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ABSTRACT: Simulation plays an essential role in the development of new computational and statistical methods for the
genetic analysis of complex traits. Most simulations start with a statistical model using methods such as linear or logistic
regression that specify the relationship between genotype and phenotype. This is appealing due to its simplicity and because
these statistical methods are commonly used in genetic analysis. It is our working hypothesis that simulations need to move
beyond simple statistical models to more realistically represent the biological complexity of genetic architecture. The goal
of the present study was to develop a prototype genotype–phenotype simulation method and software that are capable of
simulating complex genetic effects within the context of a hierarchical biology-based framework. Specifically, our goal is
to simulate multilocus epistasis or gene–gene interaction where the genetic variants are organized within the framework of
one or more genes, their regulatory regions and other regulatory loci. We introduce here the Heuristic Identification of
Biological Architectures for simulating Complex Hierarchical Interactions (HIBACHI) method and prototype software for
simulating data in this manner. This approach combines a biological hierarchy, a flexible mathematical framework, a liability
threshold model for defining disease endpoints, and a heuristic search strategy for identifying high-order epistatic models of
disease susceptibility. We provide several simulation examples using genetic models exhibiting independent main effects and
three-way epistatic effects.
Genet Epidemiol 39:25–34, 2015. Published 2015 Wiley Periodicals, Inc.∗
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Introduction

Sorting out the genetic architecture of common human
diseases will require a combination of computational,
mathematical, and statistical methods that are capable of
detecting, characterizing and interpreting a wide range of dif-
ferent genetic effects including gene–gene interactions, gene–
environment interactions and locus heterogeneity [Cordell,
2009; Moore et al., 2010]. A key component of methodolog-
ical work is the ability to know when a particular method
is working well. Application of quantitative methods to real
data provides useful information but is not sufficient due
to the lack of knowledge about the true underlying patterns.
Simulation of genetic data is thus an important component of
the method development process because the ground truth
in the data is always known. The primary disadvantage of
simulation is the inability to know the exact nature of genetic
models that underlie the genetic architecture of complex dis-
eases. Given this constraint, an important goal of simulation
is to incorporate as much knowledge as possible about ge-
netic architecture to improve the realism and complexity of
the data needed for testing new methods.

∗Correspondence to: Jason H. Moore, HB7937, One Medical Center

Dr., Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA. E-mail:

Jason.h.moore@dartmouth.edu

There are two general components to the simulation of
genetic epidemiology data. The first is the simulation of
realistic patterns of genetic variation that mirror the distri-
bution of allele frequencies and linkage disequilibrium that
occur in human populations. The second is the simulation of
complex traits from particular genetic variants. Numerous
methods have been developed for the first component
including forward-time simulators such as simuPOP [Peng
and Amos, 2008; Peng and Kimmel, 2005], GenomeSIMLA
[Dudek et al., 2006; Edwards et al., 2008; Ritchie and Bush,
2010], and SFS CODE [Hernandez, 2008]. Once realistic
patterns of genetic variation have been simulated, the next
step is to select a set of genetic variants and a model from
which phenotypes can be generated for each subject in the
data set. This can be accomplished, for example, using a
linear model with an effect size determined by the magnitude
of the coefficients for the independent variables representing
the selected genetic variants. An alternative approach is to use
penetrance functions that specify the probability of disease
given a particular genotype or combination of genotypes.
Several software packages are available to simulate complex
genetic patterns (e.g. epistasis) from penetrance functions
including Epi2Loc [Walters et al., 2014] and GAMETES
[Urbanowicz et al., 2012]. Although useful, these tools,
and other commonly used phenotype simulation tools
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such as PLINK [Purcell et al., 2007], lack a biology-based
framework. That is, these tools are purely statistical in nature
and do not integrate knowledge about gene structure and
function into the simulation. It is our working hypothesis
that the simulation of data using biologically realistic
genotype–phenotype relationships will improve method
development by more closely mimicking the hierarchical
complexity of human health.

