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Abstract

Gap junctions (GJs), which consist of proteins called connexins, are intercellular channels

that allow the passage of ions, second messengers, and small molecules. GJs and connex-

ins are considered as emerging therapeutic targets for various diseases. Previously, we

screened numerous compounds using our recently developed iodide yellow fluorescent pro-

tein gap junctional intercellular communication (I-YFP GJIC) assay and found that flunari-

zine (FNZ), used for migraine prophylaxis and as an add-on therapy for epilepsy, inhibits

GJIC in LN215 human glioma cells. In this study, we confirmed that FNZ inhibits GJIC using

the I-YFP GJIC assay. We demonstrated that FNZ inhibits GJ activities via a mechanism

that is independent of calcium channels and dopaminergic D2, histaminergic H1, or 5-HT

receptors. In addition, we showed that FNZ significantly increases connexin 43 (Cx43) phos-

phorylation on the cell surface, but does not alter the total amount of Cx43. The beneficial

effects of FNZ on migraines and epilepsy might be related to GJ inhibition.

Introduction

Gap junctions (GJs) mediate cell-to-cell communication, known as gap junctional intercellular

communication (GJIC), which enables the exchange of small molecules (< 1 kDa), including

ions, metabolites, and nutrients, between the cytoplasm of adjacent cells. Six connexins consti-

tute a connexon, which is joined to that of an adjacent cell to form a GJ [1]. GJs or connexins

play crucial roles in the development, growth control, and homeostasis of tissues and organs,

as well as the pathophysiology of various diseases including cardiovascular diseases, such as

hypertrophic cardiomyopathy, heart failure, and myocardial infarction [2];[3]; particular sub-

types of epilepsy [4]; migraine with aura [5]; non-neoplastic liver diseases [6]; wound healing

[7]; glaucoma [8]; non-syndromic deafness [9]; X-linked Charcot-Marie Tooth disease [10];

and oculodentodigital dysplasia (ODDD) [11];[12]. In addition, GJs and connexins have been

used for toxicological assessment of carcinogens, such as polycyclic aromatic hydrocarbons,

that block GJs [13];[14]. Several reports have suggested that disrupted GJIC is associated with

nongenotoxic carcinogenesis [15];[16]. Therefore, there is a growing interest in developing

new pharmaceuticals that can modulate GJs.
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Recently, we developed a cell-based high-throughput screening (HTS)-compatible iodide

yellow fluorescent protein gap junctional intercellular communication (I-YFP GJIC) assay.

This I-YFP GJIC assay utilizes acceptor and donor cells that express YFPQL, an iodide-sensitive

yellow fluorescent protein variant, and SLC26A4, an iodide transporter, respectively. When

iodides are added to a co-culture of acceptor and donor cells, they solely enter the donor cells

via SLC26A4 and migrate to the adjoining acceptor cells via the GJs. The iodides that enter the

acceptor cells quench the YFP fluorescence of the acceptor cells. Thus, the YFP fluorescence

quenching rates reflect GJ activities [17][18]. We screened numerous compounds, including

Food and Drug Administration approved drugs, using the I-YFP GJIC assay and identified flu-

narizine (FNZ) as a GJIC inhibitor.

FNZ is a versatile drug used for various pathological conditions because of its various phar-

macological activities; it not only blocks calcium entry [19], but also inhibits the function of

dopamine D2 [20], histamine H1 [21], and 5-HT receptors [22]. FNZ is useful in preventing

migraine attacks and is also used as an add-on treatment in drug-resistant epilepsy patients,

occlusive peripheral vascular disease, and central and peripheral vertigo [19]. A recent cohort

study of migraine patients in the UK demonstrated that FNZ is generally effective for chronic

migraine, thus encouraging the use of FNZ for migraines [23]. In this report, we demonstrate

FNZ-induced GJIC inhibition in LN215 human glioma cells, as well as additional data suggest-

ing its mechanism of action.

Materials and methods

Chemicals

FNZ and 5-HT were purchased from Sigma-Aldrich (St. Louis, MO, USA). Histamine and

dopamine were provided by Tokyo Chemical Industry (Tokyo, Japan). The calcium channel

blockers, D2 antagonists, H1 blockers, and 5-HT antagonists used in this study were obtained

from Spectrum collections (MicroSource Discovery Systems, New Milford, CT, USA).

