
Inc., Madison, USA) programs. The nucleotide numbering of the genes
is relative to the ATG translation initiation site with A as +1 of the
corresponding c¢DNA sequences (SPTLCT: NM_006415.2; RAB7:
NM_004637.5; NTRK7: NM_002529.3; NGFB: NM_002506.2;
CCT5: NM_012073.3; NGFR: NM_002507). The nucleotide
numbering of WNK1/HSN2 is relative to the first nucleotide of the
HSN2-specific exon of WNK7 (NM_213665.1). Mutations are
described according to the latest conventions on the nomenclature
of DNA sequence variants (http://www.hgvs.org/mutnomen).
Sequence variants were confirmed by repeated PCR on original DNA
samples and bidirectional sequencing. Where possible, segregation
of the mutation with the disease phenotype was analysed in
the family.

Genotyping and paternity testing

Paternity was tested using 15 highly informative short tandem repeats
(STRs) distributed throughout the genome (ATA38A05, D151646,
D1S1653, D1S1360, D2S2256, D3S3037, D4S2382, D4S3240,
D7S509, D8S1759, D9S1118, D12S1056, D12S2082, D16S2619
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and GATA152H04). STRs were PCR-amplified and PCR fragments
were loaded on an ABI3730xI DNA Analyser. Genotypes were
analysed using Local Genotype Viewer, a software program developed
in-house (http://www.vibgeneticservicefacility.be/).

Analysis of exon skipping

Analysis of exon skipping was performed by RT-PCR on mRNA
isolated from lymphoblast cell lines of patients CMT-841.01 and
CMT-886.01. mRNA was first purified from peripheral blood lympho-
blasts using the RNeasy mini kit (Qiagen, Hilden, Germany). DNA
inactivation was performed using the Turbo DNA free kit (Ambion,
Austin, USA) and subsequently analysed for splicing defects by
RT-PCR and sequencing using exonic primers located in exons 1
and 5 for patient CMT-886.01 (forward: 5'-CTGCTGGCTTGGCTGA
TACT-3', reverse: 5'-CACTGCAGCTTCTGTTCAGG-3’) and exonic pri-
mers in exons 12 and 16 for CMT-841.01 (forward: 5-CCTTGTG
CTCAACAAATGTGG-3', reverse: 5-AGCCAGCAGCTTGGCAT-3')
(Superscript Il First-Strand  Synthesis System for RT-PCR; Life
Technologies, San Diego, USA).

Results

In 19 index patients, out of a cohort of 100, pathogenic mutations
were found in four HSAN disease associated genes: SPTLCT,
RAB7, NTRK1 and WNK1/HSN2. These mutations were absent
from 600 European control chromosomes. No pathogenic varia-
tions could be detected in NGFB, CCT5 and NGFR. Clinical
and electrophysiological data on these 19 index patients are
summarized in Tables 1 and 2.

Mutations in SPTLC1

In Patient CMT-791.01, we detected a heterozygous missense
mutation (c.992C>T; p.Ser331Phe), which was absent in both
healthy parents (Fig. 1A). Paternity was confirmed in this family,
pointing to a de novo mutation. In contrast to previously reported
HSAN type | patients, the patient displayed a severe phenotype
characterized by congenital onset with severe growth and mental
retardation, hypotonia and vocal cord paralysis. In Patient
CMT-186.05a missense mutation (c.1055C>T; p.Ala352Val) was
identified (Fig. 1B). A third heterozygous missense mutation
(c.1160G>C; p.Gly387Ala) was found in Patient CMT-155.01
and her twin sister CMT-155.02 (Verhoeven et al., 2004). This
mutation was also found in Patient CMT-820.01. However, the
healthy mother of this index patient has the same variant in
the homozygous state. This finding suggests that the Gly387Ala
variation is not pathogenic, but a rare polymorphism. This has
recently been confirmed by the analysis of serine palmitoyl
transferase (SPT) activity by measuring the incorporation of
[U-"3C]-L-serine in protein extracts from stably transfected
HEK293 cells and complementation testing using an SPTLC1-
deficient CHO cell line (Hornemann et al., 2009).

Mutations in RAB7

In our cohort, two different missense mutations in RAB7 have
been identified in seven anamnestically unrelated index patients.

