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Abstract

In many ecosystems, natural selection can occur quickly enough to influence the population

dynamics and thus future selection. This suggests the importance of extending classical

population dynamics models to include such eco-evolutionary processes. Here, we describe

a predator-prey model in which the prey population growth depends on a prey density-

dependent fitness landscape. We show that this two-species ecosystem is capable of exhib-

iting chaos even in the absence of external environmental variation or noise, and that the

onset of chaotic dynamics is the result of the fitness landscape reversibly alternating

between epochs of stabilizing and disruptive selection. We draw an analogy between the fit-

ness function and the free energy in statistical mechanics, allowing us to use the physical

theory of first-order phase transitions to understand the onset of rapid cycling in the chaotic

predator-prey dynamics. We use quantitative techniques to study the relevance of our

model to observational studies of complex ecosystems, finding that the evolution-driven

chaotic dynamics confer community stability at the “edge of chaos” while creating a wide dis-

tribution of opportunities for speciation during epochs of disruptive selection—a potential

observable signature of chaotic eco-evolutionary dynamics in experimental studies.

Author summary

Evolution is usually thought to occur very gradually, taking millennia or longer in order

to appreciably affect a species’ survival mechanisms. Conversely, demographic shifts due

to predator invasion or environmental change can occur relatively quickly, creating

abrupt and lasting effects on a species survival. However, recent studies of ecosystems

ranging from the microbiome to oceanic predators have suggested that evolutionary and

ecological processes can often occur over comparable timescales—necessitating that the

two be addressed within a single, unified theoretical framework. Here, we show that when

evolutionary effects are added to a minimal model of two competing species, the resulting

ecosystem displays erratic and chaotic dynamics not typically observed in such systems.

We then show that these chaotic dynamics arise from a subtle analogy between the evolu-

tionary concept of fitness, and the concept of the free energy in thermodynamical systems.
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This analogy proves useful for understanding quantitatively how the concept of a chang-

ing fitness landscape can confer robustness to an ecosystem, as well as how unusual effects

such as history-dependence can be important in complex real-world ecosystems. Our

results predict a potential signature of a chaotic past in the distribution of timescales over

which new species can emerge during the competitive dynamics, a potential waypoint for

future experimental work in closed ecosystems with controlled fitness landscapes.

Introduction

In many natural ecosystems, at least one constituent species evolves quickly enough relative to

its population growth that the two effects become interdependent. This phenomenon can

occur when selection forces are tied to such sudden environmental effects as algal blooms or

flooding [1], or it can arise from more subtle, population-level effects such as overcrowding

or resource depletion [2]. Analysis of such interactions within a unified theory of “eco-

evolutionary dynamics” has been applied to a wide range of systems—from bacteria-phage

interactions to bighorn sheep [3]—by describing population fluctuations in terms of the feed-

back between demographic change and natural selection [4].

The resulting theoretical models relate the fitness landscape (or fitness function) to

population-level observables such as the population growth rate and the mean value of an

adapting phenotypic trait (such as horn length, cell wall thickness, etc). The fitness landscape

may have an arbitrarily complex topology, as it can depend on myriad factors ranging from

environmental variability [5, 6], to inter- and intraspecific competition [7, 8], to resource

depletion [9]. However, these complex landscapes can be broadly classified according to

whether they result in stabilizing or disruptive selection. In the former, the landscape may pos-

sess a single, global maximum that causes the population of individuals to evolve towards a

state in which most individuals have trait values at or near this maximum [10]. Conversely, in

disruptive selection, the fitness landscape may contain multiple local maxima, in which case

the population could have a wide distribution of trait values and occupy multiple distinct

niches [11].

In eco-evolutionary models, the shape of the fitness landscape may itself depend on the

population densities of the interacting species it describes. Specifically, the concept that the

presence of competition can lead a single-peaked fitness landscape to spontaneously develop

additional peaks originates in the context of “competitive speciation” first proposed by

Rosenzweig [12]. This is formalized in genetic models in which sympatric speciation is driven

by competitive pressures rather than geographic isolation [13]. Competition-induced disrup-

tive selection has been observed in natural populations of stickleback fish [14], microbial com-

munities [15], and fruit flies [16, 17].

Here, we model eco-evolutionary dynamics of a predator-prey system based on first-order

“gradient dynamics” [10, 18], a class of models that explicitly define the fitness in terms of the

population growth rate r, which is taken to depend only on the mean value of the trait across

the entire population, �c [19]. Despite this simplification, gradient dynamics models display

rich behavior that can account for a wide range of effects observed in experimental systems—

in particular, recent work by Cortez and colleagues has shown that these models can result in

irregular cycles and dynamical bifurcations that depend on the standing genetic variation pres-

ent in a population [20, 21].

In our model, gradient dynamics cause the prey fitness landscape to change as a result of

predation, and we find that the resulting dynamical system exhibits chaotic dynamics. Chaos

Predator-prey model with chaotic phase transition
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is only possible in systems in which three or more dependent dynamical variables vary in time

[22], and previously it has been observed in predator-prey systems comprising three or more

mutually interdependent species, or in which an external environmental variable (such as sea-

sonal variation or generic noise) is included in the dynamics [23, 24]. Here we show that evolu-

tion of just one species in a two-species ecosystem is sufficient to drive the ecosystem into

chaos. Moreover, we find that chaos is driven by a density-dependent change of the fitness

landscape from a stabilizing to disruptive state, and that this transition has hysteretic behavior

with mathematical properties that are strongly reminiscent of a first-order phase transition in

a thermodynamical system. The resulting dynamics display intermittent properties typically

associated with ecosystems poised at the “edge of chaos,” which we suggest has implications

for the study of ecological stability and speciation.

