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Even in the current era of metagenomics, the interpretation of nucleotide sequence
data is primarily dependent on knowledge obtained from a limited number of
microbes isolated in pure culture. Thus, it is of fundamental importance to expand
the variety of strains available in pure culture, to make reliable connections between
physiological characteristics and genomic information. In this study, two sulfur oxidizers
that potentially represent two novel species were isolated and characterized. They
were subjected to whole-genome sequencing together with 7 neutrophilic and
chemolithoautotrophic sulfur-oxidizing bacteria. The genes for sulfur oxidation in
the obtained genomes were identified and compared with those of isolated sulfur
oxidizers in the classes Betaproteobacteria and Gammaproteobacteria. Although
the combinations of these genes in the respective genomes are diverse, typical
combinations corresponding to three types of core sulfur oxidation pathways were
identified. Each pathway involves one of three specific sets of proteins, SoxCD,
DsrABEFHCMKJOP, and HdrCBAHypHdrCB. All three core pathways contain the
SoxXYZAB proteins, and a cytoplasmic sulfite oxidase encoded by soeABC is a
conserved component in the core pathways lacking SoxCD. Phylogenetically close
organisms share same core sulfur oxidation pathway, but a notable exception was
observed in the family ‘Sulfuricellaceae’. In this family, some strains have either core
pathway involving DsrABEFHCMKJOP or HdrCBAHypHdrCB, while others have both
pathways. A proteomics analysis showed that proteins constituting the core pathways
were produced at high levels. While hypothesized function of HdrCBAHypHdrCB is
similar to that of Dsr system, both sets of proteins were detected with high relative
abundances in the proteome of a strain possessing genes for these proteins. In addition
to the genes for sulfur oxidation, those for arsenic metabolism were searched for in the
sequenced genomes. As a result, two strains belonging to the families Thiobacillaceae
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and Sterolibacteriaceae were observed to harbor genes encoding ArxAB, a type of
arsenite oxidase that has been identified in a limited number of bacteria. These findings
were made with the newly obtained genomes, including those from 6 genera from which
no genome sequence of an isolated organism was previously available. These genomes
will serve as valuable references to interpret nucleotide sequences.

Keywords: sulfur-oxidizing bacteria, ‘Sulfuricellaceae’, Thiobacillaceae, Sterolibacteriaceae, comparative
genomics

INTRODUCTION

Phylogenetically diverse bacteria have the capability of utilizing
sulfur compounds as electron donors for respiration or
phototrophic carbon fixation (Muyzer et al., 2013; Sorokin et al.,
2013; Dahl, 2017). These sulfur-oxidizing bacteria have sulfur
oxidation pathways consisting of various components (examples
are shown in Figure 1), and distribution of the genes for sulfur
oxidation has been investigated in diverse prokaryotic genomes
(e.g., Meyer and Kuever, 2007; Meyer et al., 2007; Gregersen
et al., 2011; Watanabe et al., 2014; Scott et al., 2018). These
bacteria are also involved in the carbon and nitrogen cycles,
playing crucial roles in natural environments (e.g., Mattes et al.,
2013; Prokopenko et al., 2013; Herrmann et al., 2015; Dyksma
et al., 2016; Lau et al., 2016). With their physiological functions,
these bacteria have been intensively studied for applications such
as water treatment, bioleaching and bioremediation (Pokorna
and Zabranska, 2015; Lin et al., 2018). Recent advances in
DNA sequencing technology have expanded our knowledge
of uncultured microorganisms that are presumably oxidizing
sulfur compounds (e.g., Kojima et al., 2015a; Mußmann et al.,
2017; Tian et al., 2017; Hausmann et al., 2018). However,
even in metagenomic studies, the interpretation of the resulting
data is fundamentally dependent on knowledge obtained from
studies on cultured organisms. In addition, pure culture-based
experiments are also indispensable for verifying new concepts
proposed by culture-independent studies. Because the majority of
microorganisms remain unculturable, it is important to expand
the variety of culturable isolates and to take full advantage of the
available pure cultures.

Sulfuricella denitrificans skB26 and Sulfuritalea hydrogeni-
vorans sk43H are sulfur-oxidizing bacteria that were isolated
from a same freshwater lake using the same defined medium
(Kojima and Fukui, 2010, 2011). The isolation of these strains
marked the beginning of a series of studies performed to obtain
pure cultures of novel species of neutrophilic sulfur-oxidizing
bacteria. In these studies, variations of the same medium were
used with minor changes in composition to cultivate diverse
sulfur oxidizers, primarily from freshwater environments. The
use of this approach led to descriptions of 11 new species,
which established 10 genera in the classes Betaproteobacteria
and Gammaproteobacteria (Kojima and Fukui, 2010, 2011, 2014,
2016; Kojima et al., 2015b, 2016, 2017a,b; Watanabe et al.,
2015, 2016b,c). The description of these genera resulted in
some proposals for reclassification at higher taxonomic levels
(Watanabe et al., 2014, 2015; Kojima et al., 2015b, 2017b).
Among these sulfur oxidizers, complete genome sequences have

been reported for the type strains of four species, Sulfuricella
denitrificans, Sulfuritalea hydrogenivorans, Sulfurifustis variabilis,
and Sulfuricaulis limicola (Watanabe et al., 2014; Umezawa et al.,
2016).

