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the contribution of genes located in this region to the spe-
cific features of this syndrome remains uncertain. Among 
those, three genes, AKT3, HNRNPU and ZBTB18 are highly 
expressed in the brain and point mutations in these genes have 
been recently identified in children with neurodevelopmental 
phenotypes. In this study, we report the clinical and molecular 
data from 17 patients with 1q43q44 microdeletions, four with 

Abstract  Subtelomeric 1q43q44 microdeletions cause a syn-
drome associating intellectual disability, microcephaly, sei-
zures and anomalies of the corpus callosum. Despite several 
previous studies assessing genotype-phenotype correlations, 
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ZBTB18 mutations and seven with HNRNPU mutations, and 
review additional data from 37 previously published patients 
with 1q43q44 microdeletions. We compare clinical data of 
patients with 1q43q44 microdeletions with those of patients 
with point mutations in HNRNPU and ZBTB18 to assess the 
contribution of each gene as well as the possibility of epista-
sis between genes. Our study demonstrates that AKT3 hap-
loinsufficiency is the main driver for microcephaly, whereas 
HNRNPU alteration mostly drives epilepsy and determines 
the degree of intellectual disability. ZBTB18 deletions or 
mutations are associated with variable corpus callosum 
anomalies with an incomplete penetrance. ZBTB18 may also 
contribute to microcephaly and HNRNPU to thin corpus cal-
losum, but with a lower penetrance. Co-deletion of contigu-
ous genes has additive effects. Our results confirm and refine 
the complex genotype-phenotype correlations existing in 
the 1qter microdeletion syndrome and define more precisely 
the neurodevelopmental phenotypes associated with genetic 
alterations of AKT3, ZBTB18 and HNRNPU in humans.

Introduction

Deletion of the subtelomeric region of the long arm 
of chromosome 1 (1q43q44 or 1qter microdeletion 

syndrome) is associated with a complex neurological 
phenotype, including moderate to severe intellectual 
disability (ID), microcephaly, epilepsy and anomalies 
of the corpus callosum (AnCC). More than 40 patients 
with 1q43q44 microdeletions of variable sizes identified 
by chromosome microarray have been reported. Com-
parison of their clinical phenotypes has established some 
genotype-phenotype correlations and has identified three 
genes, preferentially expressed in the brain and located in 
a genomic region spanning 1.36  Mb (between the hg19 
genomic coordinates 243,663,021 and 245,027,827), 
as the main genes contributing to the 1qter microdele-
tion phenotype: AKT3 is the main candidate for micro-
cephaly, ZBTB18 for AnCC and HNRNPU for epilepsy 
(Ballif et  al. 2012; Nagamani et  al. 2012; Thierry et  al. 
2012). However, these findings are subject to controversy 
depending on the study and further evidence supporting 
these hypotheses is therefore lacking.

Interestingly, point mutations in AKT3, ZBTB18 and 
HNRNPU have recently been identified by whole exome 
sequencing in patients with different neurodevelopmen-
tal phenotypes. AKT3 encodes a serine/threonine protein 
kinase involved in the mammalian target of rapamycin 
(mTOR) signaling pathway. Gain-of-function point muta-
tions or microduplications leading to abnormal AKT3 and 
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mTOR activation, most of which are limited to somatic 
brain populations, cause a spectrum of disorders char-
acterized by cerebral hemisphere overgrowth such as 
hemimegalencephaly (HME), megalencephaly-polymi-
crogyria-polydactyly-hydrocephalus (MPPH) and meg-
alencephaly-capillary malformation (MCAP) (Lee et  al. 
2012; Mirzaa et al. 2013; Poduri et al. 2012; Riviere et al. 
2012). Conversely, Akt3−/− mice show a 20% reduction 
in brain size (Easton et al. 2005). ZBTB18 (also known as 
ZNF238 or RP58) encodes a C2H2-type zinc finger tran-
scription factor negatively controlling the expression of 
genes involved in neuronal development, including cell 
division of progenitor cells and survival of postmitotic cor-
tical neurons (Baubet et al. 2012; Heng et al. 2015; Xiang 
et al. 2012). Zbtb18-deficient mice show features reminis-
cent of the 1q43q44 microdeletion syndrome including 
microcephaly and agenesis of the corpus callosum (AgCC) 
(Xiang et  al. 2012). Eight patients with de novo ZBTB18 
mutations have been reported, including three with a nor-
mal corpus callosum (CC) (Cohen et al. 2016; de Munnik 
et al. 2014; Lopes et al. 2016; Rauch et al. 2012) and four 
with AnCC (Cohen et al. 2016). Finally, HNRNPU encodes 
the heterogeneous nuclear ribonucleoprotein (hnRNP) U, 
an abundant nucleoplasmic phosphoprotein able to bind 
pre-mRNA in vivo, possibly involved in pre-mRNA splic-
ing (Roshon and Ruley 2005; Ye et al. 2015). Eighteen de 
novo and/or truncating mutations in HNRNPU mutations 
have been reported in ClinVar, Decipher and in different 
studies (Carvill et  al. 2013; de Kovel et  al. 2016; Epi4K 
Consortium et al. 2013; Hamdan et al. 2014; Monroe et al. 
2016; Need et  al. 2012; Zhu et  al. 2015); however, since 
these mutations were reported each in separate studies and 

the phenotype of the patients was not described, a specific 
disorder related to HNRNPU mutations is not yet charac-
terized. Although the description of these patients indepen-
dently reinforced the previously proposed genotype–phe-
notype correlations, the dispersion of patients with point 
mutations in different studies and the absence of compari-
son with microdeletions did not permit to clearly address 
the clinical spectra associated with mutations in these 
genes, nor the possible epistatic or additive genetic interac-
tions. The aim of this study was to describe in more details 
novel patients with HNRNPU and ZBTB18 point mutations 
identified by next generation sequencing and to compare 
their core phenotype with those of patients with 1q43q44 
microdeletions to decipher the contribution of each gene 
to the 1qter microdeletion syndrome. To this aim, we col-
lected and compared the data of 17 patients with 1q43-q44 
deletions, four patients with ZBTB18 mutations and seven 
with HNRNPU mutations.