Cell culture

Human glioma cells LN215 (a kind gift from Dr. Erwin G. Van Meir), LN215-YFP, and

LN215-SLC26A4 [17] were grown in Dulbecco’s Modified Eagle’s medium (DMEM, Sigma-

Aldrich) supplemented with 100 IU/mL penicillin, 100 μg/mL streptomycin, and 10% fetal

bovine serum (FBS). FRT-Cx43 [24] cells were cultured in a 1:1 mixture of DMEM and Ham’s

F-12 medium supplemented with 100 IU/mL penicillin, 100 μg/mL streptomycin, and 10%

FBS. Cells were maintained in a 5% CO2/95% air and humidified environment at 37˚C.

Gap-fluorescence recovery after photobleaching (FRAP) assay

FRT-Cx43 cells [24] were plated on a 35-mm glass-bottomed dish coated with 2% gelatin

(Sigma-Aldrich) and grown to 80% confluence. Cells were treated with vehicle or drugs diluted

in C-solution (10 mM HEPES [pH 7.4], 140 mM NaCl, 10 mM glucose, 5 mM KCl, 1 mM

MgCl2, and 1 mM CaCl2), as indicated. Next, 10 μM calcein-AM (Sigma-Aldrich) was added

to the cells followed by a further 10 min incubation. The cells were washed twice with C-solu-

tion and incubated with the same C-solution containing vehicle or drug as in the previous

treatment. Cells surrounded by more than five adjoining cells were selected using an LSM 710

confocal microscope (Zeiss, Jena, Germany) and then photo-bleached for 50 s with a maximal

laser. Fluorescence images were taken 50 s prior to (-50 s) and immediately after (0 s) bleach-

ing and then at 10 s intervals for 170 s. The percentage of fluorescence recovery was calculated

as follows: % fluorescence recovery = (Ft—F0) / (F-50—F0) × 100, where Ft represents the
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fluorescence at any time point, F-50, the fluorescence recorded 50 s prior to photobleaching,

and F0, the fluorescence immediately after photobleaching.

I-YFP GJIC assay

The I-YFP GJIC assay was performed as previously described [17], with minor modifications.

Briefly, a 1:4 mixture of LN215-YFP and LN215-SLC26A4 cells was plated on a 96-well plate at

a density of 20,000 cells/well and incubated for 24 h. Culture media were aspirated and cells

were washed twice with 200 μL of C-solution. Next, the cells were treated with vehicle or

chemicals diluted in 100 μL C-solution and further incubated for the indicated period. The

96-well plate containing the cells was placed into a POLARstar microplate reader (BMG Lab-

tech, Ortenberg, Germany). An equal volume of I-solution (10 mM HEPES [pH 7.4], 140 mM

NaI, 10 mM glucose, 5 mM KCl, 1 mM MgCl2, and 1 mM CaCl2) was injected into each well

at 1 s after each measurement was started at a rate of 135 μL/s using the machine-equipped

automated injector. Fluorescence was measured for 20 s at 0.4 s intervals in kinetic mode

using a 485 nm excitation/520 nm emission filter. The percentage (%) of YFP quenching and

GJIC activity were calculated as follows:

YFP quenching %ð Þ ¼ 1 �
YFP Fluorescence

YFP Fluorescence at 2 s

� �

� 100 ð1Þ

GJIC activity %ð Þ ¼
%YFP quenching at 20 s

%YFP quenching at 20 s of the control group
� 100 ð2Þ

Analysis of Cx43 on the cell surface

In situ biotinylation was conducted to analyze Cx43 located on the plasma membrane by

immunoblotting. One day prior to biotinylation, LN215 cells were seeded on 100-mm plates

to reach 100% confluence in 24 h and then treated with chemicals as indicated. Next, cells

were placed on ice and washed three times with cold phosphate buffered saline (PBS) contain-

ing 100 mg/L CaCl2 and 100 mg/L MgCl2 (PBS-C/M). Cell surface proteins were biotinylated

by adding 4 mL of 0.5 mg/mL Sulfo-NHS-Biotin (Thermo Fisher Scientific, Rockford, IL,

USA) in PBS-C/M, followed by incubation with gentle rocking for 30 min. Following a wash

with ice-cold PBS-C/M, 4 mL of 100 mM glycine in PBS-C/M were added to the cells for 20

min with gentle rocking to quench the remaining Sulfo-NHS-Biotin and the cells were then

washed three times. The cells were lysed with cold PBS-Triton lysis buffer containing 0.6×
PBS, 1% Triton X-100, 1× cOmplete Protease Inhibitor Cocktail (Roche, Basel, Switzerland)

with ethylenediaminetetraacetic acid (EDTA), and 1× Halt Phosphatase Inhibitor Cocktail

(Thermo Fisher Scientific). The lysates were clarified by centrifugation at 15,000 × g at 4˚C for

10 min. Protein concentration was measured using a bicinchoninic acid (BCA) assay. To col-

lect biotinylated proteins, 1 mg of protein was incubated with 20 μL of NeutrAvidin agarose

resin (Thermo Fisher Scientific) at 4˚C with gentle rotating overnight. The agarose resin was

pelleted by centrifugation at 15,000 × g for 30 s and then washed five times with lysis buffer.

