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Abstract: The performance of a self-propelled rotary carbide tool when cutting hardened steel is
evaluated in this study. Although various models for evaluating tool wear in traditional (fixed) tools
have been introduced and deployed, there have been no efforts in the existing literature to predict
the progression of tool wear while employing self-propelled rotary tools. The work-tool geometric
relationship and the empirical function are used to build a flank wear model for self-propelled
rotary cutting tools. Cutting experiments are conducted on AISI 4340 steel, which has a hardness
of 54–56 HRC, at various cutting speeds and feeds. The rate of tool wear is measured at various
intervals of time. The constant in the proposed model is obtained using genetic programming. When
experimental and predicted flank wear are examined, the established model is found to be competent
in estimating the rate of rotary tool flank wear progression.

Keywords: hard turning; self-propelled rotary tools; flank wear; genetic programming

1. Introduction

Demanding materials like hardened steel confront issues during machining owing to
their poor heat conductivity, resulting in focalized high temperatures [1]. This issue has a
substantial impact on tool life because it causes an elevated incidence of tool wear, which
lowers machining quality and yield [2]. The chemical interaction of difficult-to-cut materi-
als with tool materials culminates in tool failure that is sudden and unexpected, as well as a
poor surface finish [3]. Various strategies were used in the previous research to diffuse the
accumulated heat. Coolant (or lubricants) have, for example, been frequently utilized to
disperse and lessen the influence of induced heat, allowing the cutting domain temperature
to be maintained inside a tolerable range [4–7]. The oils and liquids applied in the machin-
ing region function as a lubricant, reducing the degree of engagement amongst the chip
and the tool and forming a thin layer [8]. The benefits of machining with coolant/lubricant
are evident, but the usage of a coolant/lubricant has major consequences for humans
and the environment [9]. Researchers have explored machining materials without using
cutting fluids, often known as dry machining, to avoid deleterious cutting fluids during
machining processes [10]. The most prevalent machining processes for difficult-to-cut
materials have been hard turning and grinding [11]. As reported in [12], grinding has
poor throughput and restricted capabilities in terms of flexibility and machined geometries.
Turning difficult-to-cut machine materials instead of grinding, on the other hand, produces
a high-quality machined surface at a lower cost [13]. The adoption of turning instead of
grinding and without cutting fluids for hardened steel and other hard-to-machine materials
has attracted industrial interest in recent years [14].
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Dry hard turning lowers processing time and specific cutting energy consumption,
as well as the healthcare and ecological problems associated with typical coolant-based
machining processes [15]. Hard turning, on the other hand, has been impeded by significant
tool wear [16,17]. As a result, regulating tool wear and its impact on the consistency of the
workpiece surface has been a substantial technical dilemma.