In addition to the impact made on taxonomy, the isolation
and characterization of these sulfur-oxidizing bacteria have
contributed to a better understanding of the structure and
function of microbial communities. Their gene sequences have
served as reliable references to interpret nucleotide sequences
retrieved from environments. As reviewed and demonstrated
in previous studies, 16S rRNA gene sequences of the genera
Sulfuricella and Sulfuritalea have been detected in various
natural and engineered freshwater environments (Watanabe
et al., 2012, 2014, 2016a,c, 2017). The relatives of Sulfuricella
and Sulfuritalea have also been detected based on detection of
sequences related to other genes of these genera (Watanabe et al.,
2013; Kojima et al., 2014; Herrmann et al., 2015, 2017; Lau et al.,
2016; Kumar et al., 2017, 2018; Feng et al., 2018; Luo et al., 2018).
This is also the case for the other genome-sequenced species of
Sulfurifustis and Sulfuricaulis (Watanabe et al., 2016a; Herrmann
et al., 2017; Kumar et al., 2018; Włodarczyk et al., 2018).
Furthermore, detailed inspections of the genomes of Sulfuricella
and Sulfuritalea revealed the presence of characteristic genes for
arsenic metabolism, arxAB and arrAB (Watanabe et al., 2014,
2017). These findings motivated studies regarding the previously
unrecognized functions of these organisms. Consequently,
arsenate respiration by Sulfuritalea hydrogenivorans sk43H
was demonstrated (Watanabe et al., 2017), and arxA gene
sequences closely related to that of Sulfuricella denitrificans
skB26 were detected from freshwater environments (Ospino
et al., 2018). Genome sequences also provide a basis for
proteomic analyses. Based on the genome sequence of
Sulfuricella denitrificans skB26, expression pattern of proteins
involved in sulfur oxidation was investigated in this approach
(Watanabe et al., 2012).

As shown by the previous studies mentioned above, the
genome sequences of isolated and characterized sulfur oxidizers
provide a great deal of valuable information for microbiology
and related fields. In this study, the genomes of the remaining
7 species were sequenced along with those of two newly isolated
sulfur oxidizers. These organisms represent 8 genera in the classes
Betaproteobacteria and Gammaproteobacteria, including 6 genera
whose genomes have not been available until now. The obtained
sequences were used for comparative genomics with other sulfur
oxidizers to obtain insights into the mechanisms of their sulfur
metabolism. Furthermore, the expression of some notable genes
was confirmed in proteomic experiments.
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FIGURE 1 | Simplified overview of major components constituting sulfur oxidation pathways in the classes Betaproteobacteria and Gammaproteobacteria. For
clarity, reactions are not shown with exact stoichiometry. Pathways occurring in different organisms are summarized in this single picture, and a variety of pathways
could consist of various combinations of these components connected by their reactants and products. Core pathways are highlighted with arrows in blue (cSox),
red (Sox-Dsr-Soe) and green (Sox-Hdr-Soe), respectively. (A) The substrate for Dsr system is the persulfurated DsrC protein. (B) The substrate for HdrCBAHypHdrCB
was postulated as persulfides (Koch and Dahl, 2018). Abbreviations are as follows: Sqr, sulfide:quinone oxidoreductase; Fcc, flavocytochrome c sulfide
dehydrogenase; Sox, sulfur-oxidizing enzyme system; DoxDA, thiodulfate:quinone oxidoreductase; TetH, tetrathionate hydrolase; SOR, sulfur oxygenase reductase;
Dsr, dissimilatory sulfite reductase; Apr, dissimilatory adenylylsulfate reductase; Hdr, heterodisulfide reductase; Sat, sulfate adenylyltransferase; Soe, sulfite-oxidizing
enzyme; Sor, sulfur dehydrogenase. Details of these components are described in references cited in “Distribution of genes for sulfur oxidation” in main text.

TABLE 1 | General features of strains subjected to whole genome sequencing in this study.

Temperature range for pH range Hetrotrophic Anaerobic

Strain Family growth (◦C) for growth growth growth References

Sulfurisoma sediminicola BSN1 Sterolibacteriaceae 8–34 6.8–8.8 + + Kojima and Fukui, 2014

Sterolibacteriaceae sp. J5B Sterolibacteriaceae 28–50 5.8–8.7 + + This study

Sulfuriferula multivorans TTN ‘Sulfuricellaceae’∗ 8–32 5.3–8.6 + + Watanabe et al., 2015

Sulfuriferula thiophila mst6 ‘Sulfuricellaceae’∗ 5–34 5.8–8.1 − − Watanabe et al., 2016b

Sulfurirhabdus autotrophica BiS0 ‘Sulfuricellaceae’∗ 0–32 5.2–8.1 − − Watanabe et al., 2016c

Sulfuritortus calidifontis J1A Thiobacillaceae 15–48 6.2–8.7 − + Kojima et al., 2017a

Sulfurivermis fontis JG42 Thioalkalispiraceae 25–50 6.1–8.9 − + Kojima et al., 2017b

Sulfuriflexus mobilis ask1 Granulosicoccaceae 5–34 6.4–8.7 − + Kojima and Fukui, 2016

Thiomicrorhabdus sp. HaS4 Piscirickettsiaceae 0–25 6.2–8.8 − − This study

∗According to GTDB taxonomy (see text for detail).

