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Abstract: Cancer is a major life-threatening disease with a high mortality rate in many countries.
Even though different therapies and options are available, patients generally prefer chemotherapy.
However, serious side effects of anti-cancer drugs compel us to search for a safer drug. To achieve
this target, Hsp90 (heat shock protein 90), which is responsible for stabilization of many oncoproteins
in cancer cells, is a promising target for developing an anti-cancer drug. The QSAR (Quantitative
Structure–Activity Relationship) could be useful to identify crucial pharmacophoric features to
develop a Hsp90 inhibitor. Therefore, in the present work, a larger dataset encompassing 1141 diverse
compounds was used to develop a multi-linear QSAR model with a balance of acceptable predictive
ability (Predictive QSAR) and mechanistic interpretation (Mechanistic QSAR). The new developed
six-parameter model satisfies the recommended values for a good number of validation parameters
such as R2tr = 0.78, Q2LMO = 0.77, R2ex = 0.78, and CCCex = 0.88. The present analysis reveals that
the Hsp90 inhibitory activity is correlated with different types of nitrogen atoms and other hidden
structural features such as the presence of hydrophobic ring/aromatic carbon atoms within a specific
distance from the center of mass of the molecule, etc. Thus, the model successfully identified a variety
of reported as well as novel pharmacophoric features. The results of QSAR analysis are further
vindicated by reported crystal structures of compounds with Hsp90.

Keywords: Hsp90; cancer; QSAR; machine learning; pharmacophores

1. Introduction

Cancer kills; therefore, medicinal chemists are continuously trying to develop thera-
peutic agents that could retard the growth of cancer cells. In cancer cells, a protein Hsp90
(heat shock protein 90, also known as HSPC) is overexpressed [1]. It is a highly conserved,
non-fibrous, and chaperone protein with a key role in many cellular processes like proper
folding of other proteins, apoptosis, cell cycle control, cell viability, and degradation and
signaling events [1–6]. As the name indicates, Hsp (heat shock proteins) shield cells when
stressed by higher temperatures. The number “90” comes from the fact that it weighs about
90 kDa. There are two isoforms of Hsp90: Hsp90α (the inducible form) and Hsp90β (the
constitutive form), which are found in cytoplasm and share 85% sequence identity [1–6].
These two isoforms are like flexible biological catalysts and interact with a good number
of newly synthesized proteins, such as Akt2, CDKs, PKC, MAP kinases, steroid receptors,
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BCL-6, CAR, p53, Oct4, etc., to avoid their aggregation or mistakes in their folding [6].
Despite a crucial role, in cancer cells, these are responsible for the stabilization of a number
of oncoproteins required for tumor growth, leading to their overexpression [1–6]. Conse-
quently, Hsp90 is an attractive target for developing a drug for cancer.

The majority of Hsp90 inhibitors occupy the ATP (adenosine tri-phosphate) pocket
in the N-terminal domain of Hsp90, leading to limited ATPase activity [1–6]. At present,
several natural and semi-synthetic Hsp90 inhibitors (see Figure 1) are in different stages of
clinical trials for a variety of cancers [2,3,7–9].

Figure 1. Different clinical trial candidates as inhibitors of Hsp90.

Unfortunately, several inhibitors have shown hepatotoxicity and ocular toxicity [2,10];
consequently, there is a need to modify them with retention of activity against Hsp90,
which could be achieved on knowing the structural features responsible for their Hsp90
inhibitory activity. A simple, cost-effective, and faster yet effective strategy to know
crucial pharmacophoric features is to use QSAR (Quantitative Structure–Activity Relation-
ships), a successful, contemporary, and widely used branch of computer assisted-drug
designing [11–16].