2. Literature Survey

Hard turning necessitates tool materials featuring adequate wear and temperature
resilience due to the tremendous specific forces and temperatures in the narrow interface
zone across the tool and the machining surface. Furthermore, as established in [18], the
indentation hardness of the tool must be thrice that of the machining surface. Ceramics
and cubic boron nitride (cBN) tools are typically considered for hard turning since tool
wear and plastic deformation of the cutting edge degrade the quality and consistency of the
machining surfaces [19–21]. Many researchers have investigated the chip removal and wear
mechanisms of hard turning employing cBN, polycrystalline cubic boron nitride (PcBN),
and ceramic cutting tools. Sobiyi, et al. [22] explored the deterioration of ceramic and
PcBN cutting tools during machining AISI 440B stainless steel under various machining
settings. The cutting speed seemed to have the greatest impact upon the flank wear rate
in the experiments, and it surged as the cutting speed grew for two cutting tools. With
mixed ceramic tools, flank wear increased as feed increased, but with cBN cutting tools,
the converse was truly attributable to severe tool vibration. The cBN tool also had a
greater metal removal rate because of its rigidity and tendency to sustain its toughness
at greater cutting speeds and feed rates. The primary wear mode for ceramic cutting
tools was abrasive wear, while the primary wear modes for cBN tools were adhesive wear
and abrasive wear. At reduced machining rates, both tools generated long, continuous,
serrated cutting chips, but when the cutting speed rose over 150 m/min, the cutting chips
become serrated and segmented. When turning hardened steel beyond 50 HRC, there was
a propensity for increased tool wear intensity and exacerbated abrasion and diffusion wear
processes, as documented [23]. It has also been reported that raising the hardness of the
workpiece to 50 HRC reduced surface roughness, but raising the hardness of the workpiece
between 50 to 65 HRC enhanced surface roughness [24]. The result of expanding workpiece
hardness was thermal softening, substantial material lateral flows around the feed markings,
and a compressing action on the tool flank face and the workpiece surface [25]. Tang,
et al. [26] found that when the workpiece’s hardness level increased, so did the cutting
forces. Tang, et al. [27] also studied the wear profiles and mechanics of PcBN tools in dry
hard machining of AISI D2 hardened steel at varied hardness grades (40–60 HRC). The
findings revealed that the hardness of the workpiece had a significant impact on flank
wear. The primary wear modes in the flank wear of PcBN tools comprised abrasive wear
in instances of 40–55 HRC, plus abrasive and delamination wear in scenarios of 60 HRC
because of a sudden rise in resistance at tool-workpiece junctions, whereas the crater was
the predominant wear in the rake surface of PcBN tools. One of the most important aspects
of dry machining is the selection of the right cutting tool and its material [28]. The use of
traditional tools and materials raises the cutting temperature in the cutting zone, resulting
in rapid tool wear, which compromises the dimensional precision, surface roughness, and
tool life of the workpiece. Carbides, for example, are not typically utilized for hard turning;
instead, they are employed at low speeds for regular turning operations to maximize tool
life [29]. In the same way, when doing hard machining, a single cutting point tool with
only one main cutting edge has drawbacks. It has the downside of a rapid rate of wear
and a high temperature at the cutting tool’s tip, which causes the tool to break prematurely.
During machining, the tool is constantly in physical contact with the work material, causing
a rapid rise in tool temperature, which accelerates tool wear and causes thermal damage to
the machined surface. Furthermore, high-temperature fluctuations often plastically distort
the tooltip, resulting in poor cutting accuracy. In the case of a single-point cutting tool, the
material removal rate (MRR) is generally quite low. The ability of rotary cutting tools, as
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well as the properties of advanced cutting tool materials such as cBN, PcBN, and ceramic,
to keep a viable cutting edge at high temperatures, has rendered them the most preferred
alternative for machining hardened materials.

Rotary tools provide a cost-effective option to the conundrum of severe heat accumula-
tion as well as maintain good tool performance during machining challenging materials in
dry settings [30]. For example, Kishawy, et al. suggested in [14,31], that rotary tools signifi-
cantly extended tool life, reduced cutting temperature, and enhanced MRR. Ezugwu [32]
corroborated that which was described in [14,31], and maintained that rotary tools provided
even surfaces, especially in the event of difficult-to-cut materials. As a result of its superior
performance for difficult-to-machine materials, rotary tools have attracted a lot of attention
from the machining community.