The goal of the present study was to develop a prototype
genotype–phenotype simulation method and software that
are capable of simulating complex genetic effects within the
context of a hierarchical biology-based framework. Specifi-
cally, our goal is to simulate multilocus epistasis or gene–gene
interaction where the genetic variants are organized within
the framework of one or more genes, their regulatory regions
and other regulatory loci (e.g. microRNA). Simulating data
in this manner is important because the genomic context
of genetic risk factors is becoming increasingly apparent as
we analyze and interpret polymorphisms identified through
genome-wide association studies [ENCODE Project Con-
sortium et al., 2012; Gerstein et al., 2012; Karczewski et al.,
2013]. We introduce here the Heuristic Identification of Bi-
ological Architectures for simulating Complex Hierarchical
Interactions (HIBACHI) method and prototype software for
simulating data in this manner. This approach combines a
biological hierarchy, a flexible mathematical framework, a li-
ability threshold model for defining disease endpoints, and a
heuristic search strategy for identifying high-order epistatic
models of disease susceptibility. We provide several simula-
tion examples using genetic models exhibiting independent
main effects and three-way epistatic effects.

Methods

There are five components to our Heuristic Identification
of Biological Architectures for simulating Complex Hierar-
chical Interactions (HIBACHI) simulation method. The first
is the biological framework. The second is the mathematical
framework. The third is the liability threshold model. The
fourth is the heuristic methods for the discovery of high-
order epistasis models. The final component is the prototype
software package for simulating multiple data sets. We de-
scribe each of these in turn.

A Biology-Based Framework for Genetic Simulation

The goal of this component is to provide a framework or
scaffold for organizing the genetic variants and their pheno-
typic relationships. Although not complete, our approach is
a step in the direction of using known biological relation-
ship to focus a simulation. Our initial framework (see Fig. 1)
starts with protein-coding gene (i.e. mRNA gene) with a sin-
gle nonsynonymous genetic variant that is assumed to change
an amino acid. Upstream of the mRNA gene is a promoter
with a single regulatory variant and an enhancer with a single
regulatory variant. Also included in our initial framework are

two genes that code for transcription factors that bind to the
regulatory region. We have included a protein-coding variant
in the gene that codes for each transcription factor. We have
also included a single variant in a microRNA gene that partic-
ipates in post-translational regulation. In total, this structure
allows for six genetic variants (coded 0, 1, 2) all influencing
a protein product as a quantitative trait. In addition, we have
included an environmental factor (coded –2, –1, 0, 1, 2) to
allow for nongenetic variation in the phenotypic values. It is
important to note that this particular biological framework
is a preliminary proof of concept and will be modifiable by
the user in future iterations of the algorithm.

A Mathematical Framework for Genetic Simulation

The goal of this component is to provide a flexible math-
ematical framework for combining genotypic and nongeno-
typic values to produce phenotypic values. Each biology-
based locus feeds into a mathematical function whose result
is carried forward to the next function (see Fig. 1). For ex-
ample, one transcription factor locus combines with the en-
hancer locus through a function whose result then combines
with the second transcription factor. The result of this oper-
ation combines with the locus at the promoter. This result
combines with the coding variant in the gene. This result
combines with the microRNA locus. This result combines
with the environmental factor to produce a protein product.
Thus, the protein expression value is dependent on mathe-
matical functions of the six loci and the environmental factor.
This produces a discrete distribution with several to millions
of possible phenotypic values for most combinations of func-
tions that can then be used with the liability threshold model
described below to generate disease status. Cases and controls
can then be sampled from this distribution.