Biotinylated proteins for sodium dodecyl sulphate polyacrylamide gel electrophoresis

(SDS-PAGE) were eluted by incubating the pelleted resin in 50 μL of 2× Laemmli sample

buffer at 37˚C for 10 min.

The biotinylated protein samples extracted from 1 mg of protein lysate were separated by

8% SDS-PAGE and transferred onto nitrocellulose membranes (Whatman, Dassel, Germany)

for immunoblotting. The membranes were blocked with 5% bovine serum albumin (BSA) in

PBS containing 0.05% Tween 20 (PBST) for Na+-K+ ATPase, or with 5% skim milk in PBST

for Cx43 and actin. Primary antibodies (anti-Na+-K+ ATPase Ab [ab7671; Abcam, Cambridge,
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UK], anti-Cx43 Ab [C13720; BD BioSciences, San Diego, CA, USA], and anti-actin Ab [sc-

1651; Santa Cruz Biotechnology, Santa Cruz, CA, USA]) were used at a 1:1,000 dilution in the

corresponding blocking solutions. The secondary anti-Mouse Ab or anti-Goat Ab conjugated

with HRP (PI2000; Vector Laboratories, Burlingame, CA, USA) was used at a 1:5,000 dilution

in PBST + 5% BSA or skim milk. Immunoblot images generated with enhanced chemilumi-

nescence (ECL) solution (Thermo Fisher Scientific) were captured using a Fusion Solo 4M

(Vilber Lourmat, Eberhardzell, Germany). The band intensities were analyzed using ImageJ

software. The degree of phosphorylation was calculated based on the ratio of the intensity of

the phosphorylated bands (P1 and P2) relative to that of the non-phosphorylated bands (P0).

The total amount of Cx43 on the membrane was calculated based on the intensities of the total

Cx43 bands (P0 + P1 + P2) divided by those of the Na+-K+ ATPase bands. Minimal cytosolic

protein contamination in the cell surface samples was confirmed by the absence of actin.

Assessing the change in [Ca2+]in following FNZ treatment

LN215 cells were cultured in 96-well plates to reach 90% confluence. The Fluo4 NW Calcium

Assay Kit (F36206, Thermo Fisher Scientific) was used to monitor [Ca2+]in according to the

manufacturer’s instructions. Growth media were removed and cells were incubated with

100 μL of the dye loading solution for 45 min at 37˚C. Next, the cells were treated with vehicle

or 50 μM FNZ and Fluo4 fluorescence was measured prior to and every 30 min after treatment

with vehicle or FNZ for 240 min using a POLARstar microplate reader (BMG Labtech). As the

Fluo4 dye loaded in the cells is released into culture medium at a millimolar Ca2+ concentra-

tion, Fluo4 fluorescence distinctly increases following 4 h of incubation. Thus, the Fluo4 fluo-

rescence of FNZ-treated cells was normalized to that of vehicle-treated cells for each time

point. To assess the rapid effect of FNZ on [Ca2+]in, the 96-well plate with cells was placed into

a POLARstar microplate reader (BMG Labtech) after dye loading, as described above. Vehicle,

50 μM FNZ, or vehicle together with 100 μM ATP were added to each well using the automatic

injector of the microplate reader and the Fluo4 fluorescence of each well was measured every

0.5 s for 100 s. The Fluo4 fluorescence of each group measured after the injection was normal-

ized to that of the corresponding group at the time of injection initiation (0 s) and plotted as

graphs.

Statistical analysis

Replicate experiments were conducted at least three times and data are expressed as mean ±
standard deviation (SD).

Statistical significance was assessed by Student’s t-test using SSPS software.

Results

GJIC inhibition by FNZ

To assess the effect of FNZ on GJIC activity, we conducted an I-YFP GJIC assay in LN215

cells. GJIC inhibition was observed in cells treated with 50 μM FNZ for 4 h or 30 μM carbenox-

olone (CBX), a well-known GJ blocker (used as the positive control), for 10 min, but not in the

vehicle-treated control group (Fig 1A). The percentage of YFP fluorescence in vehicle-treated

cells was quenched by 27.4% (63.4 ± 7.7% of the initial value), whereas that in FNZ- or CBX-

treated cells was only quenched by ~3% (97.0 ± 0.6 or 96.8 ± 3.9% of the initial value, respec-

tively) after 20 s (Fig 1A). Original representative images of cells in Fig 1A at different time

points with different treatments are presented in Fig 1B. Since compounds that inhibit
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SLC26A can exhibit artifactual GJIC inhibition, we examined whether FNZ inhibits SLC26A4.