Materials and methods

Human subjects

We independently identified two ZBTB18 point mutations 
in unrelated patients with AnCC and one HNRNPU muta-
tion in a patient with epileptic encephalopathy by, respec-
tively, sequencing 423 genes associated with AnCC (cal-
losome panel) in humans or mice (Mignot et  al. 2016) or 
4813 genes of the Trusight One panel (Illumina).

We then collected clinical and molecular data of 
patients with ZBTB18 and HNRNPU mutations or 
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1q43q44 microdeletions through members of the 
EUROEPINOMICS RES consortium, the French Achro-
puce network (http://www.renapa.univ-montp1.fr/), Gen-
ematcher (Sobreira et  al. 2015) and Decipher (https://
decipher.sanger.ac.uk/) (Firth et  al. 2009). This series 
includes previously reported patients with updated clini-
cal data and previously reported genotypes with unre-
ported clinical data: patients D2, D3, D4, D5 and D8 
were reported as patients #7, #5, #3, #9 and #6, respec-
tively, in (Thierry et al. 2012); patient H2 was reported 
as patient #15 in (Monroe et  al. 2016); patient H3 was 
reported as patient 2012D06376 (de Kovel et  al.); the 
mutation identified in patient H7 was present in Deci-
pher (ID 268181—DDD-NIG268181); deletions pre-
sent in Decipher correspond to patients D9 (ID 2762), 
D13 (ID 332095), D14 (ID 275142), D15 (ID 268383), 

D16 (ID 253339) and D17 (ID 2926112). All other 
patients with deletions and point mutations are novel. 
In addition, we performed a review of the literature on 
1q43q44 microdeletions and included microdeletions 
<6  Mb encompassing AKT3, ZBTB18 and/or HNRNPU 
with available breakpoints, excluding patients with other 
probably pathogenic chromosomic anomaly (numbered 
L1–L37: Ballif et  al. 2012; Du et  al. 2014; Gai et  al. 
2015; Gupta et  al. 2014; Nagamani et  al. 2012; Perl-
man et al. 2013; Thierry et al. 2012). Coordinates of the 
deletions reported in hg18 were converted into hg19/
GRCh37 with LiftOver (https://genome.ucsc.edu/cgi-
bin/hgLiftOver). Clinical data were collected using a 
standardized questionnaire directly from the referring 
clinicians. Microcephaly was considered for patients 
with an occipitofrontal circumference (OFC) of at least 
−2.5 standard deviation (SD) below the mean. A radi-
ologist, a neuropediatrician and a geneticist collegially 
ascertained brain MRI anomalies. AgCC designates the 
absence of one or all parts of the CC, DysCC is used 
for complete CC with an abnormal shape or abnormally 
small CC, ThCC is used for complete CC with insuffi-
cient thickness.

Genotype‑phenotype correlations, bioinformatics 
and statistics analyses

We retrieved the probability of loss-of-function (LoF) intol-
erance (pLI) calculated by the Exome Aggregation Consor-
tium (ExAC) and the haploinsufficiency score (HI) estab-
lished by Huang et  al. (2010) for genes of the 1q43q44 
region comprised between genomic positions 239,990,618 
and 249,208,333 to determine genes intolerant to haplo-
insufficiency, contributing to 1qter deletion phenotypes 
(Table S1). The pLI calculates the probability that a gene 
is intolerant to LoF mutations, calculated from the differ-
ence between the number of LoF mutations observed in 
the 60,000 individuals present in ExAC and the theoretical 
number of expected LoF mutations in this gene in a popula-
tion of same size if there was no selective constraint. Genes 
with a pLI ≥0.9 are considered to be significantly LoF 
intolerant. HI scores evaluate the probability that the gene 
is intolerant to haploinsufficiency, calculated from CNV 
data and integrating genomic, evolutionary and function 
properties of haploinsufficiency (Huang et al. 2010). High 
ranks (e.g. 0–10%) indicate a gene that is likely intolerant 
to haploinsufficient; low ranks (e.g. 90–100%) indicate a 
gene that likely tolerates haploinsufficiency.

Missense variants were assessed in silico for possible 
pathogenicity using Alamut Visual 2.7 (Biointeractive Soft-
ware, France), PolyPhen-2 (http://genetics.bwh.harvard.
edu/pph2) and SIFT (http://sift.bii.a-star.edu.sg).