In QSAR analysis, generally, a good number of inhibitors are analyzed using a suitable
technique like machine learning, deep learning, etc. There are two main advantages of
using the QSAR approach [11,17,18]: (a) the analysis helps to identify the prominent struc-
tural features or patterns that influence the bioactivity profile of molecules (Mechanistic
interpretation or Qualitative QSAR), and (b) the analysis could be used to predict the
desired bioactivity of a molecule prior to its synthesis and lab testing (Predictive ability
or Predictive QSAR). Therefore, many researchers prefer QSAR as a method of choice
for drug/lead optimization. Nowadays, a QSAR analysis with a balance of mechanistic
interpretation with predictive ability is highly preferred.

The literature survey reveals that QSAR analyses have been reported for Hsp90,
but they are either based on a small dataset, lack general applicability, have poor predictive
ability, are deficient of a mechanistic interpretation, or a combination of these factors,
which limit their use [9,19–22]. Therefore, in the present work, we accomplished QSAR
analysis for a larger and diverse dataset of Hsp90 inhibitors, and followed the OECD



Pharmaceuticals 2022, 15, 303 3 of 14

(Organization for Economic Cooperation and Development) guidelines while developing
a QSAR model to have a balance of mechanistic interpretation with predictive ability.

2. Results

The exhaustive and heuristic search resulted in the development of a six-descriptor-
based QSAR model (see model-A), which was subjected to thorough statistical validation
for internal and external validations.

Model-A: pIC50 (M) = 3.903 (± 0.134) + 0.101 (± 0.013) × com_ringChyd_4A + 0.433
(± 0.058)× faroCN2B + 0.714 (± 0.214)× aroCminus_sumpc + 0.065 (± 0.005)× aroC_aroN_5B
+ 0.266 (± 0.048) × fringNsp3C5B + 0.59 (± 0.082) × da_amdN_6B

Statistical validation of model-A:
Ntr = 915, Next = 226, R2

tr = 0.779, R2
adj. = 0.777, R2

tr − R2
adj. = 0.002, LOF = 0.244,

Kxx = 0.219, ∆K = 0.122, RMSEtr = 0.487, MAEtr = 0.404, RSStr = 217.321, CCCtr = 0.876,
s = 0.489, F = 533.134, R2

cv (Q2loo) = 0.775, R2-R2
cv = 0.004, RMSEcv = 0.491, MAEcv = 0.407,

PRESScv = 220.839, CCCcv = 0.874, Q2
LMO = 0.775, R2

Yscr = 0.007, Q2
Yscr = −0.009,

RMSEex = 0.474, MAEex = 0.383, PRESSext = 50.675, R2
ex = 0.779, Q2-F1 = 0.778,

Q2-F2 = 0.778, Q2-F3 = 0.791, CCCex = 0.876, R2-ExPy = 0.779, R’o2 = 0.727, k’ = 0.989,
1−(R2/R’o2) = 0.066, r’2m = 0.602, Ro

2 = 0.779, k = 1.005, 1 − (R2 − ExPy/Ro
2) = 0,

r2m = 0.766
Different researchers have recommended the above statistical parameters to judge the

robustness and external predictive ability of a QSAR model [11–16,23–31]. The formula to
calculate them is available in the Supplementary Materials. It is clear that model-A fulfils the
recommended threshold for many validation parameters and other criteria. A high value
of different parameters like R2

tr (coefficient of determination), R2
adj. (adjusted coefficient

of determination), and R2
cv (Q2loo, cross-validated coefficient of determination for leave-

one-out), R2
ex (external coefficient of determination), Q2−Fn, and CCCex (Concordance

Correlation Coefficient), etc., and a low value of LOF (lack-of-fit), RMSEtr (root mean
square error), MAEtr (mean absolute error), R2

Yscr (R2 for Y-scrambling), etc. along with the
different graphs (see Figure 2) associated with the model indicate that the model possesses
statistical robustness with excellent internal and external predictive ability as well as
free from chance correlations. Additionally, the Williams plot specifies that the model is
statistically acceptable (see Figure 2d). Therefore, it fulfils all the OECD recommended
guidelines for creating a useful QSAR model.