At each combination of loci the user can specify one of 25
different mathematic functions organized into groups labeled
Basic, Logical, Bitwise, Unary, Large, and Miscellaneous. Ba-
sic functions include addition (ADD or +), subtraction (SUB
or –), multiplication (MULT or ×), division (DIV or ÷),
modulus (MOD), and modulus-2 (MOD2). Logical func-
tions include greater than (GT or >), less than (LT or <),
AND (&&), OR (�), and XOR (ˆˆ). Bitwise functions in-
clude bitwise AND (BITA or &), bitwise OR (BITO or |),
and bitwise XOR (BITX or �). Unary functions include ab-
solute value (ABS), NOT (�), factorial (FAC or !), left and
right. Large functions include power (POW), log, permute
(PER or P), and choose (CHS or C). Miscellaneous functions
include minimum (MIN) and maximum (MAX). These pro-
vide a comprehensive array of possible mathematical func-
tions with 256 function combinations using the biological
framework described above.

A Liability Threshold Model for Biology-Based Genetic
Simulation

We have used a liability threshold model to simulate dis-
ease from the distribution of phenotypic values generated
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Figure 1. The left panels show screenshots of the biological and mathematical framework as well as the liability distribution for Models 1 (A)
and 2 (B). The black notches on the right side of the liability distributions indicate the threshold for disease. To the right of each HIBACHI model
is the MDR model showing the distribution of cases (dark bars) and controls (light bars) for each genotype combination. Dark-shaded genotype
combinations indicate high-risk of disease. Shown below each MDR model is the ViSEN network with main effects (circles), pairwise interactions
(lines), and three-way interactions (triangles) highlighted in proportion to their effect size.

from the genotypic values and mathematical functions as
described above (see distribution in Fig. 1). The user can
select the liability threshold to achieve a particular disease
prevalence. HIBACHI generates liability distributions with
diverse applications and interpretations. For instance, by se-
lecting ordinary addition for all the mathematical functions
the approach gives the liability function for independent, ad-
ditive genetic variants. At the opposite end of the spectrum,
it can model purely epistatic interactions among the variants
by choosing the mathematical functions suitably. A wealth
of other applications are possible using the 256 choices for
the mathematical functions. Given a choice of functions, the
liability distribution from which the output of HIBACHI
effectively samples can, in theory, always be computed math-
ematically, though the amount of computation required may
be prohibitive. For instance, if all the functions are addition
the output is obtained by sampling, once for each population
member, from the distribution equal to the sixfold convo-
lution product of the probability distributions Ai of the six

genetic factors. Specifically, if xij are all the values of factor
Ai, the value of this distribution at x is

A1 ∗ A2 ∗ . . . ∗ A6(x) =
∑

∑
i xi,j =x

6∏

i=1

P (Ai = xij ). (1)

This is the sum of the probabilities of all the ways that
the output could equal x. With all functions as addition, the
output is x when the attributes have values which sum to x.

Thus the sum in (1) is taken over all attribute values xij

which sum to x. HIBACHI chooses values of genetic factors
independently, so the joint probability that the six genetic
factors have specific values (summing to x for instance) is
easily computed:

P (A1 = υ1, A2 = υ2, . . . , A6 = υ6) =

6∏

i=1

P (Ai = υi).

Hence the product of probabilities in (1).
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For choices of functions other than all addition, the distri-
bution can be computed as in (1) with one change: Rather
than summing over all values which sum to x, the sum is taken
over all values which combine as prescribed by the functions
to give x.

As an example we show how HIBACHI can model epistatic
interactions. Let us assume each genetic variant has geno-
types coded 0, 1, 2 that occur with probabilities 0.25, 0.5,
and 0.25, respectively. Thus if the first function is MOD2 and
the value of just the first genetic variant is known, then a
little computation shows that the result of the first function
is either 0 or 1, each occurring with equal probability. Simi-
larly if the value of the second genetic variant is known, but
not the first, the output of the first function is again 0 or 1
with equal probability. However, if the values of the first and
second genetic variant are both known, then the output of
the first function is completely determined. Thus the choice
of XOR, a known epistasis function, for the first function
generates a synergistic interaction between the first two ge-
netic variants. Choosing from the other functions either left
or right, as appropriate, from the Unary menu of HIBACHI
passes the result of the first function and this epistatic behav-
ior to HIBACHI’s final output. With these choices, data sets
generated by HIBACHI have the property that each of the
first two genetic variant alone convey no more information
about the output than guessing, whereas their values together
completely determine the output.