Fig. 1   Significant genotype–phenotype correlations gained from 
comparison of clinical data of patients with microdeletions. a, b 
Alignment of microdeletions found in patients with (red bars) and 
without (blue bars) microcephaly showed that deletions including 
AKT3 (upper panel) were mostly associated with microcephaly and 
those excluding AKT3 (lower panel) were mostly associated with 
normal OFC (a). The minimal critical region (vertical rectangle with 
dashed borders) overlapped the 5′ region of AKT3. Diagrams in b 
show the percentages of patients with (red) or without (blue) micro-
cephaly who had a microdeletion including (AKT3−) or excluding 
(AKT3+) AKT3 (upper panel), and comparison of the percentage of 
patients with (red) or without (blue) microcephaly who had a micro-
deletion encompassing only one of the three genes of interest, two 
genes or all three genes (lower panel, empty circles designate deleted 
genes, full circles are for non-deleted genes). c, d Alignment of the 
microdeletions found in patients with AnCC (AgCC red bars, DysCC 
pink bars, ThCC green bars) and patients without CC anomalies 
(blue bars) showed that deletions including ZBTB18 (upper panel) 
were mostly associated with all types of AnCC and those exclud-
ing ZBTB18 (lower panel) were mostly associated with normal CC. 
The minimal critical region (vertical rectangle with dashed borders) 
overlapped the entire coding sequence of ZBTB18. Diagrams in 
d show the percentages of patients with (orange) or without (blue) 
AnCC who had a microdeletion including (ZBTB18−) or exclud-
ing (ZBTB18+) ZBTB18 (upper panel), and comparison of the per-
centage of patients with (orange) or without (blue) AnCC who had 
a microdeletion encompassing only one of the three genes of inter-
est, two genes or all three genes (lower panel, empty circles designate 
deleted genes, full circles are for non-deleted genes). e, f Alignment 
of the microdeletions found in patients with (red bars) and with-
out (blue bars) epilepsy showed that deletions including HNRNPU 
(upper panel) were mostly associated with epilepsy and those exclud-
ing HNRNPU (lower panel) were mostly associated with no seizures. 
The minimal critical region (vertical rectangle with dashed borders) 
overlapped the entire coding sequence of HNRNPU and COX20. 
Diagrams in f show the percentages of patients with (red) or without 
(blue) epilepsy who had a microdeletion including (HNRNPU−) or 
excluding (HNRNPU+) HNRNPU (upper panel), and comparison of 
the percentage of patients with (red) or without (blue) epilepsy who 
had a microdeletion encompassing only one of the three genes of 
interest, two genes or all three genes (lower panel, empty circles des-
ignate deleted genes, full circles are for non-deleted genes)

◂
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We used UCSC (https://genome-euro.ucsc.edu) to align 
microdeletions on a schematic representation of the 1q 
chromosome. Alignments were performed using differ-
ent colors explained in the figure legends. Minimal critical 
regions were defined as the smallest deleted region of over-
lap found in at least 95% (microcephaly and epilepsy) or 
85% (AnCC) of patients harboring a given phenotypic trait. 
Frequencies were compared using the Fisher’s exact test.

Results

Patients with 1q43‑q44 deletion

To decipher the contribution of genes located in 1qter 
region to the corresponding microdeletion syndrome, 
we collected clinical data from 17 patients with 1q43-
q44 microdeletion (Table S2) and compiled them with 
those of 37 previously reported patients fulfilling our 
criteria (see Methods, Table S3). Altogether, the 54 dele-
tions span a 10  Mb region comprising 83 genes, 39 of 
which encode clustered olfactive receptors (OR). Seven 
genes (RGS7, AKT3, ZBTB18, HNRNPU, KIF26B, CNST, 
AHCTF1) were predicted to be probably or possibly 
intolerant to haploinsufficiency among the 44 genes other 
than OR genes (Table S1). Among these genes, AKT3, 
ZBTB18 and HNRNPU are clearly those with the highest 
pLI scores and HI ranks as well as the highest expres-
sion in the brain (Table S1). We then decided to focus our 
study on these three genes that likely contribute to most 
clinical features of 1q43q44 microdeletion syndrome, 
as predicted from previous genotype-phenotype corre-
lation studies. Specifically, 12 microdeletions encom-
passed AKT3, ZBTB18 and HNRNPU; six completely or 
partially included AKT3 but not ZBTB18 and HNRNPU; 
nine encompassed AKT3 and ZBTB18 but not HNRNPU, 
two ZBTB18 and HNRNPU but not AKT3, and 25 deleted 
HNRNPU but not AKT3 and ZBTB18 (Fig. S1).

Out of the 49/54 patients with available OFC, 26 had 
microcephaly (red bars in Fig. S2A); 47/54 patients had 
available brain imaging: 20 had AnCC, including ten 
with agenesis (AgCC, red bars in Fig.S2B), five with dys-
genesis (DysCC, pink bars in Fig.S2B) and five with thin 
corpus callosum (ThCC, green bars in Fig. S2B). Finally, 
36/54 patients had epilepsy (red bars in Fig. S2C).

The alignments of microdeletions found in patients 
with a known OFC and comparison of their gene con-
tent showed that microcephaly was present in all 20 
patients with deletions encompassing both AKT3 and 
ZBTB18, regardless of the presence of HNRNPU in the 
deletions (Fig.  1a, b). Conversely, 20/21 patients with a 
deletion encompassing HNRNPU but sparing AKT3 and 
ZBTB18 had normal OFC (versus 2/15 when HNRNPU 

not deleted, p = 0.00086, Fisher’s exact test). AKT3 was 
included in 24/26 deletions identified in individuals with 
microcephaly, whereas only 2/23 patients with microde-
letions sparing AKT3 had microcephaly (p =  1.46E−9). 
The number of patients with microcephaly who had dele-
tions including ZBTB18 (n = 21/22) and sparing ZBTB18 
(5/27) was also significantly different (p  =  4.25E−8). 
Four of the six deletions including coding sequences 
of AKT3 only and one of the two deletions encompass-
ing ZBTB18 but not AKT3 were associated with micro-
cephaly. The minimal critical region for microcephaly 
(g.243,778,438–g.244,125,269) mapped to a region 
encompassing the 5′ upstream region and the five first 
exons of AKT3 (Figs.  1a, 2a). Altogether, these results 
indicate that (1) AKT3 is the main driver for micro-
cephaly in the 1q43q44 region; (2) ZBTB18 haploinsuf-
ficiency may independently lead to microcephaly with 
a lower penetrance; and (3) co-deletion of AKT3 and 
ZBTB18, which are neighboring genes spaced from only 
~200 Kb, may have an addictive effect, resulting in con-
stant microcephaly.