Figure 2. Cont.
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Figure 2. Different graphs associated with model-A: (a) experimental vs. predicted pIC50 (the solid
line represents the regression line), (b) experimental vs. residuals, (c) Williams plot for applicability
domain (the vertical solid line represents h* = 0.023 and horizontal dashed lines represent the upper
and lower boundaries for applicability domain), and (d) Y-randomization.

3. Discussion
Mechanistic Interpretation of QSAR Model

A very crucial aspect of a useful QSAR analysis is to gain deep insight into the
pharmacophore or structure-oriented linking of molecular descriptors [17,32]. This not
only helps throughout the drug discovery process, but also expands the information and
understanding of mechanistic aspects of different types of molecules. Though, in the present
work, a specific molecular descriptor was used to equate the pIC50 values of different
molecules, but an extending or reverse influence of unknown factors or other molecular
descriptors, having a dominant effect in deciding the final pIC50 value of a molecule, cannot
be ignored. To simplify, a single molecular descriptor (in turn structure feature) cannot
decide the overall experimental pIC50 value of a molecule. In other words, the effective use
of an appropriately validated QSAR model depends on the synchronous consideration of all
constituent molecular descriptors. Interestingly, in model-A, all the molecular descriptors
have positive coefficients, which indicates that increasing their value could result in a better
Hsp90 inhibitory activity.

The descriptor com_ringChyd_4A represents the total number of hydrophobic ring
carbons, having partial charge in the range±0.2, within 4Å from the com (center of mass) of
the molecule. From this, it appears that mere total number of ring carbons is very important,
but replacing com_ringChyd_4A with nringC (number of ring carbon atoms) or naroC
(number of aromatic carbon atoms) significantly reduced the statistical performance of
the model (R2 = 0.72). To add further, com_ringChyd_4A has a positive correlation of
R = 0.488 with pIC50, whereas nringC and naroC have a correlation of R = 0.461 and 0.405,
respectively. com_ringChyd_3A and com_ringChyd_5A represent the total number of
ring carbons, having partial charge in the range ±0.2, within 3Å and 5Å from the com
(center of mass) of the molecule, respectively. Replacement of com_ringChyd_4A with
com_ringChyd_3A or com_ringChyd_5A resulted in slightly reduced performance of the
model with R2 = 0.75 and 0.76, respectively. This indicates that the optimum distance is 4Å.

The importance of hydrophobic ring carbon atoms is supported by the X-ray-resolved
structure of a good number of Hsp90 inhibitors because the active site of Hsp90 consists
of lipophilic side chains of Leu48, Ile91, Val186, Leu315, Ile388, and Val391 [33,34], which
favors the presence of hydrophobic moiety in the inhibitors. For example, a compari-
son of molecule 988 (pIC50 = 6.009, com_ringChyd_4A = 10) with 1007 (pIC50 = 6.481,
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com_ringChyd_4A = 15) highlights the importance of com_ringChyd_4A. Another pair
of molecules, viz. 794 and 814, also supports this observation. The molecular descriptor
com_ringChyd_4A is depicted in Figure 3 for different molecules.

Figure 3. Depiction of com_ringChyd_4A using different molecules: (a) molecules 988, 1007
(MMFF94 optimized), and 1007 (X-ray resolved dock pose from pdb 6EY8); (b) molecules 794
and 814 (both X-ray-resolved poses from pdb 5XR9 and 4LWE, respectively). The small black sphere
represents the com (center of mass) and the bigger transparent sphere represents the distance of 4Å
from the center of mass. The dotted yellow line represents the distance (Å) of com from the centers of
the different nearest rings.

