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Nitric oxide (NO) at a high concentration is an effector to kill pathogens during insect
immune responses, it also functions as a second messenger at a low concentration to
regulate antimicrobial peptide (AMP) production in insects. Drosophila calcineurin subunit
CanA1 is a ubiquitous serine/threonine protein phosphatase involved in NO-induced AMP
production. However, it is unclear how NO regulates AMP expression. In this study, we
used a lepidopteran pestOstrinia furnacalis and Drosophila S2 cells to investigate how NO
signaling affects the AMP production. Bacterial infections upregulated the transcription of
nitric oxide synthase 1/2 (NOS1/2), CanA and AMP genes and increased NO
concentration in larval hemolymph. Inhibition of NOS or CanA activity reduced the
survival of bacteria-infected O. furnacalis. NO donor increased NO level in plasma and
upregulated the production of CanA and certain AMPs. In S2 cells, killed Escherichia coli
induced NOS transcription and boosted NO production, whereas knockdown of NOS
blocked the NO level increase caused by E. coli. As in O. furnacalis larvae,
supplementation of the NO donor increased NO level in the culture medium and AMP
expression in S2 cells. Suppression of the key pathway genes showed that the IMD (but
not Toll) pathway was involved in the upregulation of CecropinA1, Defensin, Diptericin,
and Drosomycin by killed E. coli. Knockdown of NOS also reduced the expression of
CanA1 and AMPs induced by E. coli, indicative of a role of NO in the AMP expression.
Furthermore, CanA1 RNA interference and inhibition of its phosphatase activity
significantly reduced NO-induced AMP expression, and knockdown of IMD suppressed
NO-induced AMP expression. Together, these results suggest that NO-induced AMP
production is mediated by CanA1 via the IMD pathway.
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INTRODUCTION

Higher animals are armed with innate and adaptive immunity,
but insects rely solely on less-specific innate immune responses
to defend against invading pathogens in their habitats (1–3). In
insects, bacterial and fungal pathogens trigger the host immune
system via humoral and cellular components (4–6). Different
immune challenges induce local and/or systemic responses (7, 8),
suggesting that immune signaling pathways are extensively
interlocked (9). Limited nutrients and short life spans for most
insects require them to properly allocate energy between
immune responses and other physiological processes such as
development and reproduction (10–13). To maximize the reward
of energy investment in immune responses, the interlocked
immune signaling pathways must be regulated elaborately to
avoid excessive immune responses. Reactive oxygen species
(ROS) reaction and antimicrobial peptide (AMP) production
are two primary humoral responses in the innate immune system
of insects (4, 14). Insights into the cross-talk between them are
important for understanding how different defense responses are
coordinated to control infections.

ROS formation is a rapid, early response to pathogen invasion
in insects. ROS can directly kill the invaders as effectors or
function as signaling molecules to regulate the immune
responses (15, 16). On the other hand, ROS can damage host
cells as well (17). ROS include superoxide anion O •−

2 , H2O2,
OH•, 1O2, and NO, each with a highly reactive oxygen atom (1,
18–20). They act as signaling compounds and/or toxic
byproducts in cells (21). Among them, NO is a gaseous free
radical functioning as a signal messenger for several
physiological processes (22), including regulation of innate
immunity (23–25). In mammals, NO is produced by nitric
oxide synthase-2 (NOS2) in macrophages to control bacterial
infection, which induces NOS2 transcription (26). In Drosophila
melanogaster, NO is involved in the hemocyte encapsulation
(27). In mosquitos, NO kills the Plasmodium parasites and
increased NO to control the infection. Inhibition of NOS
increases the rate of Plasmodium infection and that results in
more deaths of infected mosquitos (28, 29). Blood meal taken by
Anopheles stephensi catalyzes the conversion of NO to toxic
metabolites, which kill the parasite in the gut (30).

