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Abstract

Extremes of electrocardiographic QT interval are associated with increased risk for sudden cardiac death (SCD); thus,
identification and characterization of genetic variants that modulate QT interval may elucidate the underlying etiology of
SCD. Previous studies have revealed an association between a common genetic variant in NOS1AP and QT interval in
populations of European ancestry, but this finding has not been extended to other ethnic populations. We sought to
characterize the effects of NOS1AP genetic variants on QT interval in the multi-ethnic population-based Dallas Heart Study
(DHS, n = 3,072). The SNP most strongly associated with QT interval in previous samples of European ancestry, rs16847548,
was the most strongly associated in White (P = 0.005) and Black (P = 3.661025) participants, with the same direction of effect
in Hispanics (P = 0.17), and further showed a significant SNP 6 sex-interaction (P = 0.03). A second SNP, rs16856785,
uncorrelated with rs16847548, was also associated with QT interval in Blacks (P = 0.01), with qualitatively similar results in
Whites and Hispanics. In a previously genotyped cohort of 14,107 White individuals drawn from the combined
Atherosclerotic Risk in Communities (ARIC) and Cardiovascular Health Study (CHS) cohorts, we validated both the second
locus at rs16856785 (P = 7.6361028), as well as the sex-interaction with rs16847548 (P = 8.6861026). These data extend the
association of genetic variants in NOS1AP with QT interval to a Black population, with similar trends, though not statistically
significant at P,0.05, in Hispanics. In addition, we identify a strong sex-interaction and the presence of a second
independent site within NOS1AP associated with the QT interval. These results highlight the consistent and complex role of
NOS1AP genetic variants in modulating QT interval.
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Introduction

The electrocardiographic QT interval is a measure of cardiac

repolarization, and based on observations in both long and short

QT syndrome cases [1], as well as in population-based cohorts [2–

8], serves as a useful marker of risk for sudden cardiac death

(SCD). A genome-wide association study identified a common

genetic variant in NOS1AP, rs10494366, as being associated with

altered QT interval in individuals of European ancestry [9]. This

finding has been subsequently replicated in additional populations

of European ancestry [10–14], including reports of a stronger

effect in women [15]. However, in the one study that examined

African Americans, no significant effect was observed [16]. In a

large population-based study, we have refined the location of the

association signal for the QT interval in Whites and also

demonstrated that the variant most strongly associated with

prolongation of the QT interval, rs16847548, was also associated

with increased risk for SCD [17]. However, no association with

either QT interval or SCD was observed in Blacks in that study.

Nevertheless, given the overwhelming evidence for association in

populations of European ancestry and potential gender specific

effects, we sought to further explore the role of genetic variants in

NOS1AP across multiple ethnic backgrounds. We hypothesized

that there is allelic heterogeneity at this NOS1AP locus.
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Results

The Dallas Heart Study (DHS) is a multi-ethnic probability-

based, population study [18], with 1,506 non-Hispanic Blacks, 942

non-Hispanic Whites, and 501 Hispanics available for the analysis

presented here. Eight SNPs chosen to tag the linkage disequilib-

rium (LD) block previously associated with QT interval (based on

LD in the HapMap CEU samples), including the SNP associated

with SCD [17], were genotyped in all individuals. Thirteen

additional individuals were excluded due to excessive missing

genotype data (,50% complete); all SNPs showed minor missing

data ($99% complete) with no strong deviation from Hardy-

Weinberg equilibrium (P,0.005) in any of the populations. The

non-Hispanic White and Hispanic participants had similar

patterns of LD and similar allele frequencies, whereas the non-

Hispanic Black participants demonstrated significantly less LD,

with complementary minor alleles for 6 of 8 SNPs (Figure 1,

Table 1).