A. Rotthier et al.

The index Patients CMT-90.01 and CMT-195.01 of two multi-
generational pedigrees as well as two additional Patients with a
positive familial history (CMT-186.28 and PN-626.01) carried the
same heterozygous transition c¢.484G>A resulting in a Val162Met
missense mutation. The ¢.385C>T (p.Leu129Phe) missense muta-
tion was detected in three Austrian index Patients: CMT-126.01,
CMT-140.01 and CMT-186.26. Additional haplotype analysis
revealed that the Val162Met mutation arose independently in
the reported families/patients, but the Leu129Phe mutation
resides on a common disease haplotype indicating a founder
effect (Verhoeven et al., 2003). All index patients carrying a
RAB7 mutation present with an adolescent or adult-onset HMSN
Il phenotype and are characterized by distal atrophy and weakness
in the lower limbs with pronounced distal sensory loss complicated
by ulcerations and amputations.

Mutations in WNK1/HSN2

A recent report showed that HSN2 is a nervous system-specific
exon of the WNK7-gene. A compound heterozygous mutation in
WNK17 and HSN2 was identified as the cause for HSAN type Il
(Shekarabi et al., 2008). In view of this recent finding, the entire
coding region of WNK7 was screened in our patient cohort.
No additional disease-related sequence variants were identified
outside of the HSN2 exon.

We identified a total of four different WNK7/HSN2 mutations
in three previously reported patients: one compound hetero-
zygous mutation consisting of a 1bp-deletion resulting in a
frameshift mutation with a premature stop codon (c.254delC;
p.Pro85HisfsX14) and an insertion of a thymine (c.1089_
1090insT) predicted to cause a frameshift mutation with prema-
ture stop codon (p.GIn364SerfsX16) in Patient CMT-451.01. One
homozygous non-sense mutation (c.550C>T; p.GIn184X) and
one homozygous 2-bp deletion (c.1064_1065delTC) predicted to
cause a frameshift and premature stop codon (p.lle355AsnfsX7)
were detected in Patients CMT-260.01 and CMT-178.01,
respectively (Coen et al., 2006).

Mutations in NTRK1

In our cohort, seven mutations in NTRK7 were found, of which
one was a novel homozygous missense mutation (c.1697G>A,
p.Args65GIn) in Patient CMT-841.01 (Tables 1 and 2).
An affected sibling CMT-841.02 carried the same homozygous
mutation (Fig. 1C). This mutation targets the tyrosine kinase
domain of the neurotrophin tyrosine kinase receptor (Fig. 2).
The mutated nucleotide is the last base pair of exon 14, resulting
in aberrant splicing (Fig. 1D). Furthermore, we identified a known
9 bp-deletion (c.354_359 +3delTCGCCTGAA) (Tuysuz et al.,
2008) in a recently reported Turkish Patient (CMT-886.01)
(Kilic et al., 2009). This deletion spans the splice-donor site
of exon 3. cDNA analysis revealed two splice variants; one with
skipping of exon 3 and the second with skipping of exons 2 and 3.
These exons contain a part of the leucine-rich motif of NTRK1,
important for ligand binding and signal transduction. The patient
displayed a CIPA phenotype complicated by recurrent infections
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Table 1 Continued

Autonomic
symptoms

Bone

Amputations

Skin changes

ALE Sensory loss

Inheritance  AAO SAO

AA change Origin Diagnosis

Gene

Patient

complications
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Anbhidrosis

Multiple factures

Insensitivity
to pain

4 yrs Painless tibial 35y

AR (cons)

The HSAN4/

Arg565Gin

NTRK1

CMT-841.01

(pelvic bone,
upper and

fracture,

CIPA

Netherlands
(Moroccan
origin)

poor healing

lower limbs and
foot bones),

osteomyelitis

Anbhidrosis,

Keratodermatitis,

Insensitivity
to pain

cong Hypotonia, 2y

IC (cons)

The HSAN4/

GIn626GInfsX7

PN-1192.03 NTRK1

fevers

xerodermia,

recurrent

CIPA

Netherlands
(Moroccan
origin)

selfmutilation

episodes of

fever

of fingers and
tongue,

necrotizing

fasciitis of right

hand
Hyperkeratosis,

Anbhidrosis

Avascular

IC 5m  Fever, recurrent 7y  Insensitivity
to pain

HSAN4/

Turkey

delTCGCCTGAA

NTRK1  ¢.354_359+3

CMT-886.01

necrosis left

talus

ulcerations, nail
dystrophy,

infections

CIPA

aberront splicing

automutilations,
neck abscess

familial;

=isolated case; AD = autosomal dominant; AR = autosomal recessive; Fam =

adulthood; IC

right; L

infancy; ad
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secondary to hypogammaglobulinemia, a feature not previously
known to be associated with CIPA.