MATERIALS AND METHODS

Isolation and Characterization of Novel
Sulfur-Oxidizing Bacteria
Sulfur-oxidizing bacteria capable of chemolithoautotrophic
growth were newly isolated and characterized. One of the novel
strains, strain HaS4, was isolated from the water of Lake Harutori
(Kubo et al., 2014). The other strain, strain J5B, was isolated
from Jozankei hot spring via an enrichment culture established
in a previous study (Kojima et al., 2017a). Prior to the detailed
characterization of these microbes, the phylogenetic positions of
the isolates were identified by sequencing their PCR-amplified
16S rRNA genes. The physiological characterizations were made
in consideration of the features of their close relatives that
were identified by the phylogenetic analysis. More detailed

procedures for the isolation and characterization of these strains
are described in the Supplementary Material.

Genome Sequencing
The newly isolated strains were subjected to whole-genome
sequencing, along with other strains that have been isolated
and maintained in our laboratory (Table 1). Genomic DNA
from each strain was extracted with a Wizard Genomic DNA
Purification Kit (Promega). For sequencing, different methods
were used depending on the strains, as described below and
summarized in Table 2.

The genome of Sulfurisoma sediminicola BSN1 was sequenced
with the Genome Sequencer FLX System (Roche). The
library preparation, FLX sequencing and subsequent PCR-
based gap closing were performed as described previously
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TABLE 2 | General features of genome sequences obtained in this study (deposited under BioProject PRJDB7001).

Strain Sequencing platform Total length (bp) No. of contig Topology of contigs DDBJ/Genbank accession number

BSN1 Roche FLX + Sanger 2,995,111 8 Linear BHVV01000000

TTN Illumina HiSeq 3,616,383∗ 92 Linear BGOW01000000

mst6 Illumina HiSeq 2,834,181∗ 55 Linear BHGL01000000

BiS0 Illumina HiSeq 3,878,683∗ 174 Linear BHVT01000000

J1A PacBio RS II 2,720,636 1 Circular AP018721

JG42 PacBio RS II 3,246,214 1 Circular AP018724

aks1 PacBio RS II 3,111,340 1 Circular AP018725

HaS4 PacBio RS II 2,537,035 2 Circular AP018722, AP018723

J5B PacBio RS II 2,811,460 3 Circular AP018718-AP018720

∗ Including estimated length of assembly gaps within scaffolds.

(Watanabe et al., 2012). The genomes of three strains of the
genera Sulfuriferula and Sulfurirhabdus were sequences using an
Illumina HiSeq platform. These genera were formerly classified
as members of the family ‘Sulfuricellaceae’ (Watanabe et al.,
2014, 2015), which has subsequently been integrated with the
family Gallionellaceae (Boden et al., 2017a). However, in this
study, the term ‘Sulfuricellaceae’ is used to refer to the lineage
consisting of these genera and Sulfuricella. The presence of the
family ‘Sulfuricellaceae’ independent from Gallionellaceae is
shown in the GTDB taxonomy1, which is based on extensive
phylogenetic analysis using whole genomes (Parks et al., 2018).
The genome sequences of Sulfuriferula and Sulfurirhabdus were
obtained by paired-end sequencing, and the outputs of the
Velvet assembler were directly used for further analyses. The
genome sequences of the other strains were obtained using
the PacBio RS II system with essentially the same methods as
described previously (Umezawa et al., 2016). From the resulting
linear contigs, circular contigs were manually constructed by
connecting both ends of each linear contig based on duplicated
sequences that appeared at the terminal regions.

Comparative Genome Analysis and the
Identification of Genes for Sulfur
Oxidation
For the comparative genome analysis, the genome sequences
of sulfur oxidizers belonging to the classes Betaproteobacteria
and Gammaproteobacteria were obtained from National
Center for Biotechnology Information (as of June 2017). The
organisms were selected for their ability for growth via the
oxidation of inorganic sulfur compounds, as demonstrated
by experiments with pure cultures. For the newly sequenced
genomes, protein-coding sequences were identified using the
RAST server (Aziz et al., 2008). In the newly and previously
sequenced genomes, the genes encoding for proteins involved
in sulfur oxidation (Sqr, FccAB, SoxXYZABCD, DoxDA, TsdA,
TetH, Sor, DsrABEFHCMKJOP, AprBA, AprM, HdrAACB,
Sat, HdrCBAHypHdrCB, SreABC, SoeABC, and SorAB) were
identified based on sequence similarity, with the proteins listed
in Supplementary Table S1 used as queries.