A rotary cutting tool is a disk-shaped cutting tool that revolves around its axis, as
shown in Figure 1. In industry and research, two types of rotary tools are commonly used:
driven and self-propelled. The insert’s rotating motion is generated by an independent
source for the actively driven rotary tool (ADRT), whereas the chip progression across
the tool rake surface forces the insert to revolve for self-propelled rotary tools (SPRT) [14].
Because the tool rotates, each segment of the cutting tip is involved in cutting over a
minimal length of time, enabling every portion of the cutting surface to cool down after
contact. When contrasted to standard tools, this results in intrinsically excellent cooling
capabilities, allowing for the employment of cost-effective carbide inserts while hard
turning. Exceptional wear tolerance and extended tool life have also been reported in
earlier investigations, thus emphasizing rotary tools for hard machining. Ahmed, et al. [33]
studied and evaluated the SPRT’s functionality in the dry machining of hardened steel alloy.
The results confirmed that the SPRT provided smaller cutting forces, fairly low flank tool
wear and extremely low machining temperature than conventional tools. When machining
with SPRT, flank tool wear was curbed by 22 and 37% in the finest and harshest cutting
circumstances, respectively. Similarly, when the cutting tool temperature was at its highest,
it was discovered that the temperature was lowered by roughly 13%. Furthermore, when
the tool temperature was at its lowest, the tool temperature was reduced by roughly 37%.
As opposed to traditional tools, the use of SPRT can result in a significant decrease in power
usage and a 20 times increase in tool life [34,35]. Dessoly, et al. [30] also noticed that a
rotating tool had a 50 ◦C lower cutting temperature than a fixed tool. A hybrid model was
demonstrated in [2] to precisely replicate and study the machining process using SPRT.
An average cutting temperature drop of 65 ◦C was observed between the customary and
rotating tools. In the case of the rotary tool, the highest temperature was found in the
chip’s core and did not spread to the secondary shear zone. The maximal temperature in
addition to the tool bulk temperature reduced as the tool rotational speed increased, but
the temperature rose afterward above 900 rpm rotational speed. Umer, et al. [36] proposed
a model for evaluating SPRT performance during hardened steel machining. A finite
element (FE) model was conceived to analyze the hard turning of AISI 51200 and estimate
cutting forces with greater precision and accuracy. The tool-chip engagement span for
the rotary tool case was recorded as shorter because of the differences in chip flow angles.
Temperatures were greater in the fixed tool, and the rotating tool’s surface temperature
was assessed to be around 35% lower than that of the fixed tools. Kishawy and Wilcox [37]
investigated the efficacy of rotary tools while hard turning AISI 4340 steel with a hardness of
54–56 HRC. In both fixed and rotating scenarios, the effectiveness of carbide and TiN coated
carbide inserts were examined. When rotary tools were assessed against fixed tools at the
identical cutting settings, there was no indication of crater wear, and they demonstrated
significant tool flank wear endurance. Subsequently, Kishawy, et al. [31] investigated the
efficacy of SPRT and the consistency of workpiece surfaces when processing waspaloy
and titanium alloys. In rotary tools, equally disseminated flank wear was noticed to be
the primary cause of tool collapse, whereas in regular non-rotary tools, crater wear was
discovered to be the leading trend. The cutting edge’s rotating movement was responsible
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for this. Because the cutting edge is continuously replenished by rotation, thermally
stimulated degradation was less of a concern than the insert’s morphological viability.

Figure 1. Characteristic rotary tool machining [14].

A variety of models have been presented to approximate the tool flank wear rate
during machining. Li, et al. [38], for example, devised a theoretical model that encompasses
both abrasive and adhesive wear in order to explore the mechanism of flank wear for
tools constructed of various polycrystalline diamond (PCD) materials. The width of flank
wear was estimated by computing the differential equation established to represent the
rate of flank wear and its interaction with cutting parameters, tool characteristics, and the
workpiece material. Choudhury, et al. [39] developed a tool wear model that quantitatively
described the progression of tool wear in turning operations using parameters such as
the index of diffusion, wear coefficient, and tool/workpiece hardness ratio. A prediction
model was implemented in a work by Xiaoliang, et al. [40] to evaluate the depth of plastic
deformation at various tool flank wear states. Bombiński, et al. [41] also designed a method
for quickly diagnosing gradual tool wear (GTW) and catastrophic tool failure (CTF). This
approach depended on analyzing the waveforms of the cutting force sensor signal in
sequential time periods. Cutting forces increased when the flank wear area increased
according to a study by Sikdar and Chen [42]. They constructed a mathematical model
for a deeper insight into the correlation between flank wear region and cutting forces.
Additionally, the mathematical model in [43] can be exploited to assess tool wear in a
turning operation in real-time. The relation involving flank wear and the ratio of force
components were derived for this purpose using data from several tests. FE models have
also been used to investigate the wear mechanism in the machining of hard-to-cut materials
in addition to analytical or mathematical models [44–48].