Six additional known mutations were found in six index
patients. Homozygous splice site mutations were found in
Patients CMT-197.01 (c.359+5C>T) and CMT-826.01 (IVS15+
3A>C). Homozygous frameshift mutations were present in
Patients PN-1192.03 (c.1877-1878insA; p.GIn626GInfsX7) and
CMT-179.01 (c.543delG; p.Gly181GlyfsX16). Finally, we identified
a homozygous splice site mutation in Patient CMT-197.01
(c.359+5G>T) and a homozygous missense mutation
(c.2281C>T; p.Arg761Trp) in Patient CMT-366.01 (Verpoorten
et al., 2006b). Haplotype analysis suggested a common founder
effect with previously described patients carrying this missense
mutation (Indo et al., 2001).

Discussion

In this study, we investigated a cohort of 100 HSAN patients
and determined the relative contribution of mutations in six
genes known to be involved in various forms of HSAN (SPTLCT,
RAB7, WNK1/HSN2, NTRK1, NGFB and CCT5). In addition, we
studied the functional candidate gene NGFR. The known subforms
of HSAN and their most important clinical characteristics have
been summarized in Table 3. In four genes (SPTLC1, RABZ,
WNK1/HSN2, NTRK1), we identified disease-causing mutations
in 19 index patients representing a mutation frequency of 19%.
Only nine of these patients had a clear familial history suggestive
of HSAN with the remaining 10 being isolated patients. This
results in a relative mutation frequency of 31% (9/29) for familial
patients and 14% (10/71) for isolated patients. In the group of
dominantly inherited HSAN (RAB7 and SPTLCT), the mutation
frequency is 33% (7/21) and for recessive HSAN (WNK1/HSN2
and NTRKT), the frequency is 25% (2/8). Conversely, 20 familial
patients in our screening cohort (14 dominant and 6 recessive)
remain unsolved. These findings clearly indicate that additional
genes must be involved in the pathogenesis of HSAN. RAB7 and
NTRK1 were the most frequently mutated genes in our cohort
(both 7%), followed by WNK71/HSN2 with 3% and SPTLCT
with 2%.

The three mutations previously described in SPTLCT
(Cys133Trp, Cys133Tyr and Val144Asp) are associated with
an ulcero-mutilating sensory neuropathy with a spectrum of
clinical and electrophysiological features that is variable within
and between families (Bejaoui et al., 2001; Dawkins et al.,
2001; Auer-Grumbach, 2004; Houlden et al., 2006). A fourth
SPTLCT mutation (Gly387Ala) was recently shown not to
be disease causing (Verhoeven et al., 2004; Hornemann et al.,
2009).

In the present study, we describe a novel SPTLCT mutation
(Ser331Phe) in a patient who presented with a severe congenital
phenotype. This mutation occurred de novo, was absent from 600
control chromosomes and affected a highly conserved amino acid.
So far, all known missense mutations are located within a
12-amino acid segment encoded by exons 5 and 6 of SPTLCT.
The Ser331Phe mutation is located downstream of this segment
(Fig. 2). It is possible that the Ser331Phe mutation, due to its
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Figure 1 Segregation of p.Ser331Phe and p.Ala352Val missense mutations in SPTLC1 (A and B) and segregation and cDNA analysis of
the p.Arg565GIn missense mutation in NTRK7 (C and D). Segregation analysis of the p.Ser331Phe missense mutation in SPTLC1 reveals
that this mutation occurred de novo (A). Panel B shows the sequence trace file of the p.Ala352Val missense mutation found in SPTLC1
in an isolated Patient CMT-186.05. Segregation of the p.Arg565GIn mutation in NTRK1 is shown in panel C. Two CIPA patients in
family CMT-841 (CMT-841.01 and CMT-841.02) had a homozygous Arg565GIn mutation in NTRK1. The healthy siblings of these

patients had either the wild-type allele (CMT-841.03 and CMT-841.07) or carried the Arg565GIn mutation in the heterozygous state
(CMT-841.04, CMT-841.05 and CMT-841.06). The parents of the patients were first cousins. The mutated nucleotide (c.1697G > A)
was the last nucleotide of exon 14, which could affect proper splicing of this exon. cDNA analysis of CMT-841.01 showed the absence
of the expected band (528 bp), which was present in the control and confirmed by direct DNA sequencing (D). We could not determine
the sequence of the three lower bands present in the patient. square =male, circle =female, black filled symbol =affected, empty

symbol = unaffected.