The QT interval is highly correlated with heart rate (RR

interval), age, and sex at the population level, and thus we

performed multiple linear regression analyses separately in each

ethnic population to adjust for these factors, and analyzed the

residual QT under an additive genetic model (Table 1). In non-

Hispanic Whites, the results mirrored our previous findings, with

the strongest association observed for rs16847548, with each allele

associated with an increase in the QT interval of 2.57 ms

(P = 0.0004). While no nominally significant SNPs were identified

in Hispanics, all SNPs exhibited the same direction of effect as in

non-Hispanic Whites. Strikingly, and in contrast to previous

reports, rs16847548 was strongly associated with QT interval in

non-Hispanic Blacks, with each allele associated with a prolonga-

tion of the QT interval by 3.22 ms (P = 3.5861025). Another

novel finding was that rs16856785, which is uncorrelated with

rs16847548 (r2,0.01), was also associated with QT interval in

non-Hispanic Blacks (+1.60 ms, P = 0.01). While not significant in

Hispanics or non-Hispanic Whites, the direction of effect observed

for rs16856785 was the same (+0.58 ms and +0.95 ms, respec-

tively). To formally test for independent effects of these two SNPs,

we performed a forward stepwise regression in each ethnic group,

first including the most strongly associated SNP and then

sequentially adding SNPs in order of strength of association, only

retaining them in the model if the P-values were ,0.05. Only

rs16847548 was retained in Hispanics and non-Hispanic Whites,

but both rs16847548 and rs16856785 were significant in non-

Hispanic Blacks indicating that these 2 SNPs independently

influence QT interval in non-Hispanic Blacks (Table 2). To

determine whether population stratification was influencing our

results, we adjusted for both global and local ancestries as inferred

by 2,270 ancestry informative markers using ANCESTRYMAP

[19], and our findings were unchanged. Comparing non-Hispanic

Blacks homozygous at both SNPs for the QT lengthening allele to

non-Hispanic Blacks homozygous for the complementary alleles

revealed a 13.964.5 ms difference in QT interval.

When stratified by sex, we observed stronger effects for NOS1AP

variants in women (Figure 2), with a consistent effect across all 3

ethnic groups, and an average addition of +2.18 ms in the effect

estimate relative to men for rs16847548. To increase our power to

test for a potential sex interaction, we leveraged the similarity in

effect sizes and allele frequencies for rs16847548 across all three

ethnic groups, and performed a joint analysis while adjusting for

ethnicity. Across all samples, we observed genome-wide signifi-

cance for rs16847548 alone (P = 4.161028), while incorporating

sex and an interaction term for rs16847548 and sex into the

regression model indicated a statistically significant stronger effect

in women (one-sided P = 0.027 for the interaction term). No

significant interaction was observed for rs16856785.

To confirm both the sex interaction and independence of the

effects of rs1684758 and rs16856785, we reanalyzed data from the

combined Atherosclerotic Risk in Communities (ARIC) [20] and

Cardiovascular Health Study (CHS) [21] cohorts. QT interval was

corrected for age, sex, RR interval, and study using linear

regression. We confined our analyses to the white individuals

(N = 14,107), as no association between NOS1AP variants and QT

interval was previously observed in the black individuals in those

samples [17]. Incorporating both rs16847548 and rs16856785 into

a linear regression model revealed that both were significantly

associated with QT interval (P,2610216 and P = 7.6361028,

respectively), with similar effect sizes as observed for the DHS

(+2.22 ms and +1.74 ms, respectively), confirming that these two

SNPs are independently associated with QT interval (Table 2).

The interaction between rs16847548 and sex in Whites was also

highly significant (+2.00 ms, P = 8.6861026 for the interaction

term), whereas no sex interaction was observed for rs16856785

(P = 0.31).