Heuristic Methods for Model Discovery

The 256 possible combinations of mathematic functions
are too many to explore exhaustively by trial and error. We
have therefore provided two initial stochastic search algo-
rithms to facilitate this process. The first is a simple random
search that will explore n randomly generated models where
n is specified by the user. The second is a genetic algorithm
that evolves a population of bitstrings specifying combi-
nations of six mathematical functions. We have previously
used an approach like this to evolve penetrance functions
specifying two-way to five-way epistatic effects [Moore et al.,
2004]. With the genetic algorithm, a population of bitstrings
of size m is randomly initialized and evaluated using a fitness
function (described below). The best bitstrings are mutated
and recombined to generate new bitstrings that generate a
new population. This process of evolving combinations of
mathematical functions using natural selection is carried
out for l generations allowing the algorithm to explore a
maximum of n = m × l possible models. Other stochastic
search algorithms such as simulated annealing will be added
at a later time giving the user several different options for the
heuristic search. These will be important as the complexity of
the simulation grows in future versions that allow additional
genetic variants influencing additional genes and regulatory
elements.

The key to the genetic algorithm search is the fitness func-
tion that specifies the value or quality of a particular set
of mathematic functions represented as a bitstring. Here,

we used an entropy-based method that measures the pure
three-way epistatic interaction after subtracting out the one-
way and two-way genetic effects [Hu et al., 2011; Hu et al.,
2013a,b]. This approach has been used to describe three-way
interactions in genetic epidemiology studies of bladder can-
cer [Hu et al., 2013] and tuberculosis [Collins et al., 2013; Hu
et al., 2013; White et al., 2014]. This implementation requires
a single data set to be simulated from the model specified
by the bitstring from which the three-way interaction infor-
mation is calculated. Other measures of genetic association
will be added to the fitness function list in future versions
allowing the user to specify the nature of the genetic effects
to be modeled.

A Prototype HIBACHI Software Package

The goal of the software development was to produce a
prototype that could be used to evaluate the method and to
generate ideas for the design of a formal software package for
public release. The HIBACHI prototype was programed in
Java and Javascript with a graphic user interface (GUI) that
allows the user to specify the mathematical functions for each
point in the biological hierarchy (see Fig. 1) in addition to the
details of the model discovery heuristic as well as the details
of the simulation parameters. Users can specify simulation
parameters including the population size, disease prevalence,
the sample size, the balance of cases, and controls, the num-
ber of randomly generated polymorphisms to add along with
their range of allele frequencies, and the number of datasets
to be generated. Also included in the GUI is a table that
includes all of the models discovered over time along with
their accuracy from the multifactor dimensionality reduc-
tion (MDR) machine learning classifier [Hahn et al., 2003;
Moore, 2010; Moore et al., 2006; M D Ritchie et al., 2001]
and the three-way interaction information score as described
above. The models are provided in a ranked list that allows
the user to select a specific model to base a simulation on.
The prototype software is available from the authors upon
request.

Generation and Evaluation of HIBACHI Models

The goal of evaluation was twofold. First, we wanted to
confirm that HIBACHI is capable of producing genetic mod-
els with simple independent main effects and more complex
epistatic interactions. To simplify the evaluation we varied
and restricted analysis of the genetic models to only the three
variants in from the two transcription factor genes and the
enhancer. The other genetic and nongenetic factors were fixed
as additive effects but subsequently ignored as if they had not
been measured in a genetic study. As a baseline we generated
genetic models using only the addition (+) functions
(Model 1), one addition and one multiplication (X) function
(Model 2), and two multiplication functions (Model 3).
We then generated a similar model using only the XOR (ˆˆ)
logic function (Model 4) that is known to generate statistical
epistasis effects [Moore et al., 2006; Moore et al., 2005] and
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that has a biological basis [Buchler et al., 2003; Tagkopoulos
et al., 2008].