1http://gtdb.ecogenomic.org/

Proteomic Analysis
A proteomic analysis was performed for the strains Sulfuriferula
thiophila mst6, Sulfurirhabdus autotrophica BiS0, and
Sulfurifustis variabilis skN76. These strains were cultured in
a bicarbonate-buffered medium that contained thiosulfate as
the sole electron donor for chemolithoautotrophic growth.
The growth of the strains was monitored by measuring the
absorbance at 600 nm and by determining the concentrations of
thiosulfate and sulfate. The cells were harvested by centrifugation
and the proteins were extracted. The protein extracts were
reduced with dithiothreitol, alkylated with iodoacetamide,
and then digested with trypsin. The resulting peptide samples
were analyzed by nanoscale liquid chromatography coupled to
tandem mass spectrometry (nanoLC-MS/MS) using an Easy
nLC1000 liquid chromatography system coupled to a Q-Exactive
plus Orbitrap mass spectrometer (Thermo Fisher Scientific,
IL, United States). The proteins were identified from the
obtained mass spectra using Proteome Discoverer 2.0 (Thermo
Fisher Scientific) and in-house databases constructed from the
genomes of the respective strains. The abundance of proteins
was estimated as the exponentially modified protein abundance
index (emPAI) (Ishihama et al., 2005). For each strain, two sets
of proteomic data were obtained from independent cultures,
and the averaged emPAI values of the respective proteins were
calculated from the two datasets. The detected proteins were
sorted by the averaged emPAI value and were grouped into four
categories based on the following ranking: within the top 2%,
2–10%, 10–30%, and below 30%. More detailed procedures are
described in the Supplementary Material.

RESULTS AND DISCUSSION

Characteristics of Newly Isolated Strains
Two novel sulfur oxidizers, designated as strains HaS4 and J5B,
were obtained from lake water and a hot spring microbial mat,
respectively. The 16S rRNA gene sequence analysis revealed
that strain HaS4 belongs to the genus Thiomicrorhabdus in the
class Gammaproteobacteria, but it is distinct from the existing
species in this genus, with a sequence similarity lower than 96%
(Figure 2). All known Thiomicrorhabdus species are obligately
chemolithoautotrophic and oxidize inorganic sulfur compounds
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FIGURE 2 | Phylogeny of sulfur-oxidizing bacteria and distribution of genes for sulfur oxidation. Phylogenetic tree was constructed by neighbor-joining method with
16S rRNA gene sequences aligned by ClustalW. The number of final comparable positions was 1224. Bootstrap values (50% >) from 1,000 replicates are shown
next to branches. Branches are colorized on the basis of the family-level taxonomy. Strains shown in red are organisms whose genomes were sequenced in this
study. The tree was rooted with the 16S rRNA sequence of Sulfurimonas autotrophica OK10. Three right-most columns represent distribution of the core sulfur
oxidation pathways.
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(Boden et al., 2017b,c). It was also revealed that strain J5B belongs
to the family Sterolibacteriaceae in the class Betaproteobacteria
(Figure 2) and potentially represents a novel genus, because
none of previously described genera can accommodate this strain
(Supplementary Figure S1). The family Sterolibacteriaceae was
defined on the basis of 16S rRNA gene sequences and currently
consists of 6 monospecific genera (Boden et al., 2017a). Among
these genera, Sulfuritalea and Sulfurisoma have been described
as facultatively autotrophic sulfur oxidizers which utilize some
organic acids.

Strain HaS4 grew at a temperature range of 0–25◦C, with opti-
mum growth observed at 22◦C. The growth of this bacterium was
observed at a pH range of 6.2–8.8, with an optimum range of 6.6–
7.4. Strain HaS4 grew chemolithoautotrophically on thiosulfate,
tetrathionate, elemental sulfur and sulfide, but not on hydrogen
gas. The following organic substrates did not support growth of
the strain: lactate, acetate, formate, fumarate, glucose, maltose,
fructose, N-acetyl-D-glucosamine, sucrose, and cellobiose.

Strain J5B grew at temperature range of 28–55◦C, with
optimum growth observed at 45–50◦C. The growth of this strain
was observed at a pH range of 5.8–8.7, with an optimum range
of 6.7–7.4. Under nitrate-reducing conditions, strain J5B grew
chemolithoautotrophically on thiosulfate and elemental sulfur,
but not on sulfide, tetrathionate, or hydrogen gas. Strain J5B grew
anaerobically on the following organic substrates in the presence
of nitrate: pyruvate, lactate, acetate, propionate, succinate,
fumarate, malate, and butyrate. The following substrates could
not support anaerobic growth of strain J5B: benzoate, isobutyrate,
methanol, ethanol, formate, citrate, glucose, xylose, phenol,
o-cresol, and m-cresol.