AMP production is an effective immune response against
microbial infection in insects (31, 32). They kill bacteria, fungi,
and viruses sometimes (33–36). The Toll and IMD pathways
actively participate in AMP production. Peptidoglycans (PGs) in
the bacterial cell wall are recognized by the peptidoglycan
recognition protein (PGRPs) to trigger the Toll and IMD
pathways directly or indirectly. DAP-PGs from Gram- and
some Gram+ bacteria are recognized by PGRP-LC/LE to
induce the processing of IMD, FADD, Dredd, and Relish, and
then the cleaved Relish enters the nucleus to activate AMP
transcription (14, 36–40). Proteolytically activated Spätzle
binds to the transmembrane receptor Toll to induce the
intracellular signal transduction through MyD88, Tube/Pelle
and Cactus. Finally, transcription factors such as Dorsal and
Dif translocate into the nucleus to trigger AMP expression (14,
36, 38–40). Besides the classical Toll and IMD pathways, NO,
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eicosanoids, and calcineurin are also involved in the induced
synthesis of AMPs in several model insects (25, 41).

Cross-talks among immune pathways keep the insect defense
system running effectively and economically (15, 16, 42). Innate
immunity is conserved at different levels in mammals, insects,
and plants (43–45). In Drosophila larvae, NO activates the IMD
pathway to produce Diptericin after infection by Gram-negative
bacteria (46). The ROS stress upregulates NO production to
enhance Diptericin synthesis in the adult gut (15). Furthermore,
calcineurin subunit CanA1 is required for the NO regulation of
AMP production in the fly (47). In Spodoptera exigua, injection
of NOS inhibitor or knockdown of NOS reduced the AMP
expression. In the absence of bacteria, an NO analog induced
AMP expression (25). A cytokine named paralytic peptide
induced NOS expression in the silkworm and triggered the
AMP transcription in fat body (48). While AMP induction by
NO is independent of the IMD or Toll pathway in Drosophila
(41), this is dissimilar to the case in S. exigua (25), indicating that
mechanism for NO regulation of AMP expression is unclear in
insects. Comparative studies in different species are therefore
needed to understand reasons for the discrepancy. Towards this
goal, we used the Asia corn borer Ostrinia furnacalis as a model
to investigate how NO signaling may communicate with the
signaling pathways for AMP induction. NO strongly upregulated
the AMP expression in O. furnacalis larvae, inhibition of NOS or
CanA caused higher susceptibility of O. furnacalis to bacterial
infection. In Drosophila S2 cells, IMD pathway connects NO
signal to AMP production through CanA1.
MATERIALS AND METHODS

Cell Culture and Insect Rearing
Drosophila S2 cells (Thermo Fisher, R69007) were maintained in
Schneider’s Drosophila medium (Merck, S9895) containing 10%
fetal bovine serum (FBS, Thermo Fisher, A3160802) (49). S2 cells
were cultured in a 27°C incubator. All the S2 cells were plated in
12-well plates at 1×106 cells/well for different treatments (1 mL
medium per well). Asian corn borers, O. furnacalis larvae were
reared using an artificial diet at 25 ± 1°C, RH > 80%, and with a
photoperiod of 16 h light and 8 h darkness (13, 50).

Bacterial Culture and Preparation of
Dead Bacteria
Wild-type bacteria Escherichia coli, Pseudomonas aeruginosa and
Micrococcus luteus (All the bacteria strains were kindly donated
by Professor Zhiqiang Lu, Department of Entomology, College of
Plant Protection, Northwest A & F University, China) picked
from LB plates were grown overnight in Luria-Bertani (LB)
medium at 37°C and 200 rpm. The 100 mL cultured bacteria
were then inoculated into 10 mL fresh LB medium and cultured
at 37°C until OD600 was close to 0.6. Finally, the bacteria were
harvested by centrifugation at 8000×g for 10 min. After washing
for 3 times, bacteria pellets were resuspended with phosphate
buffered saline (PBS) for injection. To prepare the dead bacteria,
May 2022 | Volume 13 | Article 905419
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E. coli and M. luteus cells from 100 mL LB medium were
resuspended in 1 mL PBS and 40 mL 75% 2-propanol. After
incubation for 1 h at 37°C and 200 rpm, dead bacteria were spun
down and washed 3 times with PBS. Finally, the dead bacteria
were resuspended in 1 mL PBS to treat S2 cells.