Model

Adapting the notation and formulation used by Cortez (2016) [21], we use a two-species com-

petition model with an additional dynamical variable introduced to account for a prey trait on

which natural selection may act. The most general fitness function for the prey, r, accounts for

density-dependent selection on a prey trait c,

rðx; y;�c; cÞ � Gðx; c;�cÞ � Dðc;�cÞ � f ðx; yÞ; ð1Þ

where x = x(t) is the time-dependent prey density, y = y(t) is the time-dependent predator den-

sity, c is a trait value for an individual in the prey population, and �c ¼ �cðtÞ is the mean value of

the trait across the entire prey population at time t. r comprises a density-dependent birth rate

G, a density-independent death rate D, and a predator-prey interaction term f, which for sim-

plicity is assumed to depend on neither c nor �c. Thus the trait under selection in our model is

not an explicit predator avoidance trait such as camouflage, but rather an endogenous

advancement (i.e., improved fecundity, faster development, or reduced mortality) that affects

the prey’s ability to exploit resources in its environment, even in the absence of predation.

The continuous-time “gradient dynamics” model that we study interprets the fitness r as

the growth rate of the prey: [19, 25]

_x ¼ x rðx; y;�c; cÞ
�
�
�
�

c!�c
ð2Þ

_y ¼ y f ðx; yÞ � ~DðyÞ
� �

ð3Þ

_�c ¼ V
@rðx; y;�c; cÞ

@c

�
�
�
�

c!�c

: ð4Þ

Eq (2) is evaluated with all individual trait values c set to the mean value �c because the total

prey population density is assumed to change based on the fitness function, which in turn

depends on the population-averaged value of the prey trait �c [21]. The timescale of the dynam-

ics in �c are set by V, which is interpreted as the additive genetic variance of the trait [10].

While Eq (2) depends only on the mean trait value �c, the full distribution of individual trait val-

ues c present in a real-world population may change over time as the relative frequencies of

various phenotypes change. In principle, additional differential equations of the form of Eq (4)

could be added to account for higher moments of the distribution of c across an ensemble of

individuals, allowing the gradient dynamics model to be straightforwardly extended to model

a trait’s full distribution rather than just the population mean. However, here we focus on the

case where the prey density dynamics _x depend only on the mean trait value to first order, and

Predator-prey model with chaotic phase transition
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we do not include differential equations for higher-order moments of the prey trait value

distribution.

The use of a single Eq (4) to describe the full dynamics of the trait distribution represents

an approximation that is exact only when the phenotypic trait distribution stays nearly sym-

metric and the prey population maintains a constant standing genetic variation V [10]. How-

ever, V may remain fixed even if the phenotypic variance changes, a property that is observed

phenomenologically in experimental systems, and which may be explained by time-dependent

heritability, breeding effects, mutation, or other transmission effects not explicitly modeled

here [26–29]. More broadly, this assumption may imply that gene selection is weak compared

to phenotype selection [30, 31]. S1D Appendix further describes the circumstances under

which V remains fixed, and also provides a first-order estimate of the magnitude of error intro-

duced by ignoring higher-order effects (such as skewness) in the trait distribution. The results

suggest that these effects are small for the parameter values (and resulting range of x and y val-

ues) used here, due in part to limitations on the maximum skewness that a hypothetical trait

distribution can achieve on the fitness landscapes studied here. In S1D Appendix, we also com-

pare the results presented below to an equivalent model in which a full trait distribution is

present, in which case Eq (2) becomes a full integro-differential equation involving averages of

the trait value over the entire prey population. Detailed numerical study of this integro-differ-

ential equation is computationally prohibitive for the long timescales studied here, but direct

comparison of the contributions of various terms in the velocity field suggests general accuracy

of the gradient dynamics model for the fitness landscapes and conditions we study here. How-

ever, in general the appropriateness of the gradient dynamics model should be checked when-

ever using Eq (4) with an arbitrary fitness function. Fig 1A shows a schematic summarizing

the gradient dynamics model, and noting the primary assumptions underlying this

formulation.

Next, we choose functional forms for f, G, D, and ~D in Eqs (2) and (3). We start with the

assumption that, for fixed values of the trait c an d its mean �c, the population dynamics should

have the form of a typical predator-prey system in the absence of evolutionary effects. Because

the predator dynamics are not directly affected by evolutionary dynamics, we choose a simple

form for predator growth consisting of a fixed death rate and a standard Holling Type II birth

rate, [32]

f ðx; yÞ ¼ a2

xy
1þ b2x ð5Þ

~DðyÞ ¼ d2
ð6Þ

The predator birth rate f saturates at large values of the prey density, which is more realistic

than the standard Lotka-Volterra competition term xy in cases where the prey density is large

or fluctuating [22]. A saturating interaction term ensures that solutions of the system remain

bounded for a wider range of parameter values, a necessity for realistic models of long-term

interactions [33].