Considering all types of AnCC, the alignment of dele-
tions revealed that, contrary to microcephaly, AKT3 dele-
tion was not significantly associated with AnCC. More 
precisely, 11/26 patients with AKT3 deletion versus 16/21 
without AKT3 deletion had a normal CC (p  =  0.06). 
Accordingly, all six patients with a microdeletion involving 
only AKT3 had a normal CC. The proportions of patients 
with AnCC who had deletions encompassing (17/32) or 
sparing HNRNPU (5/15) were also not significantly dif-
ferent (p = 0.23). In contrast, the number of patients with 
AnCC was significantly higher in cases of deletions con-
taining ZBTB18 (17/22) compared with deletions sparing 
this gene (3/25, p  =  6.84E−6, Fig.  1c, d). Accordingly, 
the minimal critical region for AnCC overlaps ZBTB18 
(Fig.  1c). When comparing patients with ZBTB18 dele-
tions sparing HNRNPU versus deletions encompassing 
both genes, the proportions of AnCC as a whole were not 
significantly different (5/9 vs 12/13, respectively; Fig. S3). 
However, these proportions reached statistical significance 
when considering AgCC instead of AnCC (p  =  0.01). 
These results suggest that (1) the main driver for AnCC, 
and more particularly AgCC, in the 1q region is ZBTB18, 
although with incomplete penetrance, (2) HNRNPU haplo-
insufficiency can be associated with ThCC, and (3) dele-
tion of both ZBTB18 and HNRNPU, which are 792  kb 
distant, has an additive effect, resulting in more penetrant 
AnCC phenotype and more frequent AgCC.

Deletions identified in epileptic patients showed a shift 
toward the telomeric extremity of the 1q region (Fig. 
S2). Of the 36 patients with epilepsy, 35 had a deletion 
including HNRNPU and only one had a deletion sparing 
HNRNPU (p =  1.28E−8, Fig.  1e, f). The minimal critical 

https://genome-euro.ucsc.edu


469Hum Genet (2017) 136:463–479	

1 3

Fig. 2   Summary of intragenic 
microdeletions and point 
mutations in AKT3, ZBTB18 
and HNRNPU. a A schematic 
representation of the AKT3 gene 
and protein, location of point 
mutations (somatic) and dupli-
cations (somatic or germline) 
identified in patients with 
brain overgrowth syndromes 
(upper panel) and comparison 
of intragenic AKT3 microdele-
tions and their association with 
microcephaly (lower panel). b 
A schematic representation of 
the ZBTB18 gene and protein 
and location of pathogenic point 
mutations identified in patients 
with ID and/or AnCC, including 
this study (upper panel) and 
the literature (lower panel). c 
A schematic representation of 
the HNRNPU gene and protein 
and location of pathogenic point 
mutations identified in patients 
with ID and epilepsy, including 
this study (upper panel) and the 
literature (lower panel)
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region for epilepsy was narrow and included HNRNPU and 
COX20, which is a gene that tolerates haploinsufficiency. 
Comparison of the number of epileptic patients who had 
AKT3 deleted (n =  11/27) or spared (n =  25/27) and the 
absence of seizures in patients with deletion restricted to 
this gene confirmed that AKT3 was not involved in epilepsy. 
The difference in the number of epileptic patients with or 
without ZBTB18 deletion was also not significant (13/23 vs 
23/31, p = 0.24). These results suggest that the loss of one 
HNRNPU allele is the primary cause of epilepsy.

Patients with HNRNPU mutations

Among the seven patients with HNRNPU mutations, six 
had constitutive de novo mutations and one has a mosaic 
frameshift mutation (Table  1). All seven mutations (four 
frameshifts, one nonsense variant and two splice site muta-
tions, Fig. 2b) theoretically introduced a premature termi-
nation codon in the protein sequence, a mutation spectrum 
compatible with HNRNPU haploinsufficiency as the main 
consequence.

All six patients with constitutive de novo HNRNPU 
mutations had early-onset epilepsy (Table 1, Table S4). Sei-
zure onset ranged from age 2.5 months to 4 years, and was 
within or at the first year of life in 5/6 patients. Fever was 
a factor triggering seizures in five patients. Seizures types 
included tonic–clonic, tonic, unilateral clonic or atypical 
absences occurring one to 20 times a day. Two patients 
experienced status epilepticus.

Early developmental delay was observed in all patients, 
including the individual with the mosaic mutation. The 
severity of ID ranged from moderate to severe. None of the 
seven patients was able to make sentences, four of them 
spoke single words at a time and one never acquired any 
word. Two patients older than 6  years never learned to 
walk independently and three others walked after the age 
of 30 months. Microcephaly was noted in one patient and 
global hypotonia in three. Among the five patients who 
underwent brain MRI, one displayed a small splenium of 
the CC and one had a globally thin CC (Fig. 3).

Patients with ZBTB18 mutations

Mutations identified in ZBTB18 included three mis-
sense variants altering highly conserved amino acids of 
the protein (Fig. S4). Two of them are located in zinc fin-
ger domains in which missense mutations tend to cluster 
(Fig. 2c). The remaining was a nonsense mutation. Analy-
sis of the parents showed that all variants occurred de novo.