The iodide uptake via SLC26A4 was not inhibited by FNZ (S1 Fig).

GJIC inhibition by FNZ was also observed using the gap-FRAP assay, a commonly used

GJIC assay, in FRT-Cx43 cells. The percentage of fluorescence recovery after bleaching

decreased in cells treated with 30 μM FNZ (31.7 ± 4.3%) or 100 μM FNZ (13.4 ± 4.3%) for 4 h

compared with cells treated with the vehicle (58.8 ± 0.9%) for 4 h (Fig 2A). Representative

images of the gap-FRAP assay are presented in Fig 2B.

Time course and dose-response relationship of FNZ-induced GJIC

inhibition

To elucidate the underlying mechanism of GJIC inhibition by FNZ, we first attempted to

determine the appropriate treatment conditions in terms of duration and concentration. As

shown in Fig 3A, FNZ treatment reduced GJIC activities in a time-dependent manner

(66.3 ± 5.1% at 30 min, 55.7 ± 3.7% at 1 h, 26.9 ± 1.1% at 2 h, and 6.7 ± 0.8% at 4 h) compared

with the group treated with vehicle for 30 min. Next, I-YFP GJIC assays were conducted fol-

lowing treatment with various concentrations of FNZ for the same time (4 h). As shown in

Fig 3B, FNZ inhibited GJIC in a dose-dependent manner (5 μM, 106.0 ± 7.2%; 10 μM,

100.5 ± 6.9%; 20 μM, 63.3 ± 2.2%; and 50 μM, 8.4 ± 1.7%). Collectively, we concluded that

treating LN215 cells with 50 μM FNZ for 4 h constitutes a potent condition for GJIC inhibi-

tion; thus, most subsequent experiments were conducted under this condition.

Slow reversal of FNZ-induced GJIC inhibition

To examine how rapidly FNZ-mediated GJIC inhibition is reversed following FNZ removal,

I-YFP GJIC assays were conducted in LN215 cells treated with vehicle or 50 μM FNZ for 4 h,

or 30 μM CBX for 10 min, and then washed. GJIC activities were measured prior to washing

or 30, 60, 120, or 240 min after washing. As shown in Fig 4, GJIC activities were slowly

restored in the FNZ-treated group (10.1 ± 12.4% for no wash, 40.2 ± 6.8% at 30 min, 75.4 ±
1.3% at 60 min, 92.7 ± 1.4% at 120 min, and 99.9 ± 1.2% at 240 min after washing) compared

with the CBX-treated group (21.7 ± 9.5% for no wash, 98.3 ± 1.2% at 30 min, 102.4 ± 0.9% at

60 min, 106.5 ± 1.5% at 120 min, and 103.1 ± 1.5% at 240 min after washing).

Effect of FNZ treatment on cell surface expression of Cx43

Cx43 is the major connexin in LN215 human glioma cells [25]. As only connexins located on

the cell surface, not in the cytosol, form GJs, Cx43 expression on the plasma membrane, which

is more relevant to GJ activity, was analyzed by cell surface biotinylation followed by immuno-

blotting using an anti-Cx43 antibody. Whole cell lysates were also analyzed by immunoblot-

ting. An anti-Na+-K+ ATPase antibody was used as the loading control and an anti-actin

antibody was used to check for cytoplasmic protein contamination in the biotinylated samples.

Representative immunoblot images are presented in Fig 5A (uncropped images are presented

in S2 Fig). An increase in the intensity of a slow-migrating band, which has been reported as

phosphorylated Cx43, was observed in phorbol-12-myristate-13-acetate and epidermal growth

factor (PMA+EGF) treated cells (positive control; Fig 5B). Treatment with 50 μM FNZ for 4 h

Fig 1. FNZ-induced inhibition of GJIC shown using the I-YFP GJIC assay. (A) I-YFP GJIC assay in LN215 cells. A 1:4 mixture of

LN215-YFPQL and LN215-SLC26A4 cells was plated on 96-well plates and cultured for 24 h. The cells were treated with vehicle, 50 μM

FNZ for 4 h, or 30 μM CBX for 10 min prior to the I-YFP GJIC assay. The percentage of YFP fluorescence was plotted against time. The

FNZ and CBX traces overlap. Data are presented as the mean ± SD (n = 4). (B) Original representative images of Fig 1A. The images were

taken before, right after, and every 5 s for 20 s after iodide injection.