The second goal was to use the heuristic genetic algorithm
to discover new models exhibiting three-way epistasis for the
genetic variants defined above from among the 256 possible
combinations of mathematic functions. We ran the genetic
algorithm with a population size of 100 for 100 generations.
This run represents a search of a maximum of 104 of the 256

possible models. The four best models were recorded and
compared with Models 1–4 for strength of three-way interac-
tion. It is important to note that we altered the mathematical
functions for the remaining genetic loci and the environmen-
tal factor to match Models 1–4. The new models discovered
represent Models 5–8.

We then simulated data for 1,000 cases and 1,000 controls
from a total population size of 100,000 subjects with a com-
mon disease prevalence set to 0.10. Here, we assumed each lo-
cus had two alleles of equal frequency with genotype frequen-
cies consistent with those expected under Hardy-Weinberg
equilibrium. Example data sets from Models 1–8 were first
analyzed using the MDR machine learning method and soft-
ware package that was designed specifically for detecting and
characterizing high-order gene–gene interactions. The three-
locus MDR models were returned along with the accuracy of
classification. In addition, we performed two different per-
mutation tests to validate the significance of the model. First,
we performed a standard permutation test of the null hypoth-
esis of no association by randomizing the case-control labels
1,000 times. Second, we performed an explicit test of epistasis
[Greene et al., 2010] that specifically tests the null hypothesis
that the only genetic effects in the model are independent
by randomizing genotypes within each genetic variant and
within cases and controls separately. This preserves the al-
lele and genotype frequency differences while randomizing
the interactions. We also used the ViSEN method and soft-
ware for visualizing gene–gene interaction networks and for
estimating genetic effects using methods from information
theory [Hu et al., 2013a; Hu et al., 2013]

Finally, we ran several popular machine learning algo-
rithms to illustrate the utility of the HIBACHI simulations
for comparing different methods. We selected only the func-
tional variants from the example data sets described above
for Models 1–8. Machine learning methods included naı̈ve
Bayes (NB), classification trees (CT), k-nearest neighbors
(kNN), neural networks (NN), and support vector machines
(SVM). The NB approach used a relative frequency prior with
a LOESS window of 0.5 and 100 sample points. This method
reflects the main effects in the data. The CT approach required
at least five data points in each leaf of the tree and for each
split. Leaves with the same majority class were recursively
merged with an m-value of two. The kNN approach used 10
nearest neighbors. The NN approach included a single hid-
den layer with 10 nodes, a regularization factor of one and
1,000 maximum iterations. The SVM approach used a radial
basis function as a kernel. The accuracy of each classifier was
returned. All machine learning analyses were implemented
using the open-access Orange data mining software package
that includes a variety of tools for manipulating data, per-

forming machine learning analyses, and evaluating results
[Demšar et al., 2013].

Results

The biology-based framework and example liability dis-
tributions for Models 1–8 are shown as screenshots from
the HIBACHI software in Figures 1–4. Also shown next to
each biological models is a screenshot from the MDR soft-
ware summarizing the distribution of cases (dark bars) and
controls (light bars) for each multilocus genotype. Genotype
combination cells are dark-shaded for high-risk and light-
shaded for low risk. Note the additive pattern of high-risk
genotypes for Models 1–3. Also shown below each MDR fig-
ure is a screenshot from the ViSEN software showing the
genetic variant interaction network for the two transcription
factors (TF1, TF2) and the enhancer. The size of the circles
representing each variant is proportional to the degree of
main effect. Synergistic interactions are indicated by a line
connecting two variants or a triangle connecting three vari-
ants with the thickness of each proportional to the degree of
epistasis after removing lower order effects. Note the differ-
ence in distribution of main effects versus interaction effects
in Models 1–3 and in Models 4–8.