From Figure 3, it is clear that the lowest energy conformer of molecule 988 has
com_ringChyd_4A = 10 due to the closer presence of com (distance 1.206 Å) to the benzene
ring of indazole ring. In case of molecule 1007 (MMFF94-optimized and X-ray-resolved
pose from pdb 6EY8), the com is located slightly away from the benzene ring of Indazole
ring at a distance > 2.40 due to specific conformation, thereby increasing the value of
com_ringChyd_4A to 15. This could be a plausible reason for the difference in the bioactiv-
ity of these two compounds. Similarly, a better Hsp90 inhibitory activity of molecule 794
than 814 could be attributed to difference in their com_ringChyd_4A values.

Another molecular descriptor that has a positive effect on Hsp90 activity is faroCN2B,
which signifies the presence of nitrogen exactly at two bonds from aromatic carbon atoms.
If the same nitrogen atom is also present at two or less bonds from any other aromatic carbon
atom, then it was excluded while calculating faroCN2B. This descriptor highlights the



Pharmaceuticals 2022, 15, 303 6 of 14

importance of nitrogen atoms separated from aromatic ring (Benzene, etc.) by two bonds.
As the majority of nitrogen atoms act as either an H-bond donor or acceptor; therefore, the
presence of nitrogen atoms in the vicinity of aromatic rings could be useful in enhancing
interactions with the polar residues of receptor (Hsp90). Additionally, the descriptor further
points out the crucial role played by the aromatic rings undoubtedly due to their lipophilic
nature. Taken together, the descriptor faroCN2B signifies the importance of two important
structural features: aromatic rings and their vicinal nitrogen atoms.

This observation is confirmed when we compare the X-ray-resolved structures of
molecule 727 (pIC50 = 6.654, faroCN2B = 1, pdb = 4O09) with 725 (pIC50 = 7.137, faroCN2B
= 2, pdb = 4O05) depicted in Figure 4. The nitrogen atoms responsible for faroCN2B are
highlighted by blue dotted circles. From Figure 4, it is clear that the aromatic ring B of both
the molecules is responsible for hydrophobic interactions with the residue Met98. The ni-
trogen atom of ring A present in both the molecules is not only a constituent of faroCN2B,
but also responsible for H-bonding with the residue Asp93. Thus, such a combination of
aromatic carbons and nitrogen is highly beneficial to enhance the interactions with the
receptor. In case of molecule 733, an additional nitrogen atom is present in ring F, which
is a constituent of faroCN2B, and responsible for the H-bond interaction with the nearby
water molecule. Thus, the present QSAR analysis revealed an important structural feature,
which is also visible in X-ray-resolved structures of the same inhibitors with the same target
enzyme Hsp90.

Figure 4. Depiction of faroCN2B using representative examples only.

A comparison of the following pairs of molecules further vindicates the importance
of faroCN2B in determining the bioactivity: 213 (pIC50 = 6.523, faroCN2B = 2) with
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212 (pIC50 = 6.469, faroCN2B = 1) and 758 (pIC50 = 7.444, faroCN2B = 2) with 759
(pIC50 = 7.569, faroCN2B = 3).

The importance of aromatic carbon atoms is further emphasized with the presence of
aroCminus_sumpc as a constituent variable of model-A. The molecular descriptor aroCmi-
nus_sumpc represents the sum of partial charges on negatively charged aromatic carbon
atoms. The positive coefficient for aroCminus_sumpc indicates that the higher the value
of this descriptor, the better the activity profile. The sum of partial charges on negatively
charged aromatic carbon atoms will always be negative; therefore, in reality, this descriptor
actually decreases the pIC50 value. Further, the replacement of aroCminus_sumpc by
aroCplus_sumpc (sum of partial charges on positively charged aromatic carbon atoms) led
to a model with almost identical statistical performance (R2

tr = 0.772, Q2
LMO = 0.767, R2

ex
= 0.78, CCCex = 0.876). In fact, aroCplus_sumpc has a better correlation (R = 0.33) with
pIC50 than aroCminus_sumpc (R = 0.10). From this it is clear that, if aromatic carbons are
positively charged than the molecule possesses better Hsp90 inhibitory activity. Therefore,
the best strategy is to attach atoms or groups that enhance lipophilic and mild polar in-
teractions with the receptor (for example -Cl, etc.) to the aromatic carbon atoms. In short,
substituted aromatic rings are preferable for better activity. This observation is supported
by comparing following pairs of molecules: 2 with 3, 1054 with 1059, and 214 with 212.