In the literature, SPRT has been demonstrated to be a very good alternative to haz-
ardous cooling fluids and other techniques for minimizing extreme heat generation and
preserving optimum tool operation. It does, in fact, offer a number of benefits, including
superior cooling capabilities, less heat generation, increased tool life, improved MRR, lower
cutting forces, higher wear tolerance, reduced power consumption, etc. When compared to
ADRT, SPRT is a more cost-effective and feasible option for cutting difficult-to-machine
materials. Although ADRT can provide more control, it requires an additional power
supply, making it complicated and costly. A multitude of research has been published
in the literature focusing on the wear mechanism for turning operations using typical
single-point cutting tools. Likewise, a lot of analytical and FE models have been established
to comprehend the wear mechanism in single-point cutting tools. However, there is a larger
gap in the literature for understanding the tool wear mechanism of SPRT during hard
machining, particularly when analyzing flank wear. As a result, the focus of this research is
to establish a mathematical model that can be used to analyze the evolution of flank tool
wear during the SPRT machining of hardened steel.
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3. Tool Wear Model Development

The rubbing motion involving the cutting tool and the freshly produced workpiece
surface causes flank wear to occur on the tool’s flank face. The flank wear is a worn land
around the insert’s perimeter whenever the rotary tool is deployed. In this model, it is
assumed that the rotary insert is fixed exactly like a single point tool to analyze the flank
wear. Figure 2 depicts the schematic of the tool tip engaged with the workpiece.

Figure 2. Cross-sectional interpretation of tool illustrating worn region based on the largest
triangle [14].

The largest triangle, which defines the cross-section zone of the flank wear in the
rotary tool, was analyzed to derive the flank wear area described in [14]. However, this
assumption is not accurate, as the worn area in the flank face is irregular. In the modified
model, a new variable called “C” is added to the equation of the flank wear area (A) to
compensate/correct the irregularity effect (see Equation (1)), where

1 
 

Ƴ is the rake angle and α
is the clearance angle. It is assumed that this new correction variable is linearly proportional
to the maximum measured flank wear (VB) and can be computed using Equation (2).

A =
C tan αVB2

2 (1 + tan α tan

1 
 

Ƴ )
(1)

C =
2
3
(VB/n) + 1 (2)

where, n is a factor that is included to estimate the flank wear of the rotary tool. It is defined
using Equation (3).

n = Lc/2πR; n = /2πR; n = θ/2π (3)

where Lc is the contact length between tool and workpiece as shown in Figure 3. When
the depth of cut (d), and radius of the rotary tool (R) are known, Equation (4) could be
used to compute the Lc, which is the curve created by the angle θ. In this modified model,
the second adaptation is done to simplify the contact length formula that was reported
in [14]. In this work, the Lc (Equation (4)) is expressed by excluding the feed rate term
(tan−1( f /2R)) because this term is relatively insignificant compared to the other term
comprising d and R.

Lc = R cos−1
(

R − d
R

)
(4)
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Figure 3. Cutting tool interacts with workpiece (top view) [14].

Figure 3 also depicts two circles representing the circumference of the rotary insert at
two different workpiece rotations. Extruding the degraded region over the Lc can be used
to find the volume of the removed material (V). The rotary tool center traverses a linear
distance equal to the feed after one revolution of the workpiece. The product of A and Lc
can be used to approximate the V on the flank land, as shown in Equation (5).

V = Lc A (5)

The volume lost due to abrasion and adhesion is linearly proportional to the cutting
length L, as shown in Equation (6). The value of L is obtained by the product of cutting
speed vc and the cutting time t.

V = k L (L = vc t) (6)

The third modification in the modified model is related to the empirical coefficient (k)
concerning the interaction between the sliding interface pressure and the tool hardness.
The coefficient k for a certain workpiece-tool pair can be described through the cutting time,
feed rate, and cutting speed, as established by Dawson and Kurfess [49]. Thus, depending
on the above modifications and using Equations (1)–(6), the formula for flank wear (VB)
estimation can be expressed using Equation (7).

2
3

J
(

VB
n

)3
+ J

(
VB
n

)2
− kvct = 0 (7)

where J =
cos−1 ( R−d

R ) R tan α

2 (1+tan α tan

1 
 

Ƴ ) and n =
cos−1 ( R−d

R )
2 π .

Once the constant k has been established through a series of experimental trials, the
flank wear model can be devised and used to estimate rotary tool flank wear at a given
combination of cutting speed, feed rate, and cutting time.