Sequencing and Assembly of Genomes
The basic characteristics of the newly sequenced genomes
are summarized in Table 2. The draft genome sequence of
Sulfurisoma sediminicola BSN1 was obtained with a combination
of GS FLX and Sanger sequencing for gap closing. By closing
46 gaps within the scaffolds, 8 contigs were finally obtained.
For the Sulfuriferula species strains, draft genome sequences
were obtained using a HiSeq platform. By assembling paired-end
reads, 87 and 48 scaffolds were constructed for the strains TTN
and mst6, respectively. Some of these scaffolds are segmented into
two or more contigs separated by unclosed gaps, the lengths of
which were estimated. Similarly, 178 contigs in 83 scaffolds were
assembled for Sulfurirhabdus autotrophica BiS0. For the other 5
strains analyzed with PacBio, single circular chromosomes were
successfully constructed. Additionally, small circular contigs were
obtained for strains J5B and HaS4, suggesting the presence of
plasmids in these strains. These results indicated the advantage
of using the long-reads produced by PacBio sequencing to obtain
complete genome sequences.

Distribution of Genes for Sulfur Oxidation
The genes for sulfur oxidation identified in the newly sequenced
genomes were compared with those of other sulfur oxidizers,
and summarized in Figure 2. For the comparative analysis, the
genomes of 73 strains isolated in pure culture were obtained as
verifiable references, and genes encoding the following proteins

were identified in the genomes: Sqr (Griesbeck et al., 2002; Marcia
et al., 2009), FccAB (Chen et al., 1994), SoxXZYABCD (Friedrich
et al., 2000, 2001), DsrAB (Pott and Dahl, 1998), DsrEFH
(Stockdreher et al., 2012), DsrC (Stockdreher et al., 2012),
DsrMKJOP (Grein et al., 2010), HdrCBAHypHdrCB (Cao et al.,
2018; Koch and Dahl, 2018), SoeABC (Dahl et al., 2013), SorAB
(Kappler et al., 2000; Kappler and Bailey, 2005), AprBA (Lyric and
Suzuki, 1970; Fritz et al., 2002), AprM (Pires et al., 2003; Meyer
and Kuever, 2007; Parey et al., 2013), HdrAACB/QmoABHdrCB
(Meyer and Kuever, 2007; Ramos et al., 2012; Watanabe et al.,
2014), TsdA (Denkmann et al., 2012; Brito et al., 2015), SOR
(Kletzin, 1989, 1992), TetH (De Jong et al., 1997), DoxDA (Müller
et al., 2004), and SreABC (Laska et al., 2003). Except for the
SreABC, functions of these proteins in sulfur oxidation have been
examined in the previous studies listed above. The involvement
of SreABC in the reverse reaction of persulfide reductase was
suggested in a green sulfur bacterium but has not yet been
examined (Eddie and Hanson, 2013).

Core Sulfur Oxidation Pathways
Although combinations of sulfur oxidation genes are highly
diverse among the genomes, typical combinations were identified
as a genetic basis for three types of core sulfur oxidation
pathways that consisted of the following different sets of enzymes:
(1) the “cSox” pathway, with SoxXYZABCD; (2) the “Sox-
Dsr-Soe” pathway, with SoxXYZAB, DsrABEFHCMKJOP, and
SoeABC; and (3) the “Sox-Hdr-Soe” pathway, with SoxXYZAB,
HdrCBAHypHdrCB, and SoeABC (Figures 1, 2). All these core
pathways contain SoxXYZAB, and their structural genes were
the most commonly observed in the sulfur-oxidizing bacteria
analyzed. Wide distribution of soxXYZAB has also been shown
in a previous study (Meyer et al., 2007). SoxAX catalyzes
oxidative conjugation of thiosulfate to cysteine residue on SoxY
of the SoxYZ complex, and the sulfonate group is removed by
hydrolysis via SoxB with the generation of sulfate and SoxYZ with
the sulfane sulfur (Friedrich et al., 2000, 2001; Bamford et al.,
2002; Sauvé et al., 2007, 2009). It was also reported that a mixture
of the purified SoxAX, SoxYZ, and SoxB enzymes catalyzes sulfite
oxidation (Friedrich et al., 2000). Such functional versatility of
Sox complex may be related to its wide distribution.

One of the strains isolated in this study, strain HaS4, possesses
the cSox pathway consisting of SoxXYZABCD (Figure 2).
This pathway is completely conserved in sulfur oxidizers of
the family Piscirickettsiaceae. Genomic features of these sulfur
oxidizers were closely inspected in a recent study, which revealed
prevalence of the SoxCD among them (Scott et al., 2018). It also
pointed out that genes encoding SoeABC are absent from their
genomes. The comparative analysis in the present study revealed
that sulfur oxidizers with the cSox pathway generally lack
SoeABC (Figure 2), one of the most common sulfite-oxidizing
enzyme complexes in the analyzed strains. The SoxCD complex
oxidizes the sulfane sulfur of SoxZY-Cys-S− derived from the
SoxXYZAB reaction using water molecules to yield the sulfonate
group as SoxZY-Cys-SO3

− (Quentmeier et al., 2000; Zander et al.,
2010), which is further hydrolyzed to free sulfate ion by SoxB.
In a revised model of Sox reaction recently proposed, sulfur
carrier for the SoxCD reaction is SoxZY-Cys-S(n)-S− rather than
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SoxZY-Cys-S− (Grabarczyk and Berks, 2017). The cytoplasmic
sulfite oxidase SoeABC may not be important for organisms with
SoxCD because SoxXYZABCD completely oxidizes thiosulfate to
sulfate in the periplasm (cSox means “complete Sox system”).
Interestingly, it turned out that Thiorhodospira sibirica A12 and
Thiohalospira halophila DSM 15071 have soeABC in addition
to soxCD (Figure 2). These sulfur oxidizers also possess the
hdrCBAhyphdrCB gene cluster, which is always accompanied by
soeABC, as discussed below.