Discussion

Previous studies have focused on identifying and validating a

single functional variant in NOS1AP associated with QT interval in

populations of European ancestry. Not only do our data extend

the findings of association between QT interval and NOS1AP to

non-Hispanic Blacks, but we further identify a second independent

association within NOS1AP. Intriguingly, the first locus, represent-

ed by rs16847548 shows a strong sex-interaction, whereas the

second locus, represented by rs16856785 does not. Resequencing

of all exons in NOS1AP (ref. 9 and unpublished data) has not

identified any missense mutations that explain these results,

suggesting that the functional variants associated with these SNPs

are likely regulatory in nature. Several limitations to the current

study need to be acknowledged. First, the 8 SNPs were chosen

based on their ability to tag SNPs in a Caucasian population, and

thus do not fully screen the region in Blacks. Second, we were

underpowered in the Hispanics, with only 55% power to observe a

significant effect (P,0.05) at rs16847548, assuming equal effect to

that observed in non-Hispanic Whites. Third, we have focused

upon a single LD block within NOS1AP, whereas it is quite possible

that additional variants outside of this LD block also modulate QT

interval, and thus we are likely underestimating the overall impact

of this gene on QT interval. In summary, these data highlight the

complex genetic architecture underlying common traits even

within a single gene, and specifically, begin to elucidate how

NOS1AP genetic variants modulate QT interval.

Methods

Ethics Statement
The DHS was approved by the Institutional Review Board of

the University of Texas Southwestern Medical Center at Dallas,

TX, and conducted in accordance with institutional guidelines; all

participants provided written informed consent. All protocols for

both ARIC and CHS were approved by each field center’s

institutional review board and conducted in accordance with

institutional guidelines; all participants provided written informed

consent.

Study Populations
The Dallas Heart Study (DHS) is a multi-ethnic probability-

based, population study. Complete details of the DHS design have

Multiple NOS1AP Loci
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been described elsewhere [18]. Briefly, a stratified random sample

of Dallas County residents age 18–65 was obtained from a pool of

841,943 eligible subjects using the U.S. Postal Service Delivery

Sequence File, with deliberate oversampling of African Americans.

From 10 geographic strata of different ethnic compositions,

random samples totaling 15,088 addresses were identified, and

7,586 eligible patients were selected, including at most 1 subject

from each address. Of these, 6,101 subjects ages 18–65 (52% non-

Figure 1. Comparison of linkage disequilibrium (LD) patterns across ethnic groups. A) Schematic of the NOS1AP locus, with exon 1 in
orange, and genotyped SNPs in purple. The region spans 92 kb. Linkage disequilibrium (LD) is defined as the pair-wise correlation between SNPs
(measured as R-square) at the top left and the top right sides of the diamond. The degree of shading represents the magnitude and significance of
the pair-wise LD, with a black to white gradient reflecting higher to lower LD values; see http://www.broad.mit.edu/mpg/haploview/ for further
details. B) Non-Hispanic Blacks; C) Hispanics; D) Non-Hispanic Whites.
doi:10.1371/journal.pone.0004333.g001
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Hispanic Black, 29% non-Hispanic White, 17% Hispanic, and 2%

other) were recruited to participate in 3 sequential visits. Visit 1

included an in-home survey and anthropometric measurements

(n = 6101); visit 2- blood and urine samples (n = 3399, ages 30–65);

visit 3- imaging tests and electrocardiograms (n = 3072). Demo-

graphic variables, body-mass index, and blood pressure were

similar between subjects completing the initial visit, and Visits 2

and 3 [18]. After removing individuals with no QT interval data,

QRS duration .120 ms, or ethnicity listed as ‘‘other’’, 1,506 non-

Hispanic Blacks, 942 non-Hispanic Whites, and 501 Hispanics

were available for analysis.