All four patients with ZBTB18 mutations had ID rang-
ing from mild to severe (Table  2). All had developmen-
tal delay with walking achieved by age 24 months (range Ta
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Fig. 3   Aspects of the corpus callosum (CC) on MRI in patients 
with ZBTB18 and HNRNPU mutations and deletions. a Normal CC 
in a patient with HNRNPU mutation (left) and ThCC in two patients 
with HNRNPU deletions (middle and right). b Partial AgCC (left 

and right) and short DysCC (middle) in three patients with ZBTB18 
mutations. c ThCC (left) and normal CC (middle) in two patients with 
AKT3 + ZBTB18 deletions. Partial AgCC in a patient with a deletion 
encompassing AKT3 + ZBTB18 + HNRNPU (right)



473Hum Genet (2017) 136:463–479	

1 3

Ta
bl

e 
2  

M
ol

ec
ul

ar
 a

nd
 c

lin
ic

al
 c

ha
ra

ct
er

is
tic

s 
of

 p
at

ie
nt

s 
w

ith
 Z

B
T

B
18

 m
ut

at
io

ns

Pa
tie

nt
 I

D
Z

1
Z

2
Z

3
Z

4

G
en

er
al

 d
at

a

 E
th

ni
c 

or
ig

in
C

au
ca

si
an

C
au

ca
si

an
C

au
ca

si
an

C
au

ca
si

an

 G
en

de
r

M
F

M
F

 A
ge

 a
t l

as
t e

xa
m

in
at

io
n 

(y
ea

rs
)

14
12

23
12

G
en

et
ic

 d
at

a

 V
ar

ia
nt

 p
os

iti
on

 (
hg

19
)

g.
24

42
17

12
0A

>
G

g.
24

42
18

46
7G

>
A

g.
24

42
18

37
7T

>
C

g.
24

42
17

67
5d

el

 c
D

N
A

 c
ha

ng
e 

(N
M

_2
05

76
8.

2)
c.

44
A

 >
 G

c.
13

91
G

 >
 A

c.
13

01
T

 >
 C

c.
59

9d
el

 A
m

in
o 

ac
id

 c
ha

ng
e

p.
H

is
15

A
rg

p.
A

rg
46

4H
is

p.
L

eu
43

4P
ro

p.
Se

r2
00

*

 E
xo

n 
no

2
2

2
2

 I
nh

er
ita

nc
e

D
e 

no
vo

D
e 

no
vo

D
e 

no
vo

D
e 

no
vo

E
pi

le
ps

y

 E
pi

le
ps

y
N

o
N

o
Y

es
Y

es

 A
ge

 o
f 

fir
st

 s
ei

zu
re

N
A

N
A

9 
ye

ar
s

8 
m

on
th

s

 E
E

G
N

A
5 

ye
ar

s:
 f

ew
 s

pi
ke

s
N

A
N

or
m

al
, t

he
n 

sz
 r

ec
or

de
d,

 o
ri

gi
na

tin
g 

fr
om

 le
ft

 o
cc

ip
ita

l l
ob

e;
 la

te
r, 

sp
ik

es
 

an
d 

oc
ca

si
on

al
 S

W
 in

 th
e 

ri
gh

t 
ce

nt
ro

-p
ar

ie
ta

l r
eg

io
n

D
ev

el
op

m
en

t

 A
ge

 o
f 

si
tti

ng
N

A
N

A
10

 m
on

th
s

<
9 

m
on

th
s

 A
ge

 o
f 

w
al

ki
ng

27
 m

on
th

s
22

 m
on

th
s

22
 m

on
th

s
24

 m
on

th
s

 F
ir

st
 w

or
ds

de
la

ye
d

3 
ye

ar
s

N
A

24
 m

on
th

s

 C
ur

re
nt

 la
ng

ua
ge

 a
bi

lit
ie

s
11

 y
ea

rs
: 1

00
 w

or
ds

; 1
2–

14
 y

ea
rs

: 
sh

or
t s

en
te

nc
es

12
 y

ea
rs

: r
ea

ds
 s

yl
la

bl
es

16
 y

ea
rs

: f
ew

 w
or

ds
Sh

or
t s

en
te

nc
es

, p
ro

nu
nc

ia
tio

n 
di

f-
fic

ul
tie

s,
 g

oo
d 

co
m

pr
eh

en
si

on

 U
se

 o
f 

ha
nd

s
Pu

rp
os

ef
ul

Pu
rp

os
ef

ul
Fl

ap
pi

ng
 o

f 
ha

nd
s

Pu
rp

os
ef

ul

 O
th

er
O

ra
l d

ys
pr

ax
ia

, a
pp

ro
pr

ia
te

 b
eh

av
io

r
H

yp
er

ac
tiv

e,
 ti

ck
 d

is
or

de
r, 

ob
se

s-
si

ve
–c

om
pu

ls
iv

e 
be

ha
vi

or
 (

10
 

ye
ar

s)

N
A

Se
ve

re
 b

eh
av

io
ra

l p
ro

bl
em

s:
 o

pp
os

i-
tio

n,
 in

to
le

ra
nc

e 
to

 f
ru

st
ra

tio
n,

 
ps

yc
hi

c 
ri

gi
di

ty
, t

em
pe

r 
ta

nt
ru

m
s,

 
hy

pe
rp

ha
gi

a

 G
lo

ba
l d

ev
el

op
m

en
ta

l l
ev

el
M

od
er

at
e 

ID
 w

ith
 p

ro
m

in
en

t s
pe

ec
h 

de
la

y
M

ild
-m

od
er

at
e 

ID
 (

W
IS

C
-I

V
 6

 
ye

ar
s:

 V
IQ

 5
8,

 P
IQ

 4
9)

M
od

er
at

e/
se

ve
re

 I
D

M
od

er
at

e 
ID

C
lin

ic
al

 e
xa

m
in

at
io

n

 H
ei

gh
t (

SD
)/

w
ei

gh
t (

SD
)/

O
FC

 
(S

D
)/

ag
e 

in
 y

ea
rs

17
2 

cm
 (
+

1)
/4

4 
kg

 (
−

0.
25

)/
54

.5
 c

m
 

(0
)/

14
14

2 
cm

 (
−

1.
75

)/
29

.5
 k

g 
(−

1.
5)

/5
0 

cm
 (
−

2.
25

)/
12

19
2 

cm
 (

>
+

3)
/N

A
/5

4.
5 

cm
 (
−

1)
/2

3
15

5.
5 

cm
 (
+

1)
/5

4.
9 

kg
 (
+

2)
/5

4 
cm

 
(+

0.
5)

/1
2.