The Sox-Dsr-Soe pathway is the most common core
sulfur oxidation pathway in the newly sequenced genomes
from this study (Figure 2). In this pathway, sulfane sulfur
derived from thiosulfate via SoxXYZAB is transported to the
cytoplasm presumably in the form of persulfides, as suggested
by a phototrophic sulfur oxidizer (Frigaard and Dahl, 2008).
Persulfide sulfur is then transferred to DsrC via Rhd, TusA, and
DsrEFH (Cort et al., 2008; Stockdreher et al., 2012, 2014). The
persulfurated form of DsrC is considered to be the substrate for
DsrAB, as shown by the crystal structure of the DsrABC complex
from Desulfovibrio vulgaris (Oliveira et al., 2008). The siroheme-
containing cytoplasmic enzyme DsrAB is involved in the reverse
reaction of reduction of sulfite to sulfide as demonstrated in
sulfate-reducing prokaryotes (Schedel et al., 1979; Pott and Dahl,
1998); generates sulfite and disulfide bond in DsrC, which is
reduced to free thiols by the DsrMKJOP transmembrane complex
for restart of the sulfur relay system (Dahl et al., 2005; Pires et al.,
2006; Grein et al., 2010). The resulting sulfite is oxidized to sulfate
by the cytoplasmic enzyme complex SoeABC (Dahl et al., 2013).
In this study, it was found that the genes encoding the SoeABC
complex are completely conserved in the dsr-positive sulfur
oxidizers (Figure 2). The reactions catalyzed by Dsr and SoeABC
both occur in the cytoplasm (Figure 1), and this colocalization
may be one of the reasons for the coexistence of the genes
encoding Dsr and SoeABC in the genomes. In theory, sulfite
generated by DsrAB can be oxidized by Sox proteins (Friedrich
et al., 2000), but transport of the sulfite across the cytoplasmic
membrane would be required in this case since the Sox reaction
occurs in the periplasm (Figure 1).

The other core sulfur oxidation pathway is Sox-Hdr-Soe.
This pathway essentially consists of the proteins of the Sox-
Dsr-Soe pathway, but Dsr proteins are replaced with Hdr
proteins that are encoded in the gene cluster hdrCBAhyphdrCB
(Figure 1). Recently, the role of these Hdr proteins in sulfur
oxidation was genetically investigated with Hyphomicrobium
denitrificans, a bacterium which degrades dimethylsulfide (DMS)
(Koch and Dahl, 2018). The mutagenesis of hdr genes resulted
in loss of ability to metabolize DMS and a lower rate of
the sulfate formation from thiosulfate than wild type under
chemoorganoheterotrophic growth conditions. Although the
reaction catalyzed by HdrCBAHypHdrCB has not yet been
revealed, involvement of these proteins in the sulfite generation
from persulfides was proposed based on sequence similarities
of hdr genes with archaeal counterparts along with mutagenesis
experiments. In thiosulfate metabolism, HdrCBAHypHdrCB
might functionally substitute for Dsr system as shown in Figure 1.
As is the case with the dsr genes, all the analyzed genomes with
hdrCBAhyphdrCB also harbor soeABC genes.

The majority of the strains analyzed have one of the three
core pathways for sulfur oxidation, although some exceptions
were noted, as described below. Among the 82 strains included
in the comparative analysis (shown in Figure 2), three strains
lack some or all of the genes encoding SoxXYZAB, the
common component of the three core pathways. The strains
Ectothiorhodospira magna B7-7, Thioflavicoccus mobilis 8321,
and Allochromatium warmingii DSM173 are sulfur oxidizers
that utilize sulfur compounds other than thiosulfate. Leucothrix
mucor DSM2157 and Beggiatoa leptomitiformis D-402 harbor the
genes encoding SoxXYZAB and SoeABC but lack those encoding
conserved proteins in the core pathways. In contrast to these 5
strains lacking components for the core pathways, some other
strains were observed to have full gene sets for two core pathways.
It has been noted that the dsr and hdrCBAhyphdrCB genes are
almost exclusive to each other, but a small number of organisms
have both genes in their genomes (Koch and Dahl, 2018). This
notable overlap was observed in the genomes of Sulfurirhabdus
autotrophica BiS0 and Sulfuriferula multivorans TTN, which were
sequenced in this study. In addition, a recent study revealed
that three Acidiferrobacter strains have dsr and hdrCBAhyphdrCB
along with soeABC (Issotta et al., 2018). These findings indicate
that these strains have two core pathways, Sox-Dsr-Soe and
Sox-Hdr-Soe. As mentioned above, Thiorhodospira sibirica A12
and Thiohalospira halophila DSM 15071 harbor both soxCD and
hdrCBAhyphdrCB, representing organisms with cSox and Sox-
Hdr-Soe pathways. In this study, no organism possessing both
the cSox and Sox-Dsr-Soe pathways was identified. The soxCD
and dsr genes are well known to be mutually exclusive (Meyer
and Kuever, 2007; Frigaard and Dahl, 2008; Gregersen et al.,
2011; Lenk et al., 2012).