The ARIC study and CHS are both population-based

prospective cohort studies of cardiovascular disease. The ARIC

Study includes 15,792 persons aged 45–64 years at baseline (1987–

89), randomly chosen from four US communities [20]. ARIC

cohort members completed four clinic examinations, conducted

approximately three years apart between 1987 and 1998. CHS

includes 5,888 participants .65 years of age identified from four

U.S. communities using Medicare eligibility lists. The original

cohort included 5201 participants recruited in 1989–1990 and 687

additional subjects were recruited in 1992–1993 to enhance the

racial/ethnic diversity of the cohort [21]. Clinic examinations for

both ARIC and CHS participants included assessment of

cardiovascular risk factors, self-reported medical family history,

employment and educational status, diet, physical activity, co-

morbidities, and clinical and laboratory measurements. The

following exclusion criteria, were applied to obtain the final

sample for the present analysis: poor quality DNA (samples with

,75% of genotypes called), no QT interval data, QRS duration

.120 ms, self-described ethnicity other than White [17]. After

these exclusions, 14,107 individuals were available for analysis.

Assessment of QT interval
In the DHS, participants presented in a fasting state for a

detailed clinic visit which included electrocardiography. They

were placed in a supine position with application of standard 12-

lead electrodes, and after a brief period of relaxation, a 10 second

digital electrocardiogram was recorded using the GE Marquette

MAC 5000 device (Marquette Electronics, Inc., Milwaukee,

Wisconsin). The QT interval measurements were made using

ECG Interval Editor analysis software version 005D.04 (General

Electric HC, Menomonee Falls, Wisconsin) which has demon-

strated good correlation with other automated programs and

manual measurements [22].

In the ARIC study, participants were asked not to smoke or

ingest caffeine for at least 1 hour prior to the electrocardiogram.

After resting for 5–10 minutes while the electrodes were being

placed, a standard supine 12-lead electrocardiogram and a 2-

minute paper recording of a three-lead (leads V1, II, and V5)

rhythm strip were made. The ECGs were digitally recorded, and

identical methods (MAC personal computer, Marquette Electron-

ics, Milwaukee, Wisconsin) were used in all clinical centers. A

similar protocol was used at the baseline visit of CHS. MAC PC-

DT ECG acquisition units (Marquette Electronics, Inc., Milwau-

kee, WI) were used to record a 10-second 12-lead simultaneous

ECG at a sample rate of 250 per second per lead. The QT interval

Table 1. Summary of results for association of NOS1AP SNPs with QT interval stratified by ethnicity.

SNP Position A1 A2 Non-Hispanic Blacks (n = 1,497) Hispanics (n = 499) Non-Hispanic Whites (n = 940)

A1 Freq b SE P A1 Freq b SE P A1 Freq b SE P

rs7539281 158739692 A G 0.60 0.18 0.63 0.77 0.29 0.66 0.90 0.4639 0.26 1.81 0.66 0.006

rs4657139 158761565 A T 0.88 1.59 0.90 0.08 0.42 0.98 0.85 0.2476 0.34 1.21 0.60 0.043

rs16847548 158766932 C T 0.18 3.22 0.78 3.58E-05 0.20 1.47 1.07 0.1706 0.20 2.57 0.72 0.0004

rs12567209 158768137 A G 0.08 0.08 1.13 0.95 0.12 21.00 1.23 0.4175 0.08 20.45 1.09 0.68

rs12576211 158768181 T G 0.51 1.83 0.61 0.003 0.35 0.01 0.87 0.9919 0.29 1.81 0.63 0.005

rs1415262 158777793 C G 0.81 1.13 0.76 0.14 0.43 1.11 0.85 0.1931 0.35 0.81 0.60 0.18

rs10494366 158817343 G T 0.62 1.22 0.63 0.05 0.41 1.52 0.84 0.07228 0.36 0.72 0.60 0.23

rs16856785 158831945 C G 0.61 1.60 0.62 0.01 0.10 0.58 1.30 0.6573 0.10 0.95 0.97 0.33

A1 refers to the minor allele in the CEU HapMap population. Bold signifies P-values,0.05. Genomic position is given relative to Build35 of the Human Genome. b is the
effect size under an additive genetic model. SE = standard error.
doi:10.1371/journal.pone.0004333.t001

Table 2. Demonstration of independent effects for rs16847548 and rs16856785 on QT interval stratified by ethnicity.