different location in the protein, exerts a different effect on SPT
activity leading to a more severe phenotype. These results suggest
a broadening of the phenotype associated with HSAN type I.
We identified a second sequence variant (Ala352Val) in SPTLC1,
in an isolated patient with a sensory neuropathy. However, the
pathogenicity of this sequence variant could not be verified
because DNA of the family members was not available for

segregation analysis. Furthermore, the amino acid targeted is not
well-conserved in evolution and the change from alanine to valine
is mild considering their similar chemical properties.

We found mutations in SPTLCT in only 2% of our patients
confirming the rare occurrence of SPTLCT mutations in isolated
and familial HSAN, as found in previous studies (Klein et al., 2005;
Houlden et al., 2006).
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Figure 2 Schematic presentation of protein structures of SPTLC1, RAB7 (Pereira-Leal and Seabra, 2000), WNK1/HSN2 and NTRK1
(Indo, 2001) with mutations identified in this study causing HSAN.
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Table 3 Overview of HSAN types with corresponding gene/locus, inheritance pattern, cardinal phenotypic features and
references to the Online Mendelian Inheritance in Man (OMIM) database and literature

Type Gene Locus Inh  Clinical features AAO OMIM  Reference
HSAN | SPTLCT 9q22.2 AD  Predominant loss of pain and temperature Adult® 162400 Bejaoui et al., 2001;
sensation, preservation of vibration sense, Dawkins et al.,
lancinating pain, variable distal motor 2001
involvement®
HSAN IB unknown 3p24-p22 AD  Predominant sensory neuropathy with cough Adult 608088 Kok et al., 2003
and gastroesophageal reflux, rarely foot
ulcerations
CMT2B RAB7 3921.3 AD  Prominent distal motor involvement, sensory loss ~ Adult 600882 Verhoeven et al.,
of all qualities, acro-mutilating complications 2003
HSAN I WNK1/HSN2 12p13.3 AR Prominent sensory loss and mutilations in hands  Childhood 201300 Lafreniere et al.,
and feet, acropathy 2004
HSAN Il IKBKAP 9g31 AR Familial dysautonomia, prominent autonomic Congenital 223900 Slaugenhaupt et al.,
(Riley—Day disturbances and complications, absence of 2001
syndrome) fungiform papillae of the tongue, alacrimia,
excessive sweating
HSAN IV NTRK1 1921-22 AR No or reduced response to painful stimuli, Congenital 256800 Indo et al., 1996
(CIPA) anhidrosis, episodic fever, mild mental

retardation, skin and cornea lesions, joint
deformities, hypogammaglobulinemia in one
patient (this study)

HSAN V NGFB (NTRK7 in  1p13.1 AR  Congenital insensitivity to pain, severe loss of Congenital 608654 Einarsdottir et al.,
rare cases) (1921-22) deep pain perception, painless fractures, joint 2004 (Houlden
deformities, normal intelligence et al., 2001)
HSAN with CCT5 5p15-p14 AR Prominent sensory neuropathy with sensory loss Early 256840 Bouhouche et al.,
spastic of all qualities, mutilating acropathy, spastic childhood 2006a
paraplegia paraplegia.

a Congenital onset in one patient with hypotonia, cataract, microcephaly and vocal cord paralysis (this study).
Inh =inheritance; AAO =age at onset; (updated from Auer-Grumbach et al., 2006 and Verhoeven et al., 2006).

To date, four missense mutations (Leu129Phe, Lys157Asn, (CMT-186.26), and the Val162Met mutation in families CMT-90
Asn161Thr and Val162Met) have been reported in RAB7 and CMT-195 and in two additional patients with a positive family
(Verhoeven et al., 2003; Houlden et al., 2004b; Meggouh history (CMT-186.28 and PN626.01) (Verhoeven et al., 2003).
et al., 2006). In our cohort, we found the Leu129Phe mutation The patients carrying the Leu129Phe mutation were all of
in two families (CMT-126 and CMT-140) and one isolated Patient Austrian descent and shared a common disease haplotype,
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indicating a founder effect. However, the patients with the
Val162Met mutation did not share a common haplotype, suggest-
ing independently arising mutations in the same residue, possibly
pointing towards a mutational hotspot for RAB7. This mutation is
located in a highly conserved domain, important for the formation
of the nucleotide-binding site of RAB7 (Fig. 2). The functional
importance of this domain in peripheral neuron integrity is further
underlined by the identification of mutations in adjacent amino
acids (Lys157Asn and Asn161Thr) in patients with CMT2B
(Houlden et al., 2004b; Meggouh et al., 2006).