Survival Rate Assay of O. furnacalis
Larvae after Infection
To determine the number of bacteria for injection, day 1, 4th

instar O. furnacalis larvae were fed on artificial diet containing
5 mL (10 mg/mL) tetracycline that eliminates indigenous
bacteria. The diet was replaced with fresh diet without
antibiotic at 24 h post antibiotic treatment. Day 3, 4th instar
larvae were injected with 1×103, 1×104, 1×105, or 1×106 live
cells of P. aeruginosa or M. luteus. PBS was used as control.
There were 20 larvae in each group. The survival in each group
was recorded at 12 h intervals. All the data was analyzed by the
log-rank test using Prism 5.0.

Treatment of S2 Cells and Infection of
O. furnacalis Larvae
S2 cells cultured in 1 mL medium were incubated with 20 µL of
killed bacteria at different amounts. At 24 h post bacterial
exposure, the medium was collected for nitric oxide
determination, and 500 µL Trizol (Invitrogen) was used to
extract RNA from the S2 cells for qPCR analysis. Day 1, 4th

instar larvae were fed on the diet containing 50 mg/mL
tetracycline to eliminate indigenous bacteria before injection
with bacteria as described previously (51). At 24 h after
antibiotic feeding, larvae were transferred to fresh diet without
antibiotic. Day 3, 4th instar larvae were injected with 1×104 of live
P. aeruginosa and M. luteus or along with NOS inhibitor/CanA
inhibitor (2 nmol each) for determination of survival curve or
qPCR analysis. All the results generated in survival assay were
recorded at 12 h intervals and the whole O. furnacalis larvae at
certain times post infection were treated with Trizol regent for
RNA extraction (Invitrogen). PBS was used as control. All the
treatments were performed in triplicate.

RNA Interference
The dsRNA products were prepared as previously described (52).
cDNA of Drosophila IMD, MyD88, NOS, and CanA1 and
plasmid GFP- pEASY-T1 (TransGen) were used as templates
for PCR amplification using gene-specific primers (Table S1).
The conditioned medium (1 mL) from S2 cells cultured in 12
well plate was replaced with 0.5 mL of Schneider’s Drosophila
medium containing 6 µg of dsRNA samples of IMD, MyD88,
NOS, CanA1, or a mixture of dsIMD and dsMyD88 (6 µg each).
After 1 h incubation, 0.5 mL of Schneider’s Drosophila medium
containing 10% FBS was added to each well. Equal amount of
GFP dsRNA was added as a control. RNAi efficiency was
examined three days after dsRNA treatment using qPCR as
described below. For the RNAi treatment combined with
bacterial incubation, the killed bacteria were added to each well
at 72 h post dsRNA treatment, and total RNA samples were
prepared 24 h later.
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Treatment of S2 Cells With Compounds
Stock solution (250 mM) of diethylamine NONOate (Sigma
D184, an NO releasing compound or NOC) was dissolved in
water prior to use. To treat S2 cells, the NOC at 2.5 mM final
concentration was used to increase NO level in the medium. S2
cell and medium samples were collected at 0, 6, 12, 24, and 48 h
after NOC addition. Calcineurin A inhibitor FK506 (Sigma,
F4679) was dissolved in DMSO to make a 100 mM stock.
FK506 at 0, 10, 20, 30 and 50 mM along with 2.5 mM NOC
was used to treat S2 cells and test influence of FK506 on the
regulation of AMP production by NO. S2 cell and medium
samples were collected at 24 h post NOC-FK506 treatment, PBS
was used as control. Stock solution (400 mM) of Nw-nitro-L-
arginine methyl ester (Sigma N5751, L-NAME, a NOS inhibitor)
was dissolved in water and used at 200 mM along with dead
bacteria in the medium as indicated to test the effect of L-NAME
on AMP expression. S2 cells and medium samples were collected
at 24 h post treatment. PBS and killed bacteria were used as
negative and positive controls, respectively.