For the prey net growth rate (Eq (1), the fitness) in the absence of the predator, we use the

following functional forms,

Gðx;�c; cÞ ¼ a1

�c
1þ b1�c

1 � k1xðc � �cÞð Þ ð7Þ

Dðc;�cÞ ¼ d1ð1 � k2ðc2 � �c2Þ þ k4ðc4 � �c4ÞÞ: ð8Þ

Predator-prey model with chaotic phase transition
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The first term in Eq (7) specifies that the prey population density growth rate rjc!�c depends

only on a primary saturating contribution of the mean trait to the birth rate G. In other models

a similar effect is achieved by modifying the mean trait evolution Eq (4), such that extremal

values of the trait are disadvantaged [21]; alternative coupling methods based on exponential

saturation would be expected to yield similar qualitative results [19]. However, the additional

Fig 1. Description of model and fitness landscape. (A) A schematic depiction of the “gradient dynamics” model, illustrating the model’s assumptions

regarding the role of selection in the evolutionary dynamics. (B) The two distinct topologies of the density-dependent fitness landscape, for typical values of

the chosen parameters and observed predator and prey densities in the numerical work described below. Color scale ranges between −1 (blue) and 1

(red).

https://doi.org/10.1371/journal.pcbi.1005644.g001
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series terms in Eqs (7) and (8) ensure that the any individual’s fitness r may differ from the

rest of the population depending on the difference between its trait value c and the population

mean �c. Because the functional form of this difference is unknown, its contribution expressed as

second-order truncation of the series difference of the form rðc;�cÞ ¼ ~rjc!0
þ ð~rðcÞ � ~rðcÞjc!�cÞ

(where ~r represents an unscaled fitness function). This ensures that when _c ¼ 0 or c ¼ �c, the

system reduces to a standard prey model with a Holling Type II increase in birth rate in

response to increasing mean trait value [25]. In the results reported below, we observe that all

dynamical variables remain bounded as long as parameter values are chosen such that the

predator density does not equilibrate to zero. This is a direct consequence of our use of satu-

rating Holling Type II functional forms in Eqs (7) and (8), which prevent the fitness landscape

from increasing without bound at large c, �c and also ensure that the predator and prey densi-

ties do not jointly diverge. That the dynamics should stay bounded due to saturating terms is

justified by empirical studies of predator-prey systems [34, 35]; moreover, other saturating

functional forms are expected to yield similar results if equivalent parameter values are chosen

[33, 36].

The nonlinear dependence of the mortality rate Eq (8) on the trait is based on mechanistic

models of mortality with individual variation [19, 37, 38]. The specific choice of a quartic in

Eq (8) allows the fitness function r to have a varying number of real roots and local maxima in

the domain c, �c > 0, affording the system dynamical freedom not typically possible in predator

prey models with constant or linear prey fitness—in particular, for different values of k2, k4 the

fitness landscape can have a single optimal phenotype, multiple optimal phenotypes, or no

optimal intermediate values. Because any even, continuous form for the fitness landscape can

be approximated using a finite number of terms in its Taylor series around c = 0, our choice of

a quartic form simply constitutes truncation of this expansion at the quartic order in order to

include the simplest case in which the fitness function admits multiple local maxima—for this

reason, a quartic will always represent the leading-order series expansion of a fitness landscape

with multiple local maxima. Below, we observe numerically that j c � �c j< 1, ex post facto justi-

fying truncation of the higher order terms in this series expansion. However, if the trait value c
was strictly bounded to only take non-zero values on a finite interval (as opposed to the entire

real line), then a second-order, quadratic fitness landscape would be sufficient to admit multi-

ple local maxima (at the edges of the interval) [14]. However, the choice here of an unbounded

trait value c avoids creating boundary effects, and it has little consequence due to the steep

decay of the quartic function at large values of |c|, which effectively confines the possible values

of �c accessible by the system. In physics, similar reasons—unbounded domains, multiple local

optima, and continuity—typically justify the use of quartic free energy functions in minimal

models of systems exhibiting multiple energetic optima, such as the Ginzberg-Landau free

energy used in models of superconducting phase transitions [39].

We note that the birth rate Eq (7) contributes a density-dependent term to the fitness func-

tion even in the absence of predation (y = 0) [21]. Unlike the death rate function, the effect of

the individual trait value on this term is directional: the sign of c � �c determines whether birth

rates increase or decrease. As the population density x increases, the effect of these directional

effects is amplified, consistent with the observed effect of intraspecific competition and crowd-

ing in experimental studies of evolution [40, 41]. The chaotic dynamics reported below arise

from this density-dependent term because the term prevents the Jacobian of the system (2),

(3) and (4) from having a row and column with all zeros away from the diagonal; in this case,

the prey trait (and thus evolutionary dynamics) would be uncoupled from the rest of the sys-

tem, and would thus relax to a stable equilibrium (as is necessary for a first-order single-

variable equation). In that case, �c would essentially remain fixed and the predator-prey dynam-

ics would become two-dimensional in x and y, precluding chaos. For similar reasons, density-

Predator-prey model with chaotic phase transition

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005644 July 5, 2017 6 / 20

https://doi.org/10.1371/journal.pcbi.1005644


dependent selection has been found to be necessary for chaos in some discrete-time evolution-

ary models, for which chaotic dynamics require a certain minimum degree of association

between the fitness and the trait frequencies [42].

Inserting Eqs (5), (7) and (8), into Eq (1) results in a final fitness function of the form

rðx; y;�c; cÞ ¼ a1

�c
1þ b1�c

1� k1xðc � �cÞð Þ� d1 1� k2ðc
2 � �c2Þ þ k4ðc

4 � �c4Þð Þ � a2

xy
1þ b2x

: ð9Þ

This fitness landscape is shown in Fig 1B, for typical parameter values and predator and prey

densities used in the numerical results below. Depending on the current predator and prey

densities, the local maximum of the system can appear in two different locations, which

directly affects the dynamics described in the next section.