Variations in Sulfur Oxidation Pathways
Within the Family ‘Sulfuricellaceae’
The patterns for the occurrence of the core sulfur oxidation
pathways were generally consistent with the 16S rRNA gene-
based phylogeny (Figure 2). In other words, phylogenetically
close organisms share a similar genetic basis for sulfur oxidation.
However, there were some notable deviations from this tendency.
In particular, considerable variations were observed among the
genomes of ‘Sulfuricellaceae’ strains. In this family, 6 genomes
of isolated strains were available for the analysis, including three
genomes obtained in this study. Sulfuriferula thiophila mst6 and
Sulfuriferula sp. AH1 lack the dsr operon, which is present in
all the other members of the family. In contrast, two Sulfuricella
strains lack the hdrCBAhyphdrCB cluster, which all the other
strains possess. Consequently, 6 ‘Sulfuricellaceae’ strains were
classified into three types, two strains with the Sox-Dsr-Soe
pathway, two strains with the Sox-Hdr-Soe pathway, and two
strains with both pathways. A close inspection of the genomes
of these bacteria revealed that the hdrCBAhyphdrCB cluster is
located between genomic regions that are conserved among
these strains, and these conserved regions are directly adjacent
to each other in the genomes of Sulfuricella strains lacking
this gene cluster (Figure 3). This observation may indicate that
a common ancestor of ‘Sulfuricellaceae’ had hdrCBAhyphdrCB
and that Sulfuricella strains lost this cluster during evolution.
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FIGURE 3 | Gene arrangement around hdrCBAhyphdrCB gene cluster in the genomes of ‘Sulfuricellaceae’. Genes of hdrCBAhyphdrCB cluster are shown in red.
Genes shown in blue are conserved along with the hdr genes in the ‘Sulfuricellaceae’. Genes shown in green and yellow are conserved in the all ‘Sulfuricellaceae’
genomes in the same order and direction.

The coexistence of the hdrCBAhyphdrCB and dsr genes in
Sulfuriferula multivorans TTN and Sulfurirhabdus autotrophica
BiS0 may represent a transition state, and one of them may be
selected from the genomes in the future.

Another example of differences observed among organisms
in this family is that Sulfuriferula multivorans TTN has
doxDA gene encoding a membrane-bound thiosulfate:quinone
oxidoreductase, which couples oxidation of thiosulfate to
reduction of quinone (Müller et al., 2004). DoxDA is one
of the most minor proteins involved in sulfur oxidation in
the reference strains (Figure 2). The gene encoding DoxDA
was only identified in the acidophilic gammaproteobacteria
Acidihalobacter ferrooxidans and Acidiferrobacter thiooxidans
(Valdés et al., 2008; Quatrini et al., 2009; Issotta et al., 2018).

Expression of Proteins Involved in
Sulfur Oxidation
The expression of the proteins required for sulfur oxidation was
investigated for the whole proteomes of three sulfur oxidizers
with different sets of the core pathways, including Sulfuriferula
thiophila mst6 with Sox-Hdr-Soe, Sulfurifustis variabilis skN76
with Sox-Dsr-Soe, and Sulfurirhabdus autotrophica BiS0 with
both. In the proteomes of the strains grown on thiosulfate,
proteins corresponding 41–48% of the total protein-coding
genes predicted in the corresponding genomes were detected.
In all the strains, the summed abundance of the top 10% most
abundant proteins represented more than 90% of the total protein
abundance (Supplementary Figure S2). As shown in Figure 4,
almost all the proteins involved in sulfur oxidation were detected
in the proteomes. Majority of the Sox, Dsr, and Hdr proteins
were among the top 10% most abundant proteins. In addition to
these major components of the core pathways, some additional
proteins were also detected among the most abundant proteins
in strain skN76.

Compared to the Sox and Dsr proteins, evidence for
the essential contribution of the Hdr proteins encoded by

hdrCBAhyphdrCB in sulfur oxidation had been limited. The
involvement of this gene cluster in sulfur oxidation was
previously investigated by transcriptomic approaches using
Acidithiobacillus strains (Quatrini et al., 2009; Chen et al.,
2012). In the transcriptomes of these strains fed elemental
sulfur or tetrathionate, the transcripts from this gene cluster
were detected except for that of orf2 (referred to as hyp in
this study) located between hdrCBA and hdrCB. A recent
study proposed the involvement of HdrCBAHypHdrCB
in generation of sulfate from thiosulfate via the sulfite
formation from persulfides (Koch and Dahl, 2018). In
the present study, the products of this gene cluster were
detected in Sulfuriferula thiophila mst6 and Sulfurirhabdus
autotrophica BiS0 grown on thiosulfate. These results support
the involvement of these proteins in thiosulfate-dependent
chemolithoautotrophic growth.