qPCR Analysis
S2 cells (1×106) or 3 whole larvae were collected from each
biological treatment and replicate. Total RNA was extracted
using 1 mL Trizol, RNA concentrations were determined on
an Eppendorf BioPhotometer D30, and RNA integrity was
examined by 1% agarose gel electrophoresis. cDNA templates
were generated from 1 mg total RNA using HiScript III RT
SuperMix for qPCR in the presence of genomic DNA wiper
(Vazyme, Nanjing, China). Diluted cDNA (1:10, 1 mL) was used
for qPCR analysis on a Bio-Rad CFX96 Real Time Detection
System (Bio-Rad, CA, United States) in 20 mL reaction
containing 1 mL of cDNA, 10 mL of AceQ Universal SYBR
qPCR Master Mix (Vazyme), 1.0 mL each of forward and
reverse primers (10 mM) and 7 mL ddH2O. The thermal
cycling conditions were initial denaturation at 95°C for 10
min, followed by 40 cycles of denaturation at 95°C for 10 s
and annealing-extension at 60°C for 30 s, with melting curve
measured from 60 to 95°C. All the treatments were in triplicate.
O. furnacalis reference gene ribosomal protein L8 (RPL8) gene
(53) and D. melanogaster reference gene ribosomal protein 49
(RP49) (54)were used to calibrate the relative expressions of
target genes. The mRNA level changes of interested genes were
determined using the relative quantitative method (2−DDCt) (55).
qPCR data were plotted using GraphPad (Version 9.0.2) for
statistical analysis. Student’s t-test results are shown as ∗, p <
0.05; ∗∗, p < 0.01; ∗∗∗, p < 0.001. Results of one-way ANOVA
followed by Tukey’s test are marked similarly.

Determination of Nitric
Oxide Concentration
To determinate NO concentrations in the media of S2 cells and
hemolymph of O. furnacalis larvae, the samples were collected
by centrifugation at 16,000×g for 30 s to remove cells, and the
supernatants were used for measuring NO concentrations. The
supernatants of medium samples and 1:100 diluted larval
plasma (30 mL) were taken to measure NO levels using Total
May 2022 | Volume 13 | Article 905419
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Nitric Oxide Assay Kit (Beyotime, Beijing, China) according to
the manufacturer’s instructions (56).
RESULTS