Inserting Eq (9) into Eqs (2), (3) and (4) results in a final form for the dynamical equations,

_x ¼ x a1

�c
1þ b1�c

� a2

y
1þ b2x

� d1

� �

ð10Þ

_y ¼ y yaa2

x
1þ b2x

� d2

� �

ð11Þ

_�c ¼ �c V ð2k2d1Þ � ð4k4d1Þ�c
2 � ða1k1Þ

x
1þ b1�c

� �

: ð12Þ

Due to the Holling coupling terms, the form of these equations qualitatively resembles models

of vertical, tritrophic food webs—the mean trait value �c affects the growth rate of the prey,

which in turn affects the growth rate of the predator [24, 32, 43]. The coupling parameter ya

introduces asymmetry into the competition when ya 6¼ 1; however, it essentially acts as a scale

factor that only affects the amplitude of the y cycles and equilibria rather than the dynamics.

Additionally, because the predator-prey interaction term Eq (5) is unaffected by the trait, our

model contains no triple-product x y �c interaction terms, which typically stabilize the

dynamics.

Results

Dynamical analysis and observation of fitness landscape switching

For our analysis of the system (10), (11) and (12), we first consider the case where evolution

proceeds very slowly relative to population dynamics. In the case of both no evolution (V = 0)

and no predation (y = 0), the prey growth Eq (10) advances along the one-dimensional null-

cline _y, _�c ¼ 0, y = 0. Depending on whether the fixed mean trait value �c exceeds a critical value

(�cy � d1=ða1 � b1d1Þ), the prey density will either grow exponentially (�c > �cy) or collapse

exponentially (�c < �cy) because the constant �c remains too low to sustain the prey population

in the absence of evolutionary adaptation. The requirement that �c > �cy carries over to the case

where a predator is added to the system but evolutionary dynamics remain fixed, correspond-

ing to a two dimensional system advancing along the two-dimensional nullcline _�c ¼ 0. In this

case, as long as �c > �cy, the prey density can exhibit continuous growth or cycling depending in

the relative magnitudes of the various parameters in Eqs (10) and (11). The appearance and

disappearance of these cycles is determined by a series of bifurcations that depends on the val-

ues of �c and b1, b2 relative to the remaining parameters a1, a2, d1, d2 (S1A Appendix).

In the full three-variable system (10), (11) and (12), �c passes through a range of values as

time progresses, resulting in more complex dynamics than those observed in the two-

Predator-prey model with chaotic phase transition
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dimensional case. For very small values of V, the evolutionary dynamics _�c are slow enough

that the system approaches the equilibrium predicted by the two-variable model with �c con-

stant. The predator and prey densities initially grow, but the prey trait value does not change

fast enough for the prey population growth to sustain—eventually resulting in extinction of

both the predator and prey. However, if V takes a slightly larger value, so that the mean trait

value can gradually change with a growing prey population density (due to the density-

dependent term in Eq (10)), then the population dynamics begin to display regular cycling

with fixed frequencies and amplitudes (Fig 2A, top). This corresponds to a case where the evo-

lutionary dynamics are slow compared to the ecological dynamics, but not so slow as to be

completely negligible. Finally, when V is the same order of magnitude as the parameters gov-

erning the ecological dynamics, the irregular cycles become fully chaotic, with both amplitudes

and frequencies that vary widely over even relatively short time intervals (Fig 2A, bottom).

Typically, the large V case would correspond to circumstances in which the prey population

develops a large standing genetic variation [10, 44].

That the dynamics are chaotic, rather than quasi-periodic, is suggested by the presence of

multiple broad, unevenly-spaced peaks in the power spectrum [45] (Figure A in S1E Appen-

dix), as well as by numerical tabulation of the Lyapunov spectrum (described further below).

Due to the hierarchical coupling of Eqs (10), (11) and (12), when plotted in three-dimensions

the chaotic dynamics settle onto a strange attractor that resembles the “teacup” attractor found

in models of tritrophic food webs [24, 46] (Fig 2B). Poincare sections though various planes

of the teacup all appear linear, suggesting that the strange attractor is effectively two-

Fig 2. The onset of chaos with increasing prey evolutionary rate in a predator-prey system. (A) As the timescale of the evolutionary dynamics, V,

increases relative to the timescales of predator-prey interactions, the system undergoes a Hopf bifurcation from stable limit cycles (upper panel, V ¼ 0: �06)

to chaotic cycling (bottom panel, V ¼ 0:�3). (B) The “teacup” strange attractor for the system in its chaotic state (V ¼ 0:�3). Projections of the dynamics onto

pairs of dynamical variables are shown in the inset. For this figure, a1 = 2.5, a2 = 0.05, d1 = 0.16, d2 = 0.004, b1 = 6, b2 ¼ 1:�3, k1 = 6, k2 = 9, k4 = 9, ya = 8,

Simulation time: 4 × 104.

https://doi.org/10.1371/journal.pcbi.1005644.g002
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dimensional—consistent with pairings of timescales associated with different dynamical vari-

ables at different points in the process (Figure B in S1E Appendix). In the “rim” of the teacup,

the predator density changes slowly relative to the prey density and mean trait value. This is

visible in a projection of the attractor into the x � �c plane (Fig 2B, bottom inset). However, in

the “handle” of the teacup, the mean trait value varies slowly relative to the ecological dynamics

(_�c � 0), resulting in dynamics that qualitatively resemble the two-dimensional “reduced” sys-

tem described above for various fixed values of �c (Fig 2B, top inset).

The structure of the attractor suggests that the prey alternately enters periods of evolution-

ary change and periods of competition with the predator. A closer inspection of a typical tran-

sition reveals that this “two timescale” dynamical separation is responsible for the appearance

of chaos in the system (Fig 3A). As the system explores configuration space, it reaches a meta-

stable configuration corresponding to a high mean trait value �c, which causes the prey density

to nearly equilibrate to a low density due to the negative density-dependent term in Eq (10).