aroC_aroN_5B, which represents the total number of aromatic carbon atoms within
five bonds from aromatic nitrogen atoms, again points out the key role played by aromatic
carbon atoms in deciding Hsp90 inhibitory activity. It also underlines the usefulness
of aromatic nitrogen atoms. This descriptor has a positive correlation with pIC50 with
R = 0.63. Therefore, an increase in number of aromatic carbon atoms within five bonds
from aromatic nitrogen atoms leads to better Hsp90 inhibitory activity. The following pairs
of the molecules support this observation: 888 (pIC50 = 7.523, aroC_aroN_5B = 22) with
887 (pIC50 = 6.046, aroC_aroN_5B = 20) and 107 (pIC50 = 5.953, aroC_aroN_5B = 13) with
108 (pIC50 = 4.874, aroC_aroN_5B = 10), to mention a few. Further, the 50 most active
molecules possess relatively higher value of aroC_aroN_5B (range 8–17) than the 50 least
active molecules (range 0–8).

fringNsp3C5B stands for the number of sp3-hybridized carbon atoms exactly at five
bonds from the ring nitrogen atom. If the same sp3-hybridized carbon atom is also present at
four or less bonds from any other ring nitrogen atom, then it was excluded while calculating
fringNsp3C5B. It is interesting to note that the 50 most active molecules, except molecule
618, possess at least one or more of such a combination of carbon and ring nitrogen, whereas
the 50 least active molecules either lack it or have fringNsp3C5B = 1. In the majority of com-
pounds, the sp3-hybridized carbon atoms are present either as a linker between two rings
or as a substituent, which therefore enhances conformational flexibility of the molecule
to adopt a bioactive conformer or lipophilic characters of the molecule. A comparison
of 895 (pIC50 = 7.071, fringNsp3C5B = 2) with 896 (pIC50 = 6.777, fringNsp3C5B = 1),
859 (pIC50 = 7.237, fringNsp3C5B = 2) with 896 (pIC50 = 7.071, fringNsp3C5B = 1),
326 (pIC50 = 6.921, fringNsp3C5B = 1) with 328 (pIC50 = 7.046, fringNsp3C5B = 2),
and 412 (pIC50 = 7.155, fringNsp3C5B = 1) with 411 (pIC50 = 6.959, fringNsp3C5B = 0)
and 410 (pIC50 = 6.854, fringNsp3C5B = 0) confirms the importance of fringNsp3C5B in
deciding the activity.

A molecular descriptor that identifies the relation of total number amide nitrogen
atoms within six bonds from the H-bond donor and acceptor atoms is da_amdN_6B. In the
majority of compounds in the present dataset, the amide group is present as a substituent
on aromatic ring or as a linker between two rings. The descriptor da_amdN_6B suggests
the significance of amide group and its correlation with the H-bond donor and acceptor
atoms. This observation is confirmed on comparing molecule A with molecules B and C
(see Figure 5).
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Figure 5. Pictorial representation of da_amdN_6B using representative examples only.

