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ABSTRACT A soilborne Stenotrophomonas sp. strain (MA5) that is resistant to mer-
cury was isolated. A draft genome sequence-based analysis revealed a suite of gene
determinants to resist mercury and other heavy metals, multidrug efflux, stress re-
sponse, and membrane transport, and these provide cues to a suite of mechanisms
that underpin cellular survival in contaminated soil.

The Savannah River site (SRS) in South Carolina is a former nuclear legacy site where
mercury (Hg) contamination is still pervasive (1). Hg and its microbially methylated

form, methylmercury, are toxic environmental contaminants (2); however, microbi-
ota exposed to long-term contamination can recruit genomic mechanisms to resist and
detoxify Hg (3). The bacterial mer operon, which consists of the merA and merB gene
determinants, drives the detoxification of organometallic or inorganic Hg along with
genes that code for regulation (merR) and transport (merT, merP, and/or merC and
merF). Therefore, studies of Hg-resistant bacteria (HgR) can serve as models for under-
standing the genomic basis of Hg cycling.

Toward this end, several bacterial strains from SRS soils were isolated on LB agar
supplemented with Hg (5 �g/ml as HgCl2) and incubated at 30°C. The resulting colonies
were purified on LB�Hg plates until axenic strains were obtained. Bioremediative
mechanisms in strain MA5 are of significant interest to the SRS, because the industrial
chloralkali plants located nearby, along with other industrial processes (4), discharged
Hg-laden wastes into the surrounding bodies of water, where Hg still poses public
health risks. Such environments can be bioremediated using HgR bacteria (5) and fungi
(6), a process which results in decontaminated wastewater (7).

To gain a deeper understanding into the genomic underpinings of Hg cycling, a
single colony of strain MA5 was picked from a LB�Hg plate and inoculated into liquid
LB medium and grown at 30°C in a shaker. After overnight growth, DNA was extracted
with Qiagen’s DNeasy PowerLyzer kit and sequenced with an Illumina HiSeq 2000
instrument (8). Default settings of the bioinformatics pipelines were used, unless
specified otherwise. Genome de novo assembly was performed with CLC Genomics
Workbench (v11.0.1; Qiagen, Aarhus, Denmark), and sequences were trimmed with a
quality threshold of Q20 and a requirement of 50 bases after trimming. Approximately
8.5 million paired reads (with an average length of 118 bases) were employed for
assembly. The nonscaffolded assembly generated 264 contigs, with an N50 value of
64,365 bases, and a total size of 4,513,544 bases, with an average coverage of 200�.

Rapid Annotations using Subsystems Technology (RAST)-based annotation (9) re-
vealed 3,921 coding sequences and a G�C content of 66.2%. MA5 was taxonomically
related to Stenotrophomonas spp. with One Codex analysis (10). Annotation resulted in
the binning of approximately 48% of the strain’s genome squence under 1,856 sub-
systems, with the main gene categories (number of genes) being for carbohydrate
metabolism (269); cofactors, vitamins, prosthetic groups, and pigments (229); mem-
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brane transport (195); resistance to antibiotics and toxic compounds (130); and stress
response (119). Several gene determinants for resistance against heavy metals, includ-
ing the cobalt-zinc-cadmium efflux system, arsenic detoxification system, and
chromate-inducible chrBACF operon, along with a plethora of membrane transporters,
were also identified, and they potentially enable soil survival of MA5.

Further genome mining also revealed possible resistance mechanisms against Hg,
which included the presence of merA, which encodes the enzyme mercuric reduc-
tase (MerA); the periplasmic Hg2�-scavenging protein (MerP); and the inner
membrane-spanning proteins (MerT and MerE), which are engaged in the transport of
Hg2� to the cytoplasm and its reduction by the activity of the MerA enzyme. Finally,
strain MA5 also contained the regulatory MerR and MerD proteins.

Data availability. This whole-genome shotgun project has been deposited in
DDBJ/EMBL/GenBank under the accession number SDHV00000000. The version de-
scribed in this paper is version SDHV01000000. The genome sequences obtained from
strain MA5 have been submitted to the Sequence Read Archive under the accession
number SRR8541833.
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