During this period (the “rim” of the teacup), the predator density gradually declines due to the

Fig 3. A gradual decrease in predator density remodels the fitness landscape, triggering transient

cycling. (A) A closeup of the dynamics for a typical entry into cycling. A high predator density y (magenta)

slowly decays while the prey density x (turquoise) remains nearly constant. Once the predator density

becomes small enough, the prey density abruptly increases, causing a decrease in the mean trait value �c
(black) that provokes cycling. The right vertical axis ticks (x*, c*, etc.) correspond to analytical predictions for

critical points, as described in the next section. (B) The fitness function r (from Eq (9)) computed for the values

of (x, y, �c) at the timepoints shown in (A), plotted with c as the vertical axis. Local minima (white) and maxima

(black) in c are overlaid for the portion of the dynamics shown in (A). The color gradient is centered with white

at 0 and the positive (red) and negative(blue) fitness values scaled by the log transform modulus. (C) The

fitness function as a function of c at two representative timepoints (indicated by white dashed lines in (B)). All

parameters as given in Fig 2B.

https://doi.org/10.1371/journal.pcbi.1005644.g003
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lack of prey. However, once the predator density becomes sufficiently small, the prey popula-

tion undergoes a sudden population increase, which triggers a period of rapid cycling in the

system (the “handle” of the teacup attractor). During this time, the predator density continu-

ously increases, causing an equivalent decrease in the prey density that resets the cycle to the

metastable state.

The sudden increase in the prey population at low predator densities can be understood

from how the fitness function r (from Eq (9)) changes over time. Fig 3B shows a kymograph of

the log-scaled fitness Eq (9) as a function of individual trait values c, across each timepoint and

corresponding set of (x, y, �c) values given in panel A. Overlaid on this time-dependent fitness

landscape are curves indicating the instantaneous location of the local maximum (black) and

minimum (white). By comparing panels A and B, it is apparent that the mean trait value dur-

ing the “metastable” period of the dynamics stays near the local maximum of the fitness func-

tion, which barely varies as the predator density y changes. However, when y(t)� 0.25, the

fitness function changes so that the local minimum and local maximum merge and disappear

from the system, leading to a new maximum spontaneously appearing at c = 0. Because V is

large enough (for these parameters) that the gradient dynamics occur over timescales compa-

rable to the competition dynamics, the system tends to move rapidly towards this new maxi-

mum in the fitness landscape, resulting in rapidly-changing dynamics in x and �c. Importantly,

because of the symmetric coupling of the prey fitness landscape r to the prey density x, this

rapid motion resets the fitness landscape so that the maximum once again occurs at the origi-

nal value, resulting in a period of rapid cycling. The fitness landscape at two representative

timepoints in the dynamics is shown in Fig 3C.

That the maxima in the fitness Function (9) suddenly change locations with continuous

variation in x, y is a direct consequence of the use of a high-order (here, quartic) polynomial in

c to describe the fitness landscape. The quartic represents the simplest analytic function that

admits more than one local maxima in its domain, and the number of local maxima is gov-

erned by the relative signs of the coefficients of the ðc2 � �c2Þ and ðc4 � �c4Þ terms in Eq (9),

which change when the system enters the rapid cycling portion of the chaotic dynamics at

t = 500 in Fig 3A. This transition marks the mean prey trait switching from being drawn (via

the gradient dynamics) to a single fitness peak at an intermediate value of the trait ceq� 0.707

to being drawn instead to one of two peaks: the existing peak, or a new peak at the origin. Thus

the metastable period of the dynamics corresponds to a period of stabilizing selection: if the fit-

ness landscape were frozen in time during this period, then an ensemble of prey would all

evolve to a single intermediate trait value corresponding to the location of the global maxi-

mum. Conversely, if the fitness landscape were held fixed in the multipeaked form it develops

during a period of rapid cycling, given sufficient time an ensemble of prey would evolve

towards subpopulations with trait values at the location of each local fitness maximum—repre-

senting disruptive selection. That the fitness landscape does not remain fixed for extended

durations in either a stabilizing or disruptive state—but rather switches between the two states

due to the prey density-dependent term in Eq (9)— underlies the onset of chaotic cycling in

the model. Density-dependent feedback similarly served to induce chaos in many early dis-

crete-time ecosystem models [23]. However, the “two timescale” form of the chaotic dynamics

and strange attractor here is a direct result of reversible transitions between stabilizing and dis-

ruptive selection.

If the assumptions underlying the gradient dynamics model do not strictly hold—if the

additive genetic variance V slowly varies via an additional dynamical equation, or if the initial

conditions are such that significant skewness would be expected to persist in the phenotypic

distribution, then the chaotic dynamics studied here would be transient rather than indefinite.

While the general stability analysis shown above (and in the S1 Appendix) would still hold,

Predator-prey model with chaotic phase transition

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005644 July 5, 2017 10 / 20

https://doi.org/10.1371/journal.pcbi.1005644


additional dynamical equations for V or for high-order moments of the trait distribution

would introduce additional constraints on the values of the parameters, which would (in gen-

eral) increase the opportunities for the dynamics to become unstable and lead to diverging

predator or prey densities. However, in some cases these additional effects may actually serve

to stabilize the system against both chaos and divergence. For example, if additional series

terms were included in Eq (8) such that the dependence of mortality rate on �c and c had an

upper asymptote [25], then _�c ¼ 0 would be true for a larger range of parameter values—result-

ing in the dynamical system remaining planar for a larger range of initial conditions and

parameter values, precluding chaos.