A good number of researchers have also pointed out that the amide group is crucial
for Hsp90 inhibitors to establish H-bonding with residues of the active site (see pdb 4AWO).
For example, Zhao et al. [4] pointed out that the distance between the nitrogen atoms on
the piperidine ring and the amide are important for Hsp90 inhibition. Similarly, Baruchello
and co-workers [35] studied a library of 3,4-isoxazole diamides for Hsp90 binding and
found that a substantial reduction in Hsp90 binding affinity when the amide was replaced
with substituted amines. In addition, a H-bond donor at the C-4 position on the isoxazole
is vital for retaining the activity. Davies et al. [36] observed that S-acetamide derivatives
of compounds have better bioactivity profile than the S-alkylamines. The importance
of da_amdN_6B was further confirmed by comparing following pair of the molecules:
856 (pIC50 = 6.848, da_amdN_6B = 0) with 861 (pIC50 = 7.114, da_amdN_6B = 1). The earlier
work identified the role of amide group, and in the present work, we successfully identified
that a combination of amide group with H-bond donor/acceptor within six bonds is a better
strategy to have better Hsp90 inhibitory activity. Therefore, such a combination of the amide
nitrogen atom and H-bond donor/acceptor should be retained in future optimizations.

In short, three molecular descriptors emphasize the importance of ring carbon atoms,
especially aromatic carbon atoms. This could be attributed to the lipophilic character of
the active site of Hsp90. Likewise, four molecular descriptors underline the significance of
different types of nitrogen atoms, which are responsible for the establishment of the polar
or H-bond interactions with polar residues and water molecules present inside the active
site of Hsp90. Hence, the present work is successful in identifying reported as well as novel
pharmacophoric features of Hsp90 inhibitors.

4. Materials and Methods

The OECD (Organization for Economic Cooperation and Development) guidelines and
a standard protocol recommended by different researchers [11–13,16,18,25,26,29,30,37] in-
volve the sequential execution of (1) data collection and its curation, (2) structure generation
and calculation of molecular descriptors, (3) objective feature selection (OFS), (4) splitting
the dataset into training and external validation sets, (5) subjective feature selection involv-
ing building a regression model and validation of the developed model, which have all
been followed to build a widely applicable QSAR model for Hsp-90 inhibitory activity.
This also ensures thorough validation and successful application of the model.

4.1. Data Collection and Its Curation

The dataset of Hsp-90 inhibitory activity used for building, training, and validating
the QSAR model in the present work was downloaded from BindingDB (https://www.
bindingdb.org/bind/index.jsp, accessed on 24 December 2021), which is a free and publicly
accessible database. Initially, the dataset comprised 1839 molecules. Then, as a part of data
curation, entries with ambiguous IC50 values, duplicates, salts, metal-based inhibitors, etc.

https://www.bindingdb.org/bind/index.jsp
https://www.bindingdb.org/bind/index.jsp
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were omitted [11–13,16,18,25,26,29,30,37]. The final dataset comprises 1141 structurally di-
verse molecules with remarkable variation in structural scaffolds, which were tested exper-
imentally for potency in terms of IC50 (nM) (see the MS Excel file ‘SupplementaryMaterial-
Final’ in the Supplementary Materials). The dataset includes N-terminal inhibitors of Hsp90.
The experimental IC50 values have a sufficient variation ranging from 5 to 350,000 nM.
After that, IC50 values were converted to their negative logarithmic value (pIC50 =−log10IC50)
so that a comparison of their values became easier. In Table 1 and Figure 6, some of the
most and least active molecules are included as examples only.

Table 1. SMILES notation, IC50 (nM) and pIC50 (M) of the five most and least active molecules of the
selected dataset.

S.N. Ligand SMILES IC50 (nM) pIC50 (M)