4. Experimental Procedure

The tool wear model demonstrated above is verified by conducting longitudinal
turning operations using SPRT on hardened steel bars (AISI 4340, 55 HRC) with 70 mm
diameter and 200 mm length. The chemical composition of AISI 4340 steel is presented in
Table 1 [50]. A number of variables that are important in the design of SPRT are considered
in this investigation. For example, the SPRT must have a high inclination angle, be freely
rotatable without interruption, and be built of a robust material capable of withstanding
higher forces. The tool holder is designed in this study, while the round insert that is
available on the market is chosen. The experiments are performed on an EMCO Concept
TURN450 CNC lathe machine. Round coated carbide inserts with TiCN and Al2O3 coating
is utilized with an in-house developed SPRT tool holder as shown in Figure 4.
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Table 1. Chemical Composition of AISI 4340 Steel [50].

Element C Mn P S Si Ni Cr Mo

Composition (%) 0.38–0.43 0.60–0.80 0.035 0.040 0.15–0.35 1.65–2.00 0.70–0.90 0.20–0.30

Figure 4. Experimental set up.

The cutting tool geometric parameters are shown in Table 2. In order to find out the
constant k for the tool wear model a total of six tool wear experiments are conducted with
different cutting parameters.

Table 2. Cutting tool geometry parameters.

Rake angle (γ) −5◦

Clearance angle (α) 7◦

Inclination angle (λ) 17◦

Insert diameter (D) 16 mm
Cutting edge radius (r) 0.05 mm

After each cutting, test flank wear on the round insert is measured using the tool
maker’s microscope. Table 3 depicts the cutting conditions and the tool flank wear at
alternative cutting times. The depth of cut is set at 0.1 mm for all runs. The cutting
conditions are chosen based on previous experience and preliminary trials, with the goal of
achieving significant flank wear that can be accurately evaluated.

Table 3. Cutting experiments for coefficient estimation.

Cutting Trials Cutting Speed, vc
(m/min) Feed, f (mm/rev) Time, t (min) Flank Wear, VBexp

(mm)

1 100 0.15 12 0.014
2 100 0.25 3.5 0.096
3 150 0.2 2 0.047
4 225 0.175 5.5 0.108
5 250 0.125 2.5 0.112
6 250 0.25 0.25 0.126

The same cutting inserts are also used with the fixed tool to have some comparative
wear analysis with the SPRT. Figure 5 shows flank faces of the worn cutting inserts for
fixed and rotary tools at a cutting speed of 100 m/min and a feed rate of 0.15 mm/rev
after 3.5 min of cutting time. It can be seen that the coating is chipped-off for the fixed tool,
whereas gradual flank wear can be observed for the rotating tool. It was also observed
that for a standard tool life criterion of 0.3 mm flank wear, the rotating tool almost gives
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12.5 times more cutting length as compared to the fixed tool. As depicted in Figure 5a, high
edge chipping for the fixed tool leads to catastrophic failure most of the time in contrast to
the rotating tool which shows gradual progressing of the flank wear until the end of tool
life. In addition, little or no crater wear has been observed for the rotating tool owing to the
self-cooling nature of the cutting edges as shown in Figure 5b.

Figure 5. Flank faces of the worn cutting inserts (a) Fixed tool; (b) SPRT.

The validity of the established tool wear model depends on the adequate estimation
of the constant (k). The most often used approach for model identification is least squares
regression (LSR). However, for nonlinear multivariable optimization problems, the iterative
LSR is highly reliant on the assumed initial points due to its local sampling nature. The
genetic programming (GP) based identification approach is, therefore, utilized to lessen
the likelihood of becoming caught in the local optima [51,52]. Dawson and Kurfess [49]
expressed k for a specific work-tool combination in terms of the cutting speed and the feed.
In the current modified model, k is expressed in terms of cutting time, feed rate, and cutting
speed using the GP modeling technique in MATLAB. GP is among the highly powerful
artificial intelligence systems, and it is employed in a variety of engineering tasks. Every
program in GP is made out of a tree structure of terminals and functions (i.e., genotype).
The terminals (also known as leaves) are the network’s inputs, and the GP program’s func-
tionalities comprise mathematical operations, programming capabilities, and arithmetic
procedures. Every created model is represented as a chromosome, and each chromosome is
evaluated using the fitness function. The fitness function calculates the difference between
the output of the model and the training data input. The genetic operators, involving
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mutation and crossover parameters are used to make new chromosomes. Many pieces of
research in the existing literature adopted GP to simulate their processes [53–57].