Relationship to first-order phase transitions

The transition between stabilizing and disruptive selection that occurs when the system enters

a period of chaotic cycling is strongly reminiscent of a first-order phase transition. Many phys-

ical systems can be described in terms of a free energy landscape, the negative gradient of

which determines the forces acting on the system. Minima of the free energy landscape corre-

spond to equilibrium points of the system, which the dynamical variables will approach with

first-order dynamics in an overdamped limit.

When a physical system undergoes a phase transition—a qualitative change in its properties

as a single “control” parameter, an externally-manipulable variable such as temperature, is

smoothly varied—the transition can be understood in terms of how the control parameter

changes the shape of the free energy landscape. The Landau free energy model represents the

simplest mathematical framework for studying such phase transitions: a one-dimensional free

energy landscape is defined as a function of the control parameter and an additional indepen-

dent variable, the “order parameter,” a derived quantity (such as particle density or net magne-

tization) with respect to which the free energy can have local minima or maxima. In a first-

order phase transition in the Landau model, as the control parameter monotonically changes

the relative depth of a local minimum at the origin decreases, until a new local minimum spon-

taneously appears at a fixed nonzero value of the order parameter—resulting in dynamics that

suddenly move towards the new minimum, creating discontinuities in thermodynamic prop-

erties of the system such as the entropy [47]. First-order phase transitions are universal physi-

cal models, which have been used to describe a broad range of processes spanning from

superconductor breakdown [48] to primordial black hole formation in the early universe [49].

In the predator-prey model with prey evolution, the fitness function is analogous to the free

energy, with the individual trait value c serving as the “order parameter” for the system. The

control parameter for the transition is the prey density, x, which directly couples into the

dynamics via the density-dependent term in Eq (7). Because the fitness consists of a linear

combination of this term in Eq (7) and a quartic landscape Eq (8), the changing prey density

“tilts” the landscape and provokes the appearance of the additional, disruptive peak visible in

Fig 3C. The appearance and disappearance of local maxima as the system switches between sta-

bilizing and disruptive selection is thus analogous to a first-order phase transition, with chaotic

dynamics being a consequence of repeated increases and decreases of the control parameter x
above and below the critical prey densities x�, x�� at which the phase transition occurs. Similar

chaotic dynamics emerge from repeated first-order phase transitions in networks of coupled

oscillators, which may alternate between synchronized and incoherent states that resemble the

“metastable” and “rapid cycling” portions of the predator-prey dynamics [50].

The analogy between a first-order phase transition and the onset of disruptive selection can

be used to study the chaotic dynamics in terms of dynamical hysteresis, a defining feature of

such phase transitions [47]. For different values of x, the three equilibria corresponding to the
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locations of the local minima and maxima of the fitness landscape, ceq, can be calculated from

the roots of the cubic in Eq (12). The resulting plots of ceq vs x in Fig 4 are generated by solving

for the roots in the limit of fast prey equilibration, �c ! ceq, which holds in the vicinity of the

equilibria (S1B Appendix).

The entry into the transient chaotic cycling occurs when x increases gradually and shifts ceq

with it; x eventually attains a critical value x� (x� � 0.45 for the parameters used in the figures),

causing ceq to jump from its first critical value c� to the origin (the red “forward” branch in

Fig 4). This jump causes rapid re-equilibration of �cðtÞ, resulting in the rapid entry into cycling

observable in Fig 3A. However, x cannot increase indefinitely due to predation; rather, it

decreases until it reaches a second critical value x��, at which point ceq jumps back from the ori-

gin to a positive value (the blue “return” branch in Fig 4; x�� = 0.192 for these parameter val-

ues). This second critical point marks the return to the metastable dynamics in Fig 3A. This

asymmetry in the forward and backwards dynamics of x lead to dynamical time-irreversibility

(hysteresis) and the jagged, sawtooth-like cycles visible in the dynamics of the full system.

Because the second jump in ceq is steeper, the parts of the trajectories associated with the

“return” transition in Fig 3A appear steeper. Additionally, the maximum value obtained by

�cðtÞ anywhere on the attractor, cmax
eq , is determined by the limiting value of ceq as x! 0. Ana-

lytic values for cmax
eq , as well as (x�, c�) and (x��, c��), are derived in the S1 Appendix, and their

corresponding numerical values are overlaid in each panel of Fig 3.

Comparing the values of cmax
eq , x�, c�, x��, c�� to the dynamics of the system in Fig 3, it is

apparent that calculation of critical points under the fast-evolution approximation correctly

predicts key properties of the chaotic dynamics such as the maximum value attained by �cðtÞ,

Fig 4. Hysteresis and discontinuity induced by a first-order fitness phase transition. (A) Under the fast

equilibration approximation �c ! ceq, an analytic phase diagram for the real parts of the locations of the local

extrema of the fitness function as a function of the prey density, x. The red “forward” overlay indicates the

apparent jump in the dynamics as x increases; the blue “backward” overlay indicates the apparent jump as

x decreases. Dashed line indicates unstable equilibria. All parameters are as given in Fig 2B.

https://doi.org/10.1371/journal.pcbi.1005644.g004
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the quasi-static value �c during the “metastable” period before chaotic cycling, and the approxi-

mate values at which x(t) enters and exits the rapid cycling portion of the dynamics. Thus the

analogy between the fitness function and the Landau free energy provides insight into the

dynamics of the chaotic ecosystem.