5

 N
eu

ro
lo

gi
ca

l e
xa

m
in

at
io

n
In

fa
nt

ile
 h

yp
ot

on
ia

N
or

m
al

N
or

m
al

N
or

m
al

 B
ra

in
 M

R
I

Pa
rt

ia
l a

ge
ne

si
s 

of
 C

C
Sh

or
t a

nd
 d

ys
ge

ne
tic

 C
C

N
A

T
hi

n 
C

C
 w

ith
 h

yp
op

la
st

ic
 s

pl
en

iu
m

, 
m

ild
 e

nl
ar

ge
m

en
t o

f 
ce

re
be

lla
r 

in
te

r-
fo

lia
l s

pa
ce

s,
 w

id
e 

V
ir

ch
ow

–R
ob

in
 

sp
ac

es
, d

if
fu

se
 h

yp
om

ye
lin

at
io

n



474	 Hum Genet (2017) 136:463–479

1 3

22–27  months). Language abilities were highly variable, 
with two 12-year-old patients speaking short sentences, one 
individual being able to read syllables at the same age, and 
the most severely affected adult patient speaking only a few 
words. Two patients experienced seizures from the age of 
8  months and 9  years. Spells were tonic–clonic seizures 
and head turning with cyanosis. Epilepsy in the patient 
with the earliest onset rapidly responded to valproate ther-
apy. The OFC was normal in three patients and borderline 
in another. AnCC was observed in the three patients who 
underwent brain MRI, with two having a partial AgCC and 
the other short CC (size <3rd percentile) classified as a 
DysCC (Fig. 3).

Developmental delay and intellectual disability 
in patients with deletions and mutations

Except one, all patients with 1q43q44 microdeletions or 
point mutations in ZBTB18 and HNRNPU had develop-
mental delay or ID with a wide range of severity (Tables 1, 
2, S2 and S3). The only exception was a patient with a bor-
derline intellectual quotient and a deletion limited to AKT3 
(#L31) inherited from his father who was reported to have 
an intelligence within the normal range (Gai et al. 2015).

Since formal evaluations of cognitive functioning were 
unavailable for most other patients, we used the postural 
and language milestones to evaluate their developmen-
tal level. Walking abilities were available for 22 patients 
with 1q43q44 deletions older than 2  years. Four of them 
were unable to walk and 18 walked independently at a 
mean age of 35 months (median age 24 months). Among 
ambulatory patients, (1) three had microdeletions encom-
passing ZBTB18 and AKT3 but not HNRNPU and walked 
at a mean age of 18 months (range 17–19 months, median 
age 18 months), (2) 13 with a deletion including HNRNPU 
but not AKT3 and ZBTB18 walked at a mean age of 
32.6 months (range 21–59 months, median age 24 months), 
and (3) two had a large deletion encompassing the three 
genes and walked at a mean age of 6.5  years (range 
5–7  years). Among non-ambulatory patients, one carried 
a HNRNPU deletion and the three others had a deletion 
of the three genes. These data suggest that the loss of one 
HNRNPU allele has a more deleterious effect on walking 
acquisition than the loss of ATK3/ZBTB18 genes but larger 
deletions including all three genes have even more severe 
consequences. Walking abilities in patients with HNRNPU 
point mutations were similar to those with deletions of the 
gene. Patients with ZBTB18 mutations globally walked 
later than those with deletions including AKT3 and ZBTB18 
although this should be confirmed on larger patient series.

Language abilities were available for 15 patients with 
1q43q44 deletions older than 4  years of our series only. 

Three patients did not speak any word, six had acquired 
a few words, six were able to speak short (n = 5) or full 
(n =  1) sentences. None of the four patients with a dele-
tion of all three genes made sentences, whereas 2/2 patients 
with deletions including AKT3 and ZBTB18 but not 
HNRNPU, and 4/10 patients with HNRNPU deletions did. 
Thus, patients with HNRNPU point mutations globally had 
more severe speech impairments than patients with dele-
tions including HNRNPU, who had more variable language 
abilities. Yet, language abilities were more preserved in 
patients with ZBTB18 point mutations and individuals with 
deletions including ZBTB18 but sparing HNRNPU, since 
6/7 could speak sentences.

Discussion

The association of ID, microcephaly, AnCC and epilepsy 
characterizes the full neurodevelopmental phenotype of the 
1q43q44 microdeletion syndrome. The recent identification 
of point mutations in ZBTB18 and HNRNPU in patients 
with neurodevelopmental disability can help decipher gen-
otype/phenotype correlations. In this study, we confirm that 
AK3, ZBTB18 and HNRNPU are the main genes contrib-
uting to the phenotype of the 1q43q44 microdeletion syn-
drome, with each gene driving a specific feature although 
genetic interactions between these genes also exist.