https://doi.org/10.1371/journal.pone.0222326.g001
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Fig 2. FNZ-induced inhibition of GJIC shown using the gap-FRAP assay. (A) Gap-FRAP assay in FRT-Cx43 cells. FRT-Cx43 cells were loaded with calcein-AM

and treated with vehicle (n = 4), 30 μM FNZ (n = 9), or 100 μM FNZ (n = 9) for 4 h followed by the gap-FRAP assay. The percentage of fluorescence recovery after

photobleaching was plotted against time. Data are presented as the mean ± SD. (B) Representative images of the gap-FRAP assay. The images were taken prior to,

immediately after, and 170 s after bleaching.

https://doi.org/10.1371/journal.pone.0222326.g002
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Fig 3. Time course and dose-response relationship of FNZ-induced GJIC inhibition. (A) Time course of GJIC inhibition by FNZ. A 1:4 mixture of LN215-YFPQL

and LN215-SLC26A4 cells was treated with vehicle or 50 μM FNZ for 30 min, 1 h, 2 h, or 4 h prior to the I-YFP GJIC assay. The percentage of GJIC activity (calculated

according to Eq 1 and Eq 2 of the FNZ-treated groups was normalized to that of the group treated with vehicle for 30 min. Data are presented as the mean ± SD (n = 6).
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PLOS ONE | https://doi.org/10.1371/journal.pone.0222326 September 12, 2019 8 / 20

https://doi.org/10.1371/journal.pone.0222326


also significantly increased the intensity of slow-migrating bands in the biotinylated samples

(156.6 ± 9.2%; Fig 5B), indicating that FNZ increases Cx43 phosphorylation on the cell surface.

No significant changes in total Cx43 levels were observed on the cell surface following FNZ

treatment (79.5 ± 18.7%; Fig 5C).

Protein kinase C (PKC) is not involved in GJIC inhibition by FNZ

To investigate whether PKC is involved in GJIC inhibition by FNZ, I-YFP GJIC assays were

conducted with the pan-PKC inhibitor, chelerythrine. A 1:4 mixture of LN215-YFPQL and

LN215-SLC26A4 cells were treated with vehicle, 50 μM FNZ, or 50 μM FNZ together with

5 μM chelerythrine for 4 h. Chelerythrine did not antagonize FNZ-induced GJIC inhibition

(50 μM FNZ, 26.6 ± 1.7%; 50 μM FNZ plus 5 μM chelerythrine, 27.9 ± 1.2%; Fig 6).

(B) Dose-response relationship of GJIC inhibition by FNZ. The I-YFP GJIC assays were conducted after 4-h treatment with vehicle; 5, 10, 20, or 50 μM FNZ; or after

10-min treatment with 30 μM CBX. The percentage of GJIC activity was normalized to that of the vehicle-treated group. Data are presented as the mean ± SD (n = 4). �

denotes p< 0.05 versus the vehicle-treated group.

https://doi.org/10.1371/journal.pone.0222326.g003

Fig 4. Reversibility of FNZ-induced GJIC inhibition. A 1:4 mixture of LN215-YFPQL and LN215-SLC26A4 cells was treated with vehicle or 50 μM FNZ for 4 h or

30 μM CBX for 10 min. Next, the cells were rinsed twice with C-solution and further incubated in the growth medium without any chemicals for 30, 60, 120, or 240

min prior to the I-YFP GJIC assay. The percentage of GJIC activity of the FNZ or CBX- treated groups was normalized to that of the vehicle-treated groups. The

bars in the graph represent the mean ± SD (n = 8). � denotes p< 0.05 versus the vehicle-treated group.

https://doi.org/10.1371/journal.pone.0222326.g004
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Effects of drugs with pharmacological properties similar to FNZ on GJIC

FNZ is a class IV calcium antagonist [19] with other moderate actions including dopamine D2

[20], histamine H1 [21], and 5-HT [22] receptor blocking activities. To investigate whether

these pharmacological actions of FNZ are related to GJIC inhibition, several drugs, including

calcium channel blockers, D2 antagonists, H1 blockers, and 5-HT antagonists, were used to

treat LN215 cells at a concentration of 50 μM for 4 h prior to conducting I-YFP GJIC assays.

Three calcium channel blockers, amlodipine (87.4 ± 1.7%), verapamil (106.8 ± 1.5%), and

diltiazem (104.9 ± 2.0%), did not block GJIC (Fig 7A) under the same treatment conditions as

FNZ (14.2 ± 2.4%). None of the D2 antagonists (sulpiride, 101.3 ± 0.9%; domperidone,

101.6 ± 1.3%; and eticlopride hydrochloride, 104.2 ± 0.2%) significantly inhibited GJIC (Fig

7B). Similarly, no potent FNZ-like inhibition of GJIC was observed in cells treated with the ten

H1 blockers or ten 5-HT antagonists (Fig 7C and 7D).