Moreover, for intermediate values of the prey density at which the two local maxima are

equal heights, the relative fitnesses of the two trait values are equal (c� ¼ c��eq ) and so both phe-

notypes would be equally favorable for the prey population. This is analogous to the coexis-

tence of two phases during intermediate portions of a phase transition. As the prey density

x approaches either critical value, the fitness landscape shallows and the dynamics begin to

exhibit a form of “critical slowing down” associated with the onset of the phase transition—

here represented by the relatively slow dynamics along the flattened handle of the teacup in

Fig 2B.

Implications for models of speciation

The chaotic dynamics reported here are emergent; they result from predation reducing the fit-

ness of intermediate trait values, which restructures the fitness landscape in a manner that

later reverses as the predator density decreases. However, here, as in other models, the pres-

ence of chaos has other long-term implications for the ecosystem that would not be relevant in

systems with only limit cycles or point equilibria.

The chaotic dynamics associated with fast evolutionary dynamics (large V, or high genetic

variance [20, 21]) impose a statistical structure on the deterministic problem: given a suffi-

ciently long observation time, a trajectory along the strange attractor will sample every point

on the attractor [45]. For the predator-prey model studied here, ergodicity in the system is

established by using a numerical scheme to estimate the spectrum of global Lyapunov expo-

nents, which measure the rate at which two infinitesimally separated points in the configura-

tion space move apart over time along the three dimensions present in the system. Simulations

with varying timescales that start at various initial conditions on the attractor converge to the

same estimates of the Lyapunov exponents, implying ergodicity [45] (S1C Appendix). A simi-

lar technique has been used to establish ergodicity in some models of chaotic multitropic food

webs [51]. The Lyapunov spectrum can, in turn, be used to determine the Kaplan-Yorke fractal

dimension of the attractor, DKY� 2.01, which accounts for the two-dimensional shape of the

full attractor (Fig 2B) and linear shapes of its Poincare sections (Figure B in S1E Appendix)

discussed above.

Due to the ergodic property of chaotic attractors, one typical interpretation of their appear-

ance in ecological dynamics is that they allow a sort of bet-hedging across timescales, confer-

ring ecological stability against sudden external perturbations [23, 52, 53]. In the presence of

external factors not explicitly included in the model, especially non-ergodic processes such as

climate variation, a chaotic ecosystem will present a variety of different ratios of predator and

prey concentrations at different times, ensuring robustness through biodiversity [54–56].

Moreover, in spatially-extended models in which different subpopulations may simultaneously

exist at different points in the chaotic attractor, the chaotic attractor can allow one subgroup to

recover from a sudden environmental catastrophe or to expand its range to a new location

when favorable conditions spontaneously arise. In general, chaotic dynamics may present an

adaptive benefit by making ecological networks robust, for example by preventing sudden

exclusion of a keystone species [57].

Here, we suggest that chaos produces an additional effect when it arises due to eco-evolu-

tionary dynamics: it creates a broad distribution of “windows” of time during which sympatric

speciation may occur. The dynamics imposed in the predator-prey model in Eqs 10–12 do not
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explicitly include speciation, which represents an irreversible process in which the prey bifur-

cates into multiple co-evolving types (hence changing the number of distinct dependent vari-

ables present in the dynamics). This would violate the underlying conditions of the gradient

dynamics model by creating a bimodal prey density vs trait distribution with substantial skew.

However, this process would typically occur during periods of disruptive selection, during

which speciation could occur either through assortative mating or through spatial isolation of

phenotypically homogeneous subpopulations.

For this reason, the statistical property of the chaotic dynamics that is relevant to speciation

is the distribution of time that the fitness function spends in the disruptive state, or the

“epochs” of disruptive selection. This represents the distribution of opportunities for specia-

tion to first occur in the system, at which point ergodicity would be broken and the dynamical

equations would no longer remain valid. In many models of evolutionary processes, the distri-

bution of epochs of dominance for certain phenotypes has rich statistical structure, including a

heavy-tail distribution that some authors have taken to indicate the presence of self-organized

criticality [58, 59]. These epochs can be detected by defining the “local” Lyapunov exponents,

which represent the three eigenvalues of the Jacobian matrix for the Systems (10), (11) and

(12) evaluated at each point along a trajectory in the chaotic attractor [60, 61],

liðtÞ � eig
@ _xðtÞ
@xðtÞ

� �

where x ¼ ðxðtÞ; yðtÞ;�cðtÞÞ and i 2 {1, 2, 3}. Plots of these local Lyapunov exponents during a

typical period of metastable dynamics followed by cycling are shown in Fig 5A. Positive values

Fig 5. Lyapunov exponents associated with the chaotic dynamics. (A) The eigenvalues of the Jacobian

evaluated during a portion of the dynamics in which the system enters a series of chaotic cycles. The global

Lyapunov exponent is underlaid as a dashed black line. (B) The distribution of the lengths of periods in the

dynamics during which the largest local Lyapunov exponent is greater than the threshold value 0.2, chosen to

correspond to periods of strongly disruptive selection in which the exponent takes values an order of

magnitude greater than its median across the time series. Simulation time 2 × 105, other parameters are as

given in Fig 2B.

https://doi.org/10.1371/journal.pcbi.1005644.g005
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suggest chaotic dynamics, while negative values suggest that nearby trajectories converge.

The largest local Lyapunov exponent typically dominates the dynamics. Consistent with the

destabilizing nature of disruptive selection, the largest local Lyapunov exponent increases dra-

matically during periods in which the fitness function has multiple local maxima. For this rea-

son, the length of these long excursions in which the largest local Lyapunov exponent

significantly exceeds zero can be used to estimate the distribution lengths of periods of disrup-

tive selection (Fig 5B), based on a very long sample of the dynamics along the strange attractor.