Inhibition of NOS and CanA Increased
the Mortality of O. furnacalis After
Bacterial Infection
To assess the immune stimulatory effect of P. aeruginosa and M.
luteus on O. furnacalis, we injected larvae with different numbers
of live bacteria and found that the larvae reached 50% mortality
after injected with about 1×104 CFUs of P. aeruginosa or M.
luteus (Figure S1). Thus, 1×104 CFUs of these two bacteria were
used to challenge O. furnacalis larvae in later experiments.
Injection of the NOS or CanA inhibitor caused higher
mortality of larvae upon bacterial challenge (Figure 1),
suggesting an involvement of NOS and CanA in the immune
responses to bacterial infection in O. furnacalis.
Induction of NOS, CanA and AMPs by
Bacterial Infection in O. furnacalis Larvae
NO and AMPs are effectors that eliminate invading bacteria in
insects, and some research indicated cross-talks between ROS
and AMP production (47). To investigate whether or not NOS
and CanA are involved in the processes in O. furnacalis larvae,
we first measured the transcript levels of NOS, CanA and AMPs
under immune stress (Figure 2). NOS1 but not NOS2 mRNA
level was strongly induced (Figures 2A, B), and the expression
levels of NOS1 and NOS2 in different tissues showed that NOS1
was mainly expressed in hemocytes, while NOS2 were mainly
expressed in fat body (Figure S5). NOS1 and CanA showed a
similar expression pattern, which were mainly upregulated at 4
and 12 h post infection (Figures 2A, C). In addition, we found
that CanA was also mainly expressed in hemocytes (Figure
S5). The AMP effector genes were upregulated following the
increase of NOS1 and CanA expression (Figures 2D−H).
These data provided clues for us to explore the mechanism
for NO-regulated AMP expression during immune responses.
Frontiers in Immunology | www.frontiersin.org 4
NO Increased mRNA Levels of CanA and
Some AMPs in O. furnacalis Larvae
NOS catalyzes the production of NO from an endogenous
substrate L-arginine. After infection with P. aeruginosa or M.
luteus, NO concentrations in hemolymph increased significantly
at 4, 12, 24 and 48 h (Figures 3A, B). Injection the diethylamine
NONOate (NOC, an NO donor) also increased NO concentration
to a similar level in hemolymph (Figure 3C). NO also induced the
expression of CanA, and Defensin, Lebocin4 and Moricin
(Figures 3D−G). However, NOC did not induce Attacin,
CecropinA or Gloverin expression (Figure S2), suggesting NO
has some specificity in inducing AMP production. Thus, we
hypothesized that CanA may participate in bacteria-induced NO
production to regulate the expression of certain AMPs.

E. coli and NO Releasing Compound
(NOC) Increased NO Concentration in the
Medium of S2 Cells
To understand how NO may regulate AMP production, we used
Drosophila S2 cells in further tests. Incubation with dead M.
luteus and E. coli induced S2 cells to make AMPs (Figure S3). E.
coli from 1 mL culture at OD600 = 1.0 led to a stronger AMP
response than the Gram-positive bacteria. Thus, this amount of
dead E. coli was chosen to treat S2 cells in the later experiments.
We found that the NOS expression and NO production were
strongly induced by E. coli, as inO. furnacalis larvae (Figures 4A,
B, 2A). Knockdown of NOS reduced the NO level increased by E.
coli (Figure 4C). After incubation with the NOC, NO
concentration in the cell culture medium increased and lasted
for two days at least (Figure 4D). Therefore, Drosophila S2 cells
appear to be a good model for investigating the link between NO
and AMP production.

Induction of AMPs by NO in S2 Cells
To further uncover the role of NO in AMP production, we added
NOC (NO donor) to the culture of S2 cells. At 24 and 48 h, the
transcript levels of CecropinA1, Defensin, Diptericin and
Drosomycin increased significantly (Figure 5). The effect was
observed for CecropinA1 at 6 and 12 h, suggestive of a more
sensitive response to NO for this gene. NO concentration
elevations caused by E. coli or the NOC were detected at 6, 12,
A B

FIGURE 1 | Inhibition of CanA and NOS caused more deaths of infected O. furnacalis larvae. After elimination of indigenous bacteria using 50 mg/mL tetracycline,
day 3, 4th instar larvae were injected with 1× 104 cells of P. aeruginosa (A) or M. luteus (B) cells or along with 2 nmol FK506 or L-NAME, using PBS as control. All
the data was analyzed using the log-rank test. *, p <0.05; FK506, CanA inhibitor; L-NAME, NOS inhibitor; Pa, P. aeruginosa; Ml, M. luteus.
May 2022 | Volume 13 | Article 905419
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24, and 48 h (Figures 4B, D). The major induction of AMPs at
24 and 48 h suggested that the NO involvement in AMP
production may be indirect, relying on protein products of
intermediate gene(s).