Cinnarizine is a drug with a pharmacodynamic profile similar to FNZ [19], lacking only

two fluorine atoms present on the piperazine of FNZ (Fig 8A). In contrast to FNZ (4.2 ±
1.5%), cinnarizine (98.0 ± 2.5%) did not inhibit GJIC under the same treatment conditions as

FNZ (Fig 8B). FNZ has also been shown to bind and inhibit calmodulin. To examine whether

Fig 5. Upregulation of Cx43 phosphorylation without alteration in the total amount of Cx43 on the plasma

membrane following FNZ treatment. LN215 cells were treated with vehicle or 50 μM FNZ for 4 h or 100 ng/mL PMA

combined with 50 ng/mL EGF for 30 min, followed by in situ biotinylation. Whole cell lysates were collected after surface

biotinylation. NeutrAvidin agarose resins were incubated with 1 mg of protein to collect the cell surface proteins. The cell

surface proteins and whole cell lysates were analyzed by immunoblots with anti-Cx43, anti-Na+-K+ ATPase, and anti-

actin antibodies. (A) Representative immunoblot images. The Cx43 and Na+-K+-ATPase immunoblots were obtained

from the lower and upper parts of the same membrane, respectively. The actin immunoblot image used the same samples,

but a separate membrane. The results of the cell surface protein (left) and whole cell lysate (right) immunoblots are

presented. Relative phosphorylation (B) and relative total amount (C) of Cx43 were calculated as described in the

Methods section and presented as bar graphs. The error bars represent SD (n = 3). �, p< 0.05.

https://doi.org/10.1371/journal.pone.0222326.g005

Fig 6. Effect of chelerythrine on FNZ-induced GJIC inhibition. A 1:4 mixture of LN215-YFPQL and

LN215-SLC26A4 cells was treated with vehicle, 50 μM FNZ, or 50 μM FNZ together with 5 μM chelerythrine for 4 h

prior to the I-YFP GJIC assay. The % of GJIC activity at 20 s of each group was normalized to that of the vehicle-

treated group at 20 s. Data are presented as the mean ± SD (n = 4). � denotes p< 0.05 versus the vehicle-treated group.

https://doi.org/10.1371/journal.pone.0222326.g006
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Fig 7. Effect of drugs exhibiting pharmacological actions similar to FNZ on GJIC. The I-YFP GJIC assay was conducted using a 1:4

mixture of LN215-YFPQL and LN215-SLC26A4 cells treated with vehicle, 50 μM FNZ, 50 μM calcium channel blockers (A), D2

antagonists (B), H1 blockers (C), or 5-HT antagonists (D) for 4 h. The drugs used to treat the cells are detailed in the key. The percentage

of GJIC activity was normalized to that of the vehicle-treated groups (n = 3). � denotes p< 0.05 versus the vehicle-treated group.

https://doi.org/10.1371/journal.pone.0222326.g007

Fig 8. Effect of cinnarizine and bifonazole on GJIC. (A) Structural difference between cinnarizine and FNZ. (B) I-YFP GJIC assays were conducted using a 1:4

mixture of LN215-YFPQL and LN215-SLC26A4 cells treated with 50 μM FNZ, 50 μM cinnarizine, or 50 μM bifonazole for 4 h. The % of GJIC activity at 20 s of each

group was normalized to that of vehicle-treated group at 20 s. Data are presented as the mean ± SD (n = 4). � denotes p< 0.05 versus the vehicle-treated group.

https://doi.org/10.1371/journal.pone.0222326.g008
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calmodulin inhibition by FNZ mediated GJIC inhibition in LN215 cells, the effect of bifona-

zole, a calmodulin antagonist, on GJIC was measured. Treatment with 50 μM bifonazole for 4

h did not inhibit GJIC (83.7 ± 5.7%; Fig 8B).

FNZ-mediated GJIC inhibition is not attenuated by dopamine, histamine,

or 5-HT

Next, we examined whether dopamine, histamine, or 5-HT are involved in FNZ-induced GJIC

inhibition. I-YFP GJIC assays were conducted in cells incubated with 50 μM FNZ alone, or

together with 100 μM dopamine, 100 μM histamine, or 100 μM 5-HT for 4 h. FNZ treatment

together with dopamine (6.1 ± 0.3%), histamine (5.4 ± 0.2%), or 5-HT (7.1 ± 0.2%) did not

interfere with FNZ-induced GJIC inhibition and showed GJIC activities similar to cells treated

with FNZ alone (4.9 ± 0.5%; Fig 9). These results suggest that GJIC inhibition by FNZ is not

associated with its pharmacological effects on dopaminergic D2, histaminergic H1, or 5-HT

receptors.