Table 1 presents the details of the eight models, the math-
ematical functions used for the three genetic variants, the
information gain for each genetic variant alone (i.e. main
effects), the information gain for the pure three-way interac-
tion, the accuracy of the MDR classifier, the P-value of the
MDR model from a standard permutation test, and the MDR
P-value derived from a permutation test that explicitly tests
for interaction holding all main effects constant. All eight
models have MDR accuracies significantly above 0.5 ranging
from 0.621 (moderate effect size) to 0.822 (large effect size).
The models differ greatly with respect to their main effects
and three-way interaction effects. As expected the Models 1–
3 with only addition and/or multiplication functions score
high on the information gain for main effects but very low
for three-way interactions. The significant or near-significant
P-values for the explicit permutation test are primarily due
to some small to moderate two-way interactions (data not
shown). Model 4–7 on the other hand have very low main
effects and moderate three-way interactions with highly sig-
nificant explicit tests of interaction. Model 8 was a bit different
in that it contained a moderate main effect for one genetic
variant in addition to a stronger three-way interaction. These
eight models highlight the ability of HIBACHI to simulate
a variety of different types of genetic effects including high-
order epistatic interactions.

Table 2 presents the results of the machine learning
algorithm comparison on example data from Models 1–8.
The numbers shown are classification accuracies. Note that
most of the methods were in close agreement for Models
1–3 but diverged across data from Models 4–8. This was
particularly true for Models 4–7 that had virtually no main
effects and complex patterns of three-way interactions. The
NB approach performed poorly on these models given it is
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Figure 2. The left panels show screenshots of the biological and mathematical framework as well as the liability distribution for Models 3 (A)
and 4 (B). The black notches on the right side of the liability distributions indicate the threshold for disease. To the right of each HIBACHI model
is the MDR model showing the distribution of cases (dark bars) and controls (light bars) for each genotype combination. Dark-shaded genotype
combinations indicate high-risk of disease. Shown below each MDR model is the ViSEN network with main effects (circles), pairwise interactions
(lines), and three-way interactions (triangles) highlighted in proportion to their effect size.

not designed to detect complex interactions. The diversity
of results across the different models suggests that HIBACHI
produces complex interactions that will be useful for compar-
ing different methods for detecting complex genetic patterns.
Figure 5 shows example receiver operating characteristic
(ROC) curves summarizing the balance between specificity
(x-axis) and sensitivity (y-axis) for each machine learning
method on an example data set from Model 1 and Model 7.
Note that for a simple additive model each machine learning
method has a similar area under the curve (AUC) of approx-
imately 0.79. The model that includes a three-way epistatic
interaction as the primary genetic effect yields a diversity of
machine learning performance results with AUCs ranging
from a low of 0.53 for the naı̈ve Bayes method and a high of
0.67 for the classification tree. Again, this demonstrates the
value of these models and the data simulated from them for
comparing the performance of different machine learning
methods on detecting different kinds of genetic effects.

Discussion

We have presented a prototype of a new biology-based
method and software for simulating genotype–phenotype
relationships in population-based data. This approach is
different from other simulation methods in that it uses a hi-
erarchical mathematical framework for mapping genotypic
values from multiple loci to phenotypic values using gene
structure and function as a scaffold. This will facilitate that
simulation of genetic data that is more closely aligned with
our understanding of how genetic variation impacts pheno-
typic variation through a hierarchy of biochemical mecha-
nisms such as transcription and translation. This is important
as it is becoming clear that the detection and interpretation
of genetic associations in the context of genome-wide
association studies (GWAS) and whole-genome sequencing
(WGS) will depend on our understanding of genome biology
including, for example, regulatory regions [Cowper-Sal lari
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Figure 3. The left panels show screenshots of the biological and mathematical framework as well as the liability distribution for Models 5 (A)
and 6 (B). The black notches on the right side of the liability distributions indicate the threshold for disease. To the right of each HIBACHI model
is the MDR model showing the distribution of cases (dark bars) and controls (light bars) for each genotype combination. Dark-shaded genotype
combinations indicate high-risk of disease. Shown below each MDR model is the ViSEN network with main effects (circles), pairwise interactions
(lines), and three-way interactions (triangles) highlighted in proportion to their effect size.

et al., 2011; Karczewski et al., 2013]. We demonstrated
this new method by generating several models with mostly
independent main effects and several models with mostly
three-way epistatic interactions. We characterized data sim-
ulated from each of these models with a variety of methods
including MDR and several machine learning methods. The
result suggests that this approach is capable of generating
complex genotype–phenotype patterns that will be useful
for the development and testing of new genetic analysis
algorithms.