308 COc1cccc(n1)-
c1cc(F)ccc1[C@H]1Cc2nc(N)nc(C)c2C(NOC2C[C@H](O)[C@H](O)C2)=N1 5 8.301

908 CCNC(=O)c1noc(c1NC(=O)[C@H]1CC[C@H](CNS(=O)(=O)c2ccc(F)cc2)CC1)-
c1cc(C(C)C)c(O)cc1O 5.4 8.268

770 CCNC(=O)c1nnn(c1-c1ccc(CNC2CCCCC2)cc1)-c1cc(C(C)C)c(O)cc1O 6.8 8.167

767 CCNC(=O)c1nnn(c1-c1ccc(CN2CCCCC2CCO)cc1)-c1cc(C(C)C)c(O)cc1O 10 8

749 CCNC(=O)c1nnn(c1-c1ccc(CNCCCN(CC)CC)cc1)-c1cc(C(C)C)c(O)cc1O 12 7.921

775 Oc1cc(O)c2C[C@@H](OC(=O)[C@H]3CC[C@H](F)CC3)[C@H](Oc2c1)c1ccc(O)c(O)c1 69,000 4.161

1073 COC(COCCOc1ccc(Br)cc1)CN1CCN(CC1)c1ccccc1C(C)(C)C 70,430 4.152

1141 CO[C@H]1C[C@H](C)Cc2c(OC)c(O)cc3NC(=O)\C(C)=C\[C@H](O)C[C@H](OC)
[C@@H](OC(N)=O)\C(C)=C\[C@H](C)[C@H]1Oc23 96,000 4.018

778 Oc1cc(O)c2C[C@H](OC(=O)c3ccccc3)[C@H](Oc2c1)c1ccccc1 120,000 3.921

207 CSc1nc(C)nc(N)n1 350,000 3.456

Figure 6. Representative examples from the selected dataset (the five most active and five least
active molecules).
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4.2. Calculation of Molecular Descriptors and Objective Feature Selection (OFS)

A crucial step before the calculation of molecular descriptors is to convert the SMILES
notations to 3D-optimized structures and partial charge assignment, which was accom-
plished using OpenBabel 3.1 [38] using MMFF94 force field. In the present work, the X-ray-
resolved structure of molecule 1007 (pdb 6YE8) was used to identify the parameter tuning
in OpenBabel, required to get a better optimized structure, until there was a high similarity
between the MMFF94-optimized structure and X-ray-resolved structure. This enhances
the chances of getting a bioactive conformer, which in turn is highly beneficial for fur-
ther optimization of Hsp90 inhibitors in the drug discovery pipeline. A comparison of
the X-ray-resolved structures of molecules 1007 and 33 (pdb 2VCJ) and their respective
MMFF94-optimized structures are represented in Figure 7.

Figure 7. A comparison of X-ray-resolved and MMFF94-optimized structures of molecules 1007 and 33.

From Figure 7, it is clear that there is a high similarity between the X-ray-resolved and
MMFF94-optimized structure of molecules 1007 and 33, which indicates that appropriate
parameter tuning was achieved to optimize the rest of the molecules. That is, the same
parameter tuning in OpenBabel was used to optimize the other molecules of the selected
dataset. The parameters are as follows: geometry optimization, steepest descent, number
of steps: 1500; cut off: 0.01.

In the next step, the 3D-optimized structures of all molecules in the dataset were used
to calculate a good number of molecular descriptors. It is important to note that calculation
of diverse molecular descriptors enhances the chances of a successful QSAR analysis and
significantly helps in mechanistic interpretation. However, descriptor pruning is very useful
as it further strengthens the diminished risk of overfitting from noisy redundant descriptors.
To fulfil these objectives, more than 40,000 molecular descriptors were generated using
PyDescriptor [39]. After that, OFS involved elimination of the near constant (90% molecules)
and highly intercorrelated (|R| > 0.90) molecular descriptors. For this, QSARINS-2.2.4
was used. The final set of molecular descriptors comprises 1228 molecular descriptors,
which still comprise manifold descriptors (1D- to 3D-), leading to coverage of a broad
descriptor space.