Effect of FNZ on [Ca2+]in

Elevation of [Ca2+]in has been shown to inhibit GJ activity [26]. To investigate whether FNZ

increased [Ca2+]in under the experimental conditions used in this study, a Fluo4 Ca2+ assay

was conducted in LN215 cells treated with vehicle or 50 μM FNZ. The Fluo4 fluorescence of

the cells was measured at 30-min intervals for 4 h. The fluorescence ratio of 50 μM FNZ-

Fig 9. Influence of dopamine, histamine, and 5-HT on FNZ-mediated GJIC inhibition. A 1:4 mixture of LN215-YFPQL and

LN215-SLC26A4 cells was treated with vehicle, 50 μM FNZ alone, or 50 μM FNZ combined with 100 μM dopamine, histamine, or

5-HT prior to the I-YFP GJIC assay. The % of GJIC activity was normalized to that of the vehicle-treated. Data are presented as the

mean ± SD (n = 6). � denotes p< 0.05 versus vehicle-treated group.

https://doi.org/10.1371/journal.pone.0222326.g009
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treated cells to vehicle-treated cells at each time point did not significantly change over 4 h

(Fig 10A). Rapid changes in [Ca2+]in were also measured every 0.5 s for 100 s in LN215 cells

treated with vehicle, 50 μM FNZ, or vehicle together with 100 μM ATP (positive control). As

shown in Fig 10B, FNZ treatment did not cause a significant increase in [Ca2+]in, while treat-

ment with vehicle together with 100 μM ATP elicited a strong increase in [Ca2+]in. These

results indicate that FNZ inhibition of GJIC is not mediated by an increase in [Ca2+]in.

Discussion

The present study demonstrated GJIC inhibition by FNZ, as well as experimental results

related to its mechanism of action. In contrast to connexin modulators, such as mefloquine,

flufenamic acid, and perhaps CBX, which directly bind to connexins and exhibit rapid kinetics

[27], the onset of FNZ-induced GJIC inhibition and its reversal by washing were slow. These

slow FNZ kinetics suggest that GJIC inhibition by FNZ is not due to its direct interaction with

GJs, but rather is mediated by indirect mechanisms such as changes in (1) cellular or cell sur-

face expression of connexin, (2) the phosphorylation status of connexin, and (3) cellular Ca2+

ion concentrations, which were evaluated in this study.

As only connexins on the cell surface can form GJs, we analyzed cell surface Cx43 in LN215

cells treated with FNZ. FNZ treatment significantly increased phosphorylated Cx43 without

altering the total amount of Cx43 on the cell surface, as shown in Fig 5. Trafficking, assembly/

disassembly, degradation, and gating of GJ channels are highly associated with phosphoryla-

tion events [28];[29]. The effects of connexin phosphorylation on GJIC vary according to the

type of connexin kinase. Several kinases are involved in Cx43 phosphorylation. Phosphoryla-

tion of Cx43 by protein kinase A [30], AKT [31], and casein kinase 1 [32] results in increased

GJIC, whereas Cx43 phosphorylation by PKC [33];[29] and tyrosine kinase Src [34];[35]

decrease GJIC. FNZ might induce Cx43 phosphorylation by PKC, Src, or other unknown

kinases, thereby downregulating GJIC. PMA, a well-known GJ inhibitor (also known as 12-O-

tetradecanoylphorbol-13-acetate [TPA]), activates PKC, which directly phosphorylates S368

sites on Cx43, resulting in decreased GJIC [36]. Interestingly, the onset of PMA-induced GJIC

inhibition was as slow as FNZ (S3 Fig), which supports the hypothesis that FNZ-induced GJ

inhibition is due to increased phosphorylation of Cx43. However, a pan-PKC inhibitor, cheler-

ythrine, did not antagonize FNZ-induced GJIC inhibition (Fig 6). This result suggests that

kinases other than PKC might be involved in upregulation of Cx43 phosphorylation by FNZ.

An increase in [Ca2+]in inhibits GJs, possibly via the activation of calmodulin [26]. In con-

trast, FNZ decreases [Ca2+]in [19] and has also been shown to bind and inhibit calmodulin

[37], but block GJs. To investigate whether FNZ increases [Ca2+]in under the treatment condi-

tions used in this study, resulting in GJIC inhibition, Fluo4 calcium assays were conducted

during the FNZ treatment period. FNZ itself did not upregulate [Ca2+]in, as shown in Fig 10.