Sulfurirhabdus autotrophica BiS0 has both the Sox-
Dsr-Soe and Sox-Hdr-Soe pathways. A previous study of
Hyphomicrobium suggested that HdrCBAHypHdrCB catalyzes
the oxidation of protein-bound persulfide sulfur to generate
sulfite and that this reaction can functionally substitute for that
catalyzed by the Dsr proteins (Koch and Dahl, 2018). In the
Sulfurirhabdus autotrophica BiS0 proteome, the products of
both the dsr and hdrCBAhyphdrCB operons were detected at
a relatively high abundance (Figure 4). These results suggest
that strain BiS0 uses both systems to generate sulfite. The
biological importance of the apparent simultaneous expression
of these proteins is currently unclear. This subject may be an
important key to understanding the evolution of sulfur-oxidizing
systems, because many sulfur oxidizers have two or more genes
performing the same physiological function. Such functional
overlap was prominently observed in the genome and proteome
of Sulfurifustis variabilis skN76. This strain has two copies
each of dsrAB, aprBA and fccAB genes (Umezawa et al., 2016).
In its proteome, encoded products of these genes were all
detected (Figure 4).
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FIGURE 4 | Expression levels of proteins for sulfur oxidation estimated with
proteomic analysis of Sulfuriferula thiophila mst6, Sulfurirhabdus autotrophica
BiS0 and Sulfurifustis variabilis skN76 grown on thiosulfate. The detected
proteins were grouped into four categories based on ranking of abundance
(see text for detail). Proteins highlighted with shaded boxes are components
of the core sulfur oxidation pathway. ∗HdrA-MvhD, HdrA fused with MvhD;
∗∗ND, not detected.

Genes for Arsenite Oxidation and
Respiratory Arsenate Reduction
Some prokaryotes, including sulfur oxidizers, are known to have
genes encoding either of the two types of arsenite oxidases,
Aio or Arx (van Lis et al., 2013). The arxAB genes, which
encode catalytic units of the Arx, have been identified in a
limited number of bacteria that primarily belong to the class
Gammaproteobacteria (Zargar et al., 2012; Ospino et al., 2018).
In this study, the genomes of Sulfuritortus calidifontis J1A and
strain J5B were observed to harbor the arxAB genes. Among
sulfur oxidizers, the arxAB genes have been only identified
in members of the family Ectothiorhodospiraceae isolated from
salty alkaline environments. As an exception, the genes were
identified in a plasmid from Sulfuricella denitrificans skB26,
which is a neutrophilic betaproteobacterium belonging to the
family ‘Sulfuricellaceae’ (Watanabe et al., 2014). The strains J1A
and J5B are neutrophilic betaproteobacteria isolated from a same
microbial mat, but they belong to the families Thiobacillaceae
and Sterolibacteriaceae, respectively. In the present study,
the genomes of four other strains belonging to the families
‘Sulfuricellaceae’ and Sterolibacteriaceae were also sequenced
(Table 1) but the arxAB genes were identified in none of them.
In contrast to strain skB26, the arxAB genes of strains J1A and
J5B are located in their chromosomes. Interestingly, strain J1A
also has the aioAB genes encoding catalytic units of Aio in its
genome. To the best of our knowledge, this is the first report
describing the coexistence of aioAB and arxAB genes in single
bacterial strain isolated in pure culture. It will be subject of future
work to identify roles of these two oxidases in arsenic metabolism
of the strain J1A.

Sulfuritalea hydrogenivorans sk43H is the first betaproteo-
bacterium for which the ability for arsenate respiration was
demonstrated, and it has arrAB genes encoding respiratory
arsenate reductase (Watanabe et al., 2017). In this study,
the genomes of its relatives within the same family were
sequenced. Although Sulfurisoma sediminicola BSN1 and strain
J5B have physiological traits that are similar to those of strain
sk43H (e.g., facultatively anaerobic, facultatively autotrophic,
neutrophilic), the arrAB genes were not observed in their
genomes. These observations of the arx and arr indicate that
the presence of these genes in genomes cannot be predicted by
phylogenetic proximity.

CONCLUSION

In this study, the genomes of 9 sulfur-oxidizing bacteria were
sequenced. These sulfur oxidizers belong to 8 genera, including
6 for which no genome sequence of a cultured organism was
available. In the comparative genome analysis, typical suites of
genes were identified for core sulfur oxidation pathways. The
results of the analysis suggested the crucial importance of the
cytoplasmic sulfite oxidase encoded by soeABC in the sulfur
oxidizers without soxCD. In addition, large variations in the
sulfur oxidation pathways were observed among members of
the family ‘Sulfuricellaceae’. Furthermore, the arx genes were
discovered in the families Thiobacillaceae and Sterolibacteriaceae.
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These findings provide some insights into the mechanism and
evolution of sulfur metabolism and expand knowledge of arsenite
oxidases. The primary significance of this study may lie in
providing the genome sequences of 9 sulfur oxidizers, which are
certainly linked to the identity and physiology of the respective
organisms. These genomes will serve as valuable references for
various kinds of sequence-based analyses including amplicon
sequencing of various genes, metagenomics, metatranscriptomics
and metaproteomics.
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