In our cohort, RAB7 mutations were exclusively found in
patients diagnosed with HSMN I, with ulcero-mutilations also
known as CMT2B. Apart from the rare exception of a patient
with a typical HSAN type | phenotype carrying the Asn161Thr
RAB7 mutation (Houlden et al., 2004b), the phenotype associated
with RAB7 mutations seems to be largely confined to HMSN Il
(CMT2B). Because of the marked motor involvement, RAB7-
neuropathy was originally classified as hereditary motor and
sensory neuropathy type 2B (CMT2B) (Kwon et al., 1995).
Due to the prominent presence of ulcerations, however, CMT2B
should be considered part of the spectrum of HSAN (Vance et al.,
1996).

The mutation frequency in the CMT2B-subgroup of our study
cohort was very high (7 out of 13 CMT2B patients). The high
mutation frequency of RAB7 found in the present study contrasts
with a previous report (Klein et al., 2005), where the known RAB7
mutations were shown to be absent from a group of 25 families
with adult-onset HSAN | or HMSN Il with prominent sensory
involvement and from an additional 92 idiopathic patients.
The frequency of the RAB7 mutation in our cohort remained
high, even when the founder effect of the Leu129Phe mutation
was taken into account.

The phenotype associated with mutations in WNK7/HSN2 is
a severe AR ulcero-mutilating sensory neuropathy with mild
autonomic disturbances beginning in early childhood (Axelrod
and Gold-von Simson, 2007). So far, 11 different non-sense
and frameshift mutations in WNK7/HSN2 have been reported
in the literature, all resulting in a complete loss of protein.
Recently, it was shown that HSN2 is not a separate gene residing
in intron 8 of WNK7 but in fact is a neuron-specific exon of
WNK?1 itself, with high expression in dorsal root ganglia (DRG)
and sciatic nerves (Shekarabi et al., 2008). In our cohort,
we identified four loss-of-function mutations in WNK7/HSN2,
in three patients, all of which resided in the HSN2 exon
(Fig. 2) (Coen et al., 2006). From the first large-scale screening
of WNK7 in HSAN patients performed in this study, we can
conclude that mutations outside of the HSN2 exon are likely
to be rare.

The most frequently mutated gene in this study, together with
RAB7, was NTRK7. The NTRK1 protein is a receptor tyrosine
kinase, which is phosphorylated in response to nerve growth
factor (NGF), supporting survival of sympathetic ganglion neurons
and nociceptive sensory neurons in DRG (Levi-Montalcini, 1987).
To date, more than 40 different missense, non-sense, frameshift
and splice site mutations in NTRK7 have been described in families
from various ethnic origins (http://www.molgen.ua.ac.be/
CMTMutations/). The corresponding syndrome, CIPA, consists of
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characteristic features: recurrent episodic fevers due to anhidrosis,
absence of reaction to painful stimuli, self-mutilating behaviour
and mental retardation (Axelrod and Gold-von Simson, 2007).

In our cohort of 100 HSAN patients, seven different mutations
were identified in NTRK7 (Fig. 2), of which six were previously
reported (Verpoorten et al., 2006b; Kilic et al., 2009). We identi-
fied a previously unreported splice site mutation (Arg565GIn),
which comprised the last nucleotide of exon 14 and further
broadens the genetic spectrum of NTRK7 mutations. This muta-
tion resides in the tyrosine kinase domain of the NTRK1 receptor,
which regulates autophosphorylation of NTRK1 in response to
NGF. Both the index patient (CMT-841.01) and her affected
sister (CMT-841.02) were diagnosed with CIPA and carried the
same homozygous mutation. However, Patient CMT-841.01 had
a normal intelligence whereas the affected sib (CMT-841.02) had
learning difficulties. The phenotype of these patients has been
described previously (Kruyt et al., 2007).

Interestingly, a 9-bp deletion (c.354_359 + 3delTCGCCTGAA),
resulting in skipping of exon 3 and of exons 2 and 3, was
found in a CIPA patient of Turkish origin (CMT-860.01).
This patient presented with a multisystem involvement including
recurrent infections due to immunological abnormalities as hypo-
gammaglobulinemia (Kilic et al., 2009). The same 9-bp deletion
was recently reported in an unrelated Turkish HSAN type IV
patient (Tuysuz et al., 2008). Therefore, this mutation is likely to
be a founder mutation in the Turkish population. The phenotype
in our patient broadens the clinical spectrum of CIPA.