The approach presented here is a prototype that needs
much more development. There are several important ways
in which we envision modifying and extending the method
and the software. First, we limited the initial simulation to
six genetic variants from a single gene and some of its regula-
tory factors. This could be expanded significantly to include
additional regulatory components and many more genetic
variants within and across all the elements. For example, the

mRNA gene could be broken down into introns and exons
with multiple coding variants and noncoding variants that
control mRNA splicing. The regulatory region could be ex-
panded to include multiple variants in the promoter and
enhancer with many transcription factor binding sites. Epi-
genetic variation could also be introduced. Enhancing the
simulation is this way will expand the realism and complex-
ity of a single locus. We also envision the protein product
connecting with other protein products at a higher level
through additional mathematical functions. The ability to
include protein–protein interactions will allow for epistasis
across protein-coding genes that extends beyond the regu-
latory networks described above. There is no reason why
the simulation couldn’t be expanded conceptually to cell–cell
interactions and even tissue–tissue interactions that would
introduce a systems-level component. Environmental and
noise components would need to be incorporated into all
levels of the hierarchy. These additional layers of complexity
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Figure 4. The left panels show screenshots of the biological and mathematical framework as well as the liability distribution for Models 7 (A)
and 8 (B). The black notches on the right side of the liability distributions indicate the threshold for disease. To the right of each HIBACHI model
is the MDR model showing the distribution of cases (dark bars) and controls (light bars) for each genotype combination. Dark-shaded genotype
combinations indicate high-risk of disease. Shown below each MDR model is the ViSEN network with main effects (circles), pairwise interactions
(lines), and three-way interactions (triangles) highlighted in proportion to their effect size.

Table 1. Performance measures shown include information gain (IG) and classification accuracy. The first P-value shown is derived
from a standard permutation test although the second comes from the explicit test of epistasis

Model Functions IG (TF1) IG (TF2) IG (Enhancer) IG (TF1, TF2, Enhancer) Accuracy P-value P-value

1 ADD, ADD 0.079 0.067 0.081 0.002 0.732 <0.001 0.06
2 ADD, MULT 0.303 0.103 0.102 0 0.822 <0.001 0.043
3 MULT, MULT 0.137 0.134 0.148 0.002 0.817 <0.001 <0.001
4 XOR, XOR 0.006 0.003 0.008 0.033 0.644 <0.001 <0.001
5 MOD2, XOR 0.002 0 0.001 0.046 0.621 <0.001 <0.001
6 BITX, XOR 0.003 0.001 0.001 0.04 0.644 <0.001 <0.001
7 BITX, MOD2 0 0 0.002 0.058 0.636 <0.001 <0.001
8 CHS, BITA 0.146 0.002 0.001 0.16 0.7875 <0.001 <0.001

are needed to more closely mimic how real biological systems
work.

An important limitation of the current study is that we did
not consider effect size for each genetic variant. Our models
included moderate to large genetic effects that are not re-

alistic for common diseases. This can be addressed directly
by changing the encoding on the genotypes. For example,
we used 0, 1, and 2 to encode the different genotypes. This
produces genotypes that contribute zero, one or two units of
risk to the liability distribution depending of course on the
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Table 2. Machine learning method include classification trees
(CT), k-nearest neibors (kNN), naı̈ve Bayes (NB), neural networks
(NN), and support vector machines (SVM). Numbers shown are
classification accuracies