The broadness of this distribution suggests that speciation events could occur over a range of

timescales in the system (for example, via hybrid breakdown), representing a potential signa-

ture of a chaotic past that could be observed in descendant populations with non-chaotic

dynamics.

Despite the large fluctuations in the maximum value of the local Lyapunov exponents, the

largest global Lyapunov exponent is only barely larger than zero, λmax� 0.003. Similar behav-

ior has been reported a real-world ecosystem consisting of competing species in a rocky inter-

tidal environment, in which a small global Lyapunov exponent paired with a fluctuating

largest local Lyapunov exponent was taken to suggest that the ecosystem had adapted to “the

edge of chaos.” [51] A similar case has been reported experimentally in populations of voles in

Northern Europe that appear to switch between chaotic and stable periods [62]. In that system,

it was noted that occasional switches to chaotic dynamics serve to amplify the effect of envi-

ronmental fluctuations, further suggesting that the irregular spacing of epochs resulting from

chaotic dynamics may allow a range of timescales over which speciation may occur under tem-

porally-varying external conditions.

If the underlying assumptions of the gradient dynamics model do not hold—such as V
slowly varys in time or the trait distribution retains significant skewness—then the chaotic

dynamics would be non-ergodic, causing the system to eventually exit the chaotic attractor

and either diverge or settle to a fixed point or limit cycle. If the timescale of exit from the cha-

otic attractor is much longer than the average time between periods of rapid cycling (as deter-

mined, for example, by the peak in the power spectrum in Figure A of S1E Appendix), then

the dynamics will demonstrate transient chaos, and the form of the distribution in Fig 5B will

be roughly the same due to quasi-ergodicity. However, if the timescale of transience is much

shorter, the dynamics may not fully sample the attractor, resulting in the distribution of epochs

of disruptive selection being strongly dependent on the initial conditions.

Discussion

We have shown that a simple two-species predator-prey ecosystem can display rich dynamical

complexity when the prey evolves in response to predation, and that this complexity can be

understood by analyzing the temporal variation of the fitness landscape. Future theoretical

work will establish whether these dynamics qualitatively change when the predator also evolves

over timescale comparable to the prey evolution [63]. Such predator-prey co-evolutionary sys-

tems have been shown to exhibit a distinct route to chaos, due a desynchronization of the

predator and prey adaptation that comprises a form of the “Red Queen” effect [64, 65].

One limitation of our model arises from the form of the evolutionary dynamics Eq (4),

which assume that the dynamics of the trait distribution can be adequately described by a

mean trait evolution equation. S1D Appendix compares the results found here to those gener-

ated by a formulation of the problem in terms of a full integro-differential equation, and finds

general agreement for the fitness landscape studied here. However, for more complicated fit-

ness landscapes these conditions may not hold, requiring more advanced models that intro-

duce additional dynamical equations to account for various effects such as non-constant
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additive genetic variance [30, 66, 67]. In such models, chaos may appear as a transient in the

dynamics before the dynamical variables approach an equilibrium point or limit cycle.

Our findings for the minimal model studied here have implications for a wide variety of

eco-evolutionary systems, because they suggest that even a minimal deterministic model can

exhibit unstable cycling and chaos—effects that would typically become more pronounced

when more species are added to the system [22, 23]. The mechanism by which chaos appears

in our system is generic, resulting purely from changes in the number of local maxima in the

fitness landscape, suggesting the applicability of our findings to observational systems (such as

bacteria and viruses in microenvironments) in which the fitness landscape can be monitored,

but not necessarily all of the underlying species interrelationships [68]. For these systems,

recent advances in genetic barcoding of entire microbial communities [69, 70] may allow

direct observation of the role of dynamic fitness landscapes in creating opportunities for sym-

patric speciation.

In addition to being an emergent property of the underlying species interactions, we sug-

gest here that these chaotic properties may confer adaptive benefits via community robustness,

either by enforcing phenotypic diversity or by preventing environmental variation from fully

excluding a single species. The system described here also represents an example of a small

ecosystem that adapts towards the “edge of chaos”, which can further adjust how the system

responds to external perturbations [71, 72]. Potential experimental systems in which the adap-

tive role of eco-evolutionary chaos may be explored include phytoplanktonic ecosystems,

which can be isolated in the laboratory and which are known to to maintain biodiversity using

chaotic effects [54]. In particular, it would be interesting to determine whether non-synchro-

nized replicates of experimentally-controlled chaotic ecosystems could recover from a syn-

chronized perturbation (i.e. temporary salinity shock) more quickly than non-chaotic controls

[74]—suggesting that the ability of chaotic systems to continuously sample a wide variety of

dynamical conditions confers robustness. In these systems, reconstruction of of an experimen-

tal chaotic attractor derived from lagged coordinate embedding [43] could yield insight into

whether chaos arises due to changes in the general topology of the fitness landscape, which

would result in a nearly two-dimensional attractor due to distinct timescales associated with

stabilizing and disruptive effects.

Moreover, the underlying cause of the chaotic dynamics—a reversible transition between

stabilizing and disruptive selection—is mathematically analogous to the change in the shape of

the free energy landscape during a first-order phase transition in thermodynamics. Our find-

ings thus fit within more general extensions of mathematical theories of evolution that include

formalism from statistical and condensed matter physics [8, 58, 72, 73], suggesting that univer-

sal mechanisms may underly subtle transient properties observed in many natural ecosystems,

including hysteresis and dynamical robustness [75].
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