Model SNP A1 A2 Non-Hispanic Blacks (n = 1,497) Non-Hispanic Whites (n = 940) ARIC/CHS Whites (n = 14,107)

A1 Freq b SE P A1 Freq b SE P A1 Freq b SE P

Single SNP rs16847548 C T 0.18 3.22 0.78 3.58E-05 0.20 2.57 0.72 0.0004 0.22 2.42 0.22 ,2.00E-16

rs16856785 C G 0.61 1.60 0.62 0.01 0.10 0.95 0.97 0.33 0.09 2.11 0.32 3.94E-11

Multi-SNP rs16847548 C T 0.18 3.22 0.78 3.66E-05 0.20 2.62 0.73 0.0004 0.22 2.22 0.23 ,2.00E-16

rs16856785 C G 0.61 1.60 0.62 0.01 0.10 0.24 0.99 0.81 0.09 1.74 0.32 7.63E-08

Single SNP indicates a regression model with rs16847548 OR rs16856785, and multi-SNP indicates both SNPs are in the model. A1 refers to the minor allele in the CEU
HapMap population. Bold signifies P-values,0.05. Genomic position is given relative to Build35 of the Human Genome. b is the effect size under an additive genetic
model. SE = standard error.
doi:10.1371/journal.pone.0004333.t002
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from the digital 12-lead ECG was determined using the Novacode

ECG measurement and classification program [23].

SNP Selection and Genotyping
SNPs were selected to tag the linkage disequilibrium (LD) block

containing rs10494366 and rs4657139 (the most significant SNPs

from fine mapping in our previous studies in whites [9]) in the thirty

trio samples of U.S. residents with northern and western European

ancestry (CEU population) used in the HapMap Project [24,25].

Eight were selected using the computer program Tagger with criteria

of r2.0.65 and minor allele frequency (MAF) .0.05 in CEU [26].

Genotyping in the DHS was performed using ABI TaqMan

assays (Applied Biosystems) according to standard protocols.

Genotyping in ARIC and CHS was performed using TaqMan

assays (Applied Biosystems) in conjunction with the BioTrove

OpenArray SNP genotyping platform, which incorporates high-

density, through-hole, nanotiter plates which have 3,072 holes

penetrating the slide, each of which is suitable for a TaqMan assay

(www.biotrove.com). Accuracy of BioTrove genotyping was

determined by comparison to concordance calls generated for 58

samples genotyped multiple times (range 2–19 times, median 6,

resulting in ,350 comparison per SNP): rs16847548 = 99.7%;

rs16856785 = 99.4%.

Statistical Analysis
All analyses were stratified by self-reported ethnicity. Deviations

from Hardy-Weinberg proportions were assessed using the chi-

squared goodness of fit test within each ethnicity group. For the

DHS, all QT interval results were generated using the residuals

from race-specific linear regressions adjusted for age, sex, and

heart rate (RR interval). A generalized linear model was then used

to assess the association between SNPs and residual QT intervals

assuming an additive genetic model. In the ARIC/CHS cohort,

analyses were performed using linear regression adjusted for age,

sex, heart rate (RR interval), and study. Parallel analyses were also

performed using Bazett’s heart rate-corrected QT duration (QTc)

[27], and similar results and inferences were obtained (data not

shown). Forward step-wise regression analysis was performed by

first incorporating the SNP with most significant association from

single-SNP analyses, and sequentially adding SNPs in order of

strength of association, and only retaining a SNP in the model if P-

values were ,0.05. To test for interaction between SNPs and sex,

we used linear regression with terms in the model for the SNP

(under an additive model), sex, and SNP 6 sex interaction term,

with the significance reported for the interaction term. All

statistical analyses were performed in R version 2.6.2.
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