4.3. Splitting the Dataset into Training and External Sets and SFS (Subjective Feature Selection)

Subjective feature selection involves selection of appropriate number and set of molec-
ular descriptors to build a model using suitable algorithm. Prior to SFS, it is essential to
divide the dataset into training and test (also known as external or prediction set) sets with
a proper composition and proportions to circumvent information leakage and to verify the
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predictive ability of a model [11–13,16,18,25,26,29,30,37]. Hence, the dataset was randomly
split into training (80% = 915 molecules) and prediction or external (20% = 226 molecules)
sets. It is to be noted that the training set was used for the selection of optimum number
of molecular descriptors, and the sole purpose of prediction/external set was to validate
the external predictive ability of the model (Predictive QSAR). A GA-MLR-based QSAR
model is free from over-fitting if it comprises an optimum number of molecular descriptors.
Therefore, in the present work, a simple yet effective method of identifying the breaking
point was used. Generally, the continuous inclusion of molecular descriptors in the GA-
MLR model significantly increases the value of Q2

LOO, but after the breaking point, the
value of Q2

LOO does not increase significantly [24]. The number of molecular descriptors
corresponding to the breaking point was considered optimum for model building. A graph
(see Figure 8) was plotted between the number of molecular descriptors involved in the
model and Q2

LOO values, which indicated that the breaking point agreed with the six
molecular descriptors. Consequently, QSAR models comprising more than six descrip-
tors were not considered. For SFS, the set of molecular descriptors was selected using
the genetic algorithm integrated with multilinear regression (GA-MLR) method available
in QSARINS-2.2.4 (generations per size: 10,000; population size: 50; mutation rate: 60;
significance level: 0.05; fitness parameter: Q2

LOO).

Figure 8. Plot of number of descriptors against leave-one-out coefficient of determination Q2
LOO to

identify the optimum number of descriptors.

4.4. Building Regression Model and Its Validation

The GA-MLR approach resulted in the generation of a good number of models
having good to excellent statistical performance. Therefore, the following stringent pa-
rameters and criteria suggested by different researchers were used to select the best
model [11–13,16,18,25,26,29,30,37,40]: R2

tr ≥ 0.6, Q2
loo ≥ 0.5, Q2

LMO ≥ 0.6, R2 > Q2,
R2

ex ≥ 0.6, RMSEtr < RMSEcv, ∆K≥ 0.05, CCC≥ 0.80, Q2-Fn≥ 0.60, r2
m≥ 0.5, (1-r2/ro

2) < 0.1,
0.9 ≤ k ≤ 1.1 or (1-r2/r’o2) < 0.1, 0.9 ≤ k’ ≤ 1.1,| ro

2− r’o2| < 0.3, RMSEex, MAEex,
R2

ex, Q2
F1, Q2

F2, and Q2
F3, and low R2

Yscr, RMSE, and MAE. The details of these sta-
tistical parameters are available in the Supplementary Materials. An important aspect
of validation of a QSAR model is to identify the applicability domain. In the present
work, the William’s plot was plotted to assess the applicability domain of the QSAR
model [11–13,16,18,25,26,29,30,37,41,42].
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5. Conclusions

In the present work, a relatively large and structurally diverse dataset of 1141 Hsp90 in-
hibitors was used for developing a six-descriptor-based and extensively validated GA–MLR
QSAR model with R2

tr = 0.78, Q2
LMO = 0.77, R2

ex = 0.78, and CCCex = 0.88. The inclusion of
easily understandable descriptors resulted in identification of important pharmacophoric
features that are correlated with Hsp90 inhibitory activity. The present QSAR analysis
effectively captured a mixture of reported as well as novel significant structural features.
The analysis vindicates that ring and aromatic carbons are important in deciding the ac-
tivity. In addition, different types of nitrogen atoms in correlation with different types of
carbon atoms influence the Hsp90 inhibitory activity. A good balance of external predictive
ability and mechanistic interpretations, which are further supported by the reported crystal
structures of Hsp90 inhibitors, make the QSAR model useful for the future optimization of
molecules in the pipeline as a better Hsp90 inhibitor.
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.3390/ph15030303/s1.
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