Classification accuracy

Model Functions CT kNN NB NN SVM

1 ADD, ADD 0.732 0.66 0.73 0.732 0.73
2 ADD, MULT 0.842 0.845 0.842 0.842 0.845
3 MULT, MULT 0.835 0.838 0.835 0.835 0.835
4 XOR, XOR 0.638 0.572 0.618 0.64 0.63
5 MOD2, XOR 0.625 0.575 0.488 0.618 0.59
6 BITX, XOR 0.625 0.59 0.555 0.625 0.568
7 BITX, MOD2 0.635 0.548 0.508 0.585 0.558
8 CHS, BITA 0.788 0.76 0.658 0.788 0.778

mathematical function. These numbers could be divided by
10, for example, to reduce the risk contribution relative to the
other genotypes. This would naturally reduce the effect size.
Alternatively, we could introduce coefficients at the mathe-
matical function layer. There is no reason why the result of any
mathematical function could not be combined with a con-
stant using a second function thus modifying its contribution
to the liability. Either one or both of these mechanisms would
allow the user to alter effect size. The challenge of course is
that it might not be apparent how the effect size will change
given the hierarchical complexity of the rest of the model.
This could be greatly facilitated by perhaps specifying rela-
tive effect sizes for each genetic variant that could be used as
a fitness objective in a heuristic search of the model space.
We address new directions for the heuristic search next.

As the model complexity grows the heuristic search com-
ponent will become more and more important as it becomes
infeasible to develop models by hand due to the extreme
number of parameters. We introduced here a simple random
search and heuristic genetic algorithm that conducts a paral-

lel stochastic search using the principles of natural selection.
Other search algorithms such as simulated annealing will also
be included in future versions thus allowing users to choose
the search algorithm they think will be most effective. An ele-
ment we think will be particularly effective for many different
stochastic search algorithms is Pareto optimization [Coello
et al., 2007; Horn et al., 1994]. This is a type of multiobjec-
tive optimization that allows the quality of models generated
in a stochastic search to be evaluated by multiple different
criteria that each are important to the user. Here, models are
placed in n-dimensional space according to their values for
n different criteria. The set of models for which there are no
better according to all the criteria are selected. These models
are referred to as nondominated and are said to exist on the
Pareto front. The goal is to generate variability in the models
through a method such as a genetic algorithm to move the
Pareto front forward. This approach is advantageous because
a model can be good for one criteria but perhaps not for
others and still be retained. This allows the stochastic search
algorithm to explore different criteria without penalty thus
preserving the diversity of a search that might otherwise stall
if only one criterion is used. This approach has worked well in
the context of evolutionary search algorithms [Moore et al.,
2013; Smits and Kotanchek, 2005]. Model criteria for HI-
BACHI could include, for example, the degree of interaction,
effect sizes determined by coefficients, diversity of functions,
normality or variance of the liability distribution, etc.

Finally, it will be important to develop an open-source and
user-friendly software package that allows users to manually
explore different models through a simple point and click in-
terface such as that provided in Orange [Demšar et al., 2013]
and through sophisticated stochastic search algorithms. The
visual component will be important given this simulation
approach is based on the hierarchical complexity of biological
systems. We do not intend HIBACHI to be a comprehensive
simulation package that produces patterns of genetic

Figure 5. Receiver operating characteristic (ROC) curves for each machine learning method applied to example data sets from Models 1 (A)
and 7 (B). Note the performance diversity of the different methods for Model 7 where the genetic effects are mostly due to three-way interactions.
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variations through methods such as forward-time simula-
tion. Rather, we anticipate users will generate realistic genetic
variation data with other existing packages and then will
load selected variants into HIBACHI for the simulation of
genotype–phenotype relationships. It is our working hypoth-
esis that this biology-driven simulation approach and soft-
ware will play an important role in the evaluation of new al-
gorithms that embrace, rather than ignore, the complexity of
genetic architecture and that make use of biology-driven data
analysis methods such as gene-set enrichment approaches. It
is time to move beyond simple statistical models for the both
the simulation and the subsequent analysis of genetic data.
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