Microcephaly has been reported in about half of the 
patients with 1q43q44 deletions. Previous genotype-phe-
notype correlation studies suggested that microcephaly is 
mainly associated with AKT3 haploinsufficiency (Ballif 
et al. 2012; Gai et al. 2015; Nagamani et al. 2012; Thierry 
et  al. 2012). Our data, analyzing the alignment of 49 
deletions from patients with known OFC confirmed this 
correlation. The occurrence of microcephaly in patients 
with microdeletions restricted to AKT3 (Ballif et  al. 
2012; Gai et al. 2015; Nagamani et al. 2012) narrows the 
minimal critical region to this single gene. This observa-
tion is consistent with a mirror phenotype consisting in 
macrocephaly in individuals with duplications encom-
passing AKT3 and segmental hypertrophy (in the form of 
hemimegalencephaly or syndromic megalencephaly) in 
individuals with missense mutations leading to increased 
mTOR signaling that are usually—but not always—lim-
ited to mosaic brain tissues (Fig. 2a) (Conti et  al. 2015; 
Lee et  al. 2012; Poduri et  al. 2012; Riviere et  al. 2012; 
Wang et al. 2013; Nellist et al. 2015; Takagi et al. 2017). 
It also confirms that dosage of AKT3 is crucial for con-
trolling brain size during development. The observation 
of two patients and a healthy father with microdeletions 
limited to AKT3 and normal brain size (Gai et al. 2015) 
suggests that AKT3-related microcephaly is not fully 
penetrant. Alternatively, the fact that AKT3 deletions in 
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patients with normal OFC alter the 3′ end of the gene 
could suggest that the region of AKT3 critical for micro-
cephaly encompasses at least the first 5 exons but not the 
3′ coding part of the gene (Fig.  3a). This hypothesis is 
compatible with the description of three AKT3 isoforms 
encoding two distinct proteins differing in their 3′ exons. 
No patient with constitutive point mutation leading to 
LoF of AKT3 has been reported so far, so we were unable 
to compare the phenotype of patients with point muta-
tions and microdeletions; but our data suggest that point 
mutations resulting in LoF of AKT3, especially if located 
in the 5′ exons common to the two known AKT3 iso-
forms, would result in microcephaly with or without ID.

The preponderant role of AKT3 in microcephaly does 
not exclude minor involvement of other genetic deter-
minants. This is exemplified by the observation that: (1) 
three deletions sparing AKT3 (one encompassing ZBTB18 
and HNRNPU and two HNRNPU but not ZBTB18) were 
also associated with microcephaly, and (2) all patients 
with deletion comprising AKT3 but extending to and 
including ZBTB18 and/or HNRNPU had microcephaly. 
The OFC is known for nine patients with ZBTB18 muta-
tions [from the literature (Table S6) and our series] and 
three have microcephaly. This observation, combined 
with the microcephaly phenotype described in Zbtb18−/− 
mice, suggests that microcephaly can also be associated 
with ZBTB18 mutations and deletions with a lower pen-
etrance. In contrast, data from patients with HNRNPU 
mutations (Tables 1, S5) shows that heterozygous loss of 
HNRNPU is rarely associated with microcephaly. There-
fore, we suggest that: (1) AKT3 haploinsufficiency is suf-
ficient to cause microcephaly with high but incomplete 
penetrance, (2) the heterozygous loss of ZBTB18 may 
cause microcephaly with a lower penetrance, and (3) 
other regions located more distally (including ZBTB18) 
may contribute to microcephaly in addition to AKT3 
deletion.

Previous genotype–phenotype correlation studies 
determined ZBTB18 to be the main candidate gene for 
AnCC in the 1q43q44 deletion syndrome (Ballif et  al. 
2012; Nagamani et  al. 2012; Thierry et  al. 2012). This 
hypothesis was supported by the analysis of deletion 
alignments and by the absence of CC in mice lacking 
both copies of RP58, the murine homologue of ZBTB18 
(Xiang et  al. 2012). However, the first three patients 
with heterozygous ZBTB18 mutations were reported to 
have a normal CC (de Munnik et  al. 2014; Lopes et  al. 
2016; Rauch et  al. 2012). This unexpected result has 
been challenged by the recent report of AnCC in four 
patients with ZBTB18 de novo mutations (Cohen et  al. 
2016). Similarly, three of our four patients with ZBTB18 
mutations had AnCC. Genotype–phenotype correlations 
in our series of patients with 1q43q44 deletions confirm 

that ZBTB18 is the main gene driving AnCC in the 1qter 
region. However, 5/22 patients with ZBTB18 haploinsuf-
ficiency and 4/11 with ZBTB18 point mutations had nor-
mal CC, indicating that like for many other genes previ-
ously associated with AgCC in humans, the AnCC related 
to ZBTB18 is not a fully penetrant trait. Interestingly, 
most ZBTB18 point mutations are truncating or located in 
the functional zinc-finger domain of the ZBTB18 protein. 
This mutation spectrum suggests that missense mutations 
could also lead to a LoF of ZBTB18, although this has to 
be confirmed by functional studies.