Next, the effect of bifonazole, a calmodulin antagonist, on GJIC was examined to determine

whether calmodulin inhibition by FNZ caused GJIC inhibition in LN215 cells; bifonazole did

not inhibit GJIC (Fig 8B). These results suggest that GJIC inhibition by FNZ is not mediated

by an alteration in cellular Ca2+ concentration or calmodulin inhibition.

FNZ has diverse pharmacological effects; it not only antagonizes the entry of calcium into

cells [19], but also inhibits the functions of several neurotransmitter receptors including dopa-

mine D2 [38], histamine H1 [21], and 5-HT receptors [22]. To examine whether these previ-

ously established actions are related to GJIC inhibition by FNZ, we assessed the effects of

chemicals that have pharmacological effects similar to FNZ on GJIC. None of the three cal-

cium blockers, three D2 antagonists, ten H1 antagonists, or ten 5-HT antagonists potently

inhibited GJIC in LN215 cells. Cinnarizine, which has a structure and pharmacodynamics
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Fig 10. FNZ treatment does not cause a significant change in [Ca2+]in. (A) Observation of [Ca2+]in over 4 h. LN215 cells were plated on 96-well plates and

grown to full confluence before conducting the Fluo4 calcium assay, as described in the Methods section. Fluo4 fluorescence was measured prior to and

following vehicle or 50 μM FNZ treatment at 30 min intervals for 4 h. The fluorescence of the FNZ-treated cells relative to the vehicle-treated cells was

calculated at each time point. The error bars represent the SD (n = 3). (B) Short-term effect of FNZ on [Ca2+]in. LN215 cells pre-loaded with Fluo4 dyes were

treated with vehicle, 50 μM FNZ, or vehicle together with 100 μM ATP via an automated injector. Fluo4 fluorescence were measured every 0.5 s for 100 s after

injection and plotted against time. The vehicle and FNZ traces overlap. Data are presented as mean ± SD (n = 4).

https://doi.org/10.1371/journal.pone.0222326.g010
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profile similar to FNZ, did not inhibit GJIC (Fig 8B). Furthermore, FNZ inhibition of GJIC

was not attenuated by co-treatment with a high concentration of dopamine, histamine, or

5-HT together with FNZ. Collectively, these data suggest that FNZ-mediated GJIC inhibition

is not associated with its previously established pharmacological actions.

FNZ has been used for migraine prophylaxis and epilepsy adjuvant therapy [19]. Interest-

ingly, GJs are also associated with these two diseases. Initiation of cortical spreading depres-

sion (CSD), which triggers migraine auras and pain, is associated with astrocytes [2], in which

Cx43 is predominantly expressed, as in LN215 [39],[40]. CSD depends on neuronal-glial com-

munication mediated by GJs [2];[5], which have been suggested as therapeutic targets for

migraines. Tonabersat, a neuronal-glial GJ inhibitor, was is a candidate for migraine preven-

tion [41]. The beneficial effect of FNZ on migraines might be at least partially due to inhibition

of Cx43, similar to tonabersat; however, this hypothesis needs to be further investigated. Con-

nexin proteins and mRNAs are upregulated in temporal lobe neocortices [42], hippocampi

[43];[44], and cortices [4] of human epileptic tissues. Thus, GJ inhibitors have been suggested

as potential antiepileptic agents [45];[46]. Agents that block GJs, such as carbenoxolone [47],

quinine [48];[49], meclofenamic acid [50];[51], and tonabersat [52], have anticonvulsant

effects [53]. Thus, the anticonvulsant effects of FNZ might be due, at least in part, to GJ

modulation.

Supporting information

S1 Fig. Effect of FNZ on SLC26A4. LN215 cells co-expressing YFPQL and SLC26A4 were

plated on 96-well plates and cultured for 24 h. The cells were then treated with vehicle or

50 μM FNZ for 4 h, or 30 μM PDSinh
-C01, a well-known SLC26A4 blocker, for 10 min prior to

the I-YFP GJIC assay. The percentage of YFP fluorescence was plotted against time. Data are

presented as the mean ± SD (n = 4).

(TIF)

S2 Fig. Uncropped immunoblots images from Fig 5.

(TIF)

S3 Fig. Time course of GJIC inhibition by PMA. I-YFP GJIC assays were conducted using a

1:4 mixture of LN215-YFPQL and LN215-SLC26A4 cells treated with vehicle or 100 ng/mL

PMA for 30 min, 1 h, 2 h, or 4 h. The % of GJIC activity of the PMA-treated group was nor-

malized to that of the group treated with vehicle for 30 min. Data are presented as the

mean ± SD (n = 4).

(TIF)
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