It has previously been suggested (Indo et al., 2001) that the
current literature reveals little to no genetic and clinical hetero-
geneity in HSAN IV. Although some degree of phenotypic vari-
ability was observed in our CIPA-patients with proven NTRKT
mutations, overall the clinical presentation seems to correspond
to a readily recognizable syndrome that is indeed genetically
homogenous.

The phenotype caused by NGFB mutations (HSAN type V) is
similar to the CIPA phenotype (HSAN type IV). So far, only one
homozygous missense mutation has been reported, in a recessive
Swedish family (Einarsdottir et al., 2004; Minde et al., 2004).
Detailed clinical, neurophysiological and genetic analysis of this
family revealed that the heterozygous carriers presented with
a variable but mild phenotype (Minde et al., 2009). The main
difference with CIPA was the absence of obvious mental retar-
dation and less-pronounced anhidrosis. However, one family
with the HSAN type V phenotype was described with pathogenic
mutations in NTRK7 indicating the overlap between HSAN types
IV and V (Houlden et al., 2001, 2004a). These findings underscore
the relevance of genetic screenings outside of the known
phenotypes and modes of inheritance. In our study cohort, no
heterozygous or homozygous sequence variations were found
in NGFB confirming the rare occurrence of NGFB mutations in
HSAN patients.

Recessive mutations in CCT5 were identified in a consanguine-
ous Moroccan family presenting with HSAN with spastic
paraplegia (Bouhouche et al., 2006a). In our cohort, only two
HSAN patients presented with an associated spastic paraplegia.
However, we did not identify mutations in CCT5. Additional
screening of 25 unrelated index patients with hereditary spastic
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paraplegia with sensory involvement did not reveal any
mutations in CCT5 (data not shown). Our results suggest
that mutations in CCT5 are a rare cause for HSAN and
make it unlikely to find any mutations outside of the known
phenotype.

Because of the phenotypical resemblance among Ntrk1~/~,
Ngfb™~ and Ngfr’~ knockout mice, the patient cohort was
screened for NGFR (p75/NTR) (Lee et al., 1992). No mutations
were found in this gene making its contribution to the patho-
genesis of HSAN uncertain.

In summary, we examined the distribution of mutations in genes
associated with AD and AR forms of HSAN in a large group of
familial and sporadic patients. The genotype—phenotype correla-
tions in this study revealed little variability when compared with
previous reports, with the sole exception of a de novo SPTLC1T
mutation in a severe phenotype with congenital onset. Taken
together, these results show that the relevant clinical phenotypes
are recognizable and should be used to orient molecular diagnosis.
Screening of NTRK7 should be confined to patients presenting
with a CIPA phenotype (both AR and isolated patients) as no
NTRK1 mutations were found in other HSAN phenotypes. RAB7
screening is mandatory in patients presenting with an AD axonal
sensory-motor neuropathy with ulcerations (CMT2B) as we found
a high mutation frequency in this subgroup (54% or 7/13).
Mutations in WNK71/HSN2 and SPTLC7T seem to be rare in
HSAN. We found no mutations in NGFB and CCT5 indicating
that these genes are only rarely involved in HSAN. No pathogenic
sequence variations were identified in the functional candidate
gene NGFR, making its contribution to the pathogenesis of
HSAN uncertain. The overall mutation rate was relatively
low (19%) suggesting that other genes must be involved in the
pathogenesis of HSAN.

At the present time, the precise nature of the mechanism under-
lying the pathogenesis of the various HSAN forms remains unclear.
Although it is particularly challenging to link the different genes,
some preliminary disease pathways may already take form.
Of special interest are disturbances of vesicular transport.
Both RAB7 and SPTLC1 have a function in endocytotic membrane
trafficking. In addition, the NGFB/NTRK1 signalling complex,
which is critically important in the development and function of
nociceptive neurons, is also dependent upon retrograde transport
through signalling endosomes (Verhoeven et al., 2006).
Future research is needed to improve our still very incomplete
understanding of these mechanisms.

Additional descriptions of HSAN families and patients with
known or novel genetic defects are needed to further refine
the existing classification and to get a better insight into the
molecular basis of these disorders.
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