Considering different categories of AnCC, it appeared 
that: (1) no patient with 1q43q44 deletion sparing ZBTB18 
had AgCC, (2) three patients carrying HNRNPU deletions 
sparing ZBTB18 and two with HNRNPU point mutations 
had ThCC (one had DysCC), and (3) patients with ZBTB18 
point mutations had either partial AgCC, DysCC or ThCC. 
Thus, ThCC is the main category of AnCC observed when 
HNRNPU is deleted and is possibly related to insufficient 
myelination of crossing axons rather than indicating mal-
formation of the CC. We conclude that ZBTB18 haploin-
sufficiency predisposes to different types of AnCC, particu-
larly partial AgCC, while HNRNPU anomalies are more 
specifically associated with ThCC. Furthermore, AgCC 
is significantly more frequent in patients with microdele-
tions comprising ZBTB18 extending towards the telomeric 
end of the 1q region, i.e., encompassing both ZBTB18 and 
HNRNPU, compared to those encompassing ZBTB18 but 
sparing HNRNPU. This suggests that the loss of genetic 
determinant(s) in 3′ of the ZBTB18 coding sequence or that 
the co-deletion of ZBTB18 and HNRNPU has an additive 
effect resulting in AgCC. Moreover, the AgCC observed 
in patients with point mutations or small deletions altering 
mainly ZBTB18 is partial and characterized by a small sple-
nium with the absence of beak (patients #Z1 and #Z4 and 
#2, #3 and #5 in Cohen et al. 2016). However, complete or 
subtotal AgCC have been reported in patients with larger 
1q deletions not included in our study (Boland et al. 2007; 
Caliebe et al. 2010; Hemming et al. 2016; Zaki et al. 2012), 
suggesting that one or more proximal genes on chromo-
some 1 could also lead or predispose to AgCC.

Two thirds of patients with 1q43q44 deletions have epi-
lepsy. The minimal critical region for epilepsy included 
HNRNPU and COX20. COX20 encodes a protein contribut-
ing to the assembly of mitochondrial cytochrome C oxidase 
and has been involved in a recessive disease with healthy het-
erozygous carriers (Doss et al. 2014; Szklarczyk et al. 2013). 
Thus, heterozygous deletions of COX20 are unlikely to be 
responsible for the epilepsy phenotype. HNRNPU is the main 
gene accounting for seizures since: (1) epilepsy is present in 
90% of patients with deletions comprising HNRNPU and 
absent in 14/15 patients with deletions sparing HNRNPU, 
and (2) all patients with constitutive HNRNPU mutations 
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have epilepsy. The only epileptic patient with a deletion spar-
ing HNRNPU had a deletion encompassing ZBTB18. Given 
that 3/11 patients with ZBTB18 mutations, including two of 
our series, had seizures; epilepsy may also be a minor pheno-
typic trait in some patients with ZBTB18 haploinsufficiency. 
The pro-epileptogenic effect of ZBTB18 alteration could be 
masked by the strong penetrance of HNRNPU-related epi-
lepsy in patients with loss of both genes.

The mean age at seizure onset in patients with HNRNPU 
point mutations from both our series and the litera-
ture (n =  9) was 13.5  months (median 8.5  months), ver-
sus 12.3  months (median 12  months) in individuals with 
deletions encompassing HNRNPU but sparing ZBTB18 
(n = 13) and 12.9 months (median 12 months) in patients 
with deletions encompassing both HNRNPU and ZBTB18 
(n = 7). These observations suggest that the age at seizure 
onset is independent of the size of the deletion, and that the 
loss of one HNRNPU allele is the strongest factor deter-
mining the age at seizure onset.

To date, available data did not reveal specific epileptic 
features in patients with HNRNPU mutations or deletions. 
Tonic–clonic seizures and atypical absences are the most 
frequently reported seizure types. Seizures occur with vari-
able frequencies, are frequently triggered by fever at the 
onset of the disease and are pharmacoresistant in some 
patients. Diffuse or focal slow-waves or a slow back-
ground activity are recurrently reported on EEG recordings 
together with various epileptiform features.

ID is reported in almost all patients carrying 1q43q44 
deletions, but its severity is frequently unmentioned. The 
only individuals without ID had a deletion limited to the 
whole AKT3 gene (Gai et al. 2015). The cognitive abilities 
of other patients with microdeletions limited to AKT3 are 
unknown but at least two of them were reported to have ID 
(Nagamani et  al. 2012). All patients with ZBTB18 muta-
tions known to date have ID with variable degrees of sever-
ity, except one with “overall cognitive ability in the low 
average range” (Cohen et al. 2016). In contrast, no patients 
with HNRNPU mutation or with HNRNPU deletion and 
normal development have been reported.

Patients with ZBTB18 mutations from the literature 
walked at a mean age of 28  months (n =  8) and 5/8 of 
them aged 3–37  years were not able to speak sentences 
or to associate several words. Thus, the impression of a 
relatively preserved development in patients with ZBTB18 
mutations from our series should probably be attenuated. 
These differences are apparently unrelated to the nature 
(missense versus truncating) of the mutation but likely to 
the small sample sizes. An overview of acquired develop-
mental milestones in these series of patients shows that 
those with HNRNPU deletions or mutations have a glob-
ally more severe postural and speech delay that those with 
AKT3/ZBTB18 deletions and those with ZBTB18 mutations. 

Because the most severe group of patients have deletions 
encompassing HNRNPU, AKT3 and ZBTB18, co-deletions 
of these three genes could have an additive detrimental 
effect on neurodevelopment.

In conclusion, the complete neurodevelopmental phe-
notype of the 1q43q44 microdeletion syndrome is the 
consequence of the deletion of three main genes spanning 
1.36  Mb. Our data confirm that AKT3 is the main gene 
driving microcephaly, ZBTB18 defect is responsible for 
AnCC and HNRNPU is the main gene accounting for epi-
lepsy. These correlations can be summarized as follows: 
(1) AKT3 deletion causes microcephaly with incomplete 
penetrance but ZBTB18 and HNRNPU deletions may 
also be involved with a weaker effect; (2) epilepsy and 
the loss of one HNRNPU allele are strongly associated; 
and (3) AgCC, is dependent on the loss of ZBTB18 allele 
but is also influenced by the alteration of neighboring 
genes. Neurodevelopmental impairment in patients with 
ZBTB18 LoF is more variable and less severe than that 
with HNRNPU LoF. Additional studies are required to 
investigate factors controlling this phenotypic variability 
in more details, including in particular the possibility of 
modifiers variants located on the trans allele.
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