5. Results and Model Verification

The coefficient k for a definite work-tool pair is computed utilizing the data in
Tables 2 and 3. Table 4 illustrates the values of coefficient k that are derived empirically
(kexp) using Equation (4). GP is then applied to build the prediction model premised on the
experimental data.

Table 4. Experimental and prediction values of coefficient k.

Run
Experimental

vc (m/min) f (mm/rev) t
(min)

VBexp
(mm) kexp

1 100 0.15 12 0.014 2.773 × 10−5

2 100 0.25 3.5 0.096 0.0115473
3 150 0.2 2 0.047 0.0020464
4 225 0.175 5.5 0.108 0.0045042
5 250 0.125 2.5 0.112 0.0098543
6 250 0.25 0.25 0.126 0.1363748

The established flank wear model’s prediction scheme (from the GP) is subsequently
exploited to corroborate the testing data by determining the value of “k” at various cutting
speeds, feed rates, and cutting times. The test results are classified into three sets, each
with its cutting speed, feed rate, and cutting time. The tool flank wear is monitored until it
approaches 0.10 mm or 10 min of cutting time. The first set’s findings are acquired during
machining at 150 m/min with a feed rate of 0.135 mm/rev, yielding an average accuracy of
89.35% (see Figure 6a). The mean accuracy for the second set (Figure 6b) is 92.23% while
machining at a cutting speed of 175 m/min and a feed rate of 0.185 mm/rev. Lastly, the
average accuracy of the final set, as seen in Figure 6c, is 92.71% during machining at a
cutting speed of 210 m/min and a feed rate of 0.135 mm/rev. Thus, the model prediction
and experimental observations have a high level of consistency. The established model
is adept at estimating the coated carbide (with TiCN and Al2O3 coating) rotary tool flank
wear while hard turning the AISI 4340 steel.

Figure 6. Flank wear at (a) vc = 150 m/min, f = 0.135 mm/rev; (b) vc = 175 m/min, f = 0.185 mm/rev;
(c) vc = 210 m/min, f = 0.135 mm/rev.
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The model is further confirmed by using a random combination of cutting speed, feed
rate, and cutting time in addition to quantifying flank wear at various times. Again, the
model performs well, with a 92.61% accuracy rate for forecasting flank wear, as shown in
Figure 7.

Figure 7. Prediction of flank wear randomly at various combinations of vc, f, and t.

6. Conclusions

A novel flank wear model for SPRT is established depending on the workpiece-tool
geometric interactions and the empirical function. The new model assumes that the cross-
section domain of the flank wear in the rotary tool is uneven (i.e., more realistic), whereas
previous analyses considered it as regular (for simplicity). This new model also reduces
the number of constants that must be estimated using some sort of optimization technique.
As a result, reducing the number of constants in the new model improves its efficacy and
accuracy. In this work, GP is used to estimate a constant in the model by hybridizing
numerous cutting tests. It was discovered during cutting experiments and tool wear model
building that the feed rate has a comparable consequence as the cutting speed on rotary tool
flank wear evolution in hard turning for the speed range of 100–250 m/min. The suggested
model’s usefulness is demonstrated by the satisfactory correlation among predicted and
measured flank wear. The research is much more relevant for industry, especially when
cutting hardened steel. The SPRT can assist industries in drastically lowering costs in
mass production by minimizing tool wear and reducing environmental impact because no
coolant is required. However, more experimental trials are needed to validate it, which is
one of the goals of future research.
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Abbreviations
A Flank wear area
C Constant
cBN Cubic Boron Nitride
D Insert diameter
d Depth of cut
f Feed
GP Genetic programming
k Empirical constant
Lc Contact length
LSR Least squares regression
MRR Material removal rate
n Factor added to estimate the flank wear of the rotary tool
PcBN Polycrystalline Cubic Boron Nitride
R Radius of the rotary tool/insert
r Cutting edge radius
SPRT Self-propelled rotary tools
t Cutting time
VB Flank wear
vc Cutting speed
α Clearance angle
γ Rake angle
λ Inclination angle
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