IMD Pathway Connected the NO Signal to
AMP Production in S2 Cells
Since AMP expression is known to be controlled by the Toll and
IMD pathways (14, 37, 38, 57), how may NO-induced AMP
production in S2 cells (Figure 5) and O. furnacalis larvae
(Figure 3) be linked to the two classic pathways? To address
this question, we employed RNA interference to knockdown the
pathway components and determine whether the NO-induced
AMP production is affected in S2 cells. We found the increases in
mRNA levels of CecropinA1, Defensin, Diptericin and
Drosomycin caused by dead E. coli were dramatically
suppressed after IMD had been knocked down (Figures 6, S4).
Treatment with dsRNA of MyD88 had a lesser effect. Therefore,
NO-induced AMP production was regulated mainly by the IMD
pathway but not much by Toll signaling. Similarly, the AMP
transcription increases were partly suppressed by NOS dsRNA,
suggesting the NOS may take part in the AMP induction upon E.
coli treatment. Furthermore, knockdown of IMD in S2 cells
significantly reduced CecropinA1, Defensin, Diptericin and
Drosomycin expression, which induced by NOC treatment
(Figures 6E–H). Together, these data suggested that NO is
Frontiers in Immunology | www.frontiersin.org 5
involved in the upregulation of CecropinA1, Defensin,
Diptericin and Drosomycin transcription through the
IMD pathway.

NOS Was Required for the Upregulation of
CanA1 in S2 Cells Induced by E. coli
In O. furnacalis larvae, bacterial infections increased the
transcript levels of CanA and AMPs, whereas inhibition of
CanA reduced resistance to the infections and resulted in more
death (Figures 1, 2C), suggesting the involvement of CanA in the
resistance to bacterial infection. To investigate whether CanA is
involved in the resistance through regulating the expression of
AMPs, S2 cells were used for further studies. We found that dead
E. coli induced the expression of CanA1 at 12, 24, and 48 h in S2
cells (Figure 7A), and that addition of NO donor NOC also
induced the expression of CanA1 at 12 and 24 h (Figure 7B),
which indicates that bacterial infection and NO increased
expression of CanA1. However, knockdown of NOS suppressed
the induction of CanA1 by E. coli (Figure 7C), suggesting that
CanA1 might be downstream of NO signal.

Knockdown and Inhibition of CanA1
Can Block the Upregulation of AMPs
by NO in S2 Cells
To further confirm the relationship between CanA1 and NO on
controlling AMPs expression in S2 cells, we used CanA1
A B

D E F

G H

C

FIGURE 2 | Expression changes of NOS, CanA and AMPs in O. furnacalis larvae after bacterial infection. mRNA level changes in NOS (A, B), CanA (C), Attacin
(D), Cecropin A (E), Gloverin (F), Lebocin4 (G), and Moricin (H) in whole O. furnacalis larvae at certain times post 1×104 cells of P. aeruginosa or M. luteus infection.
Cont, PBS as control; CanA, calcineurin A; NOS, nitric oxide synthase; Pa, P. aeruginosa; Ml, M. luteus. One-way ANOVA analysis followed by Tukey’s test was
used to compare the control and infected groups. *p < 0.05; **p < 0.01; ***p < 0.001.
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A B

D E F

G

C

FIGURE 3 | NO increased CanA and AMP expression in O. furnacalis larvae. NO concentrations in hemolymph after infection by 1×104 CFUs of P. aeruginosa
(A) and M. luteus (B) at 4 to 48 h post injection. NO concentrations in larval hemolymph after injection of the NOC (C). Transcript levels of CanA (D), Defensin
(E), Lebocin 4 (F) and Moricin (G) after NOC injection. One-way ANOVA followed by Tukey’s test was used to compare the control and infected groups
(A, B). Student’s t-test was used to compare PBS- and NOC-treated groups (C−G). *p < 0.05; **p < 0.01; ***p < 0.001.
A B

DC

FIGURE 4 | E coli and NOC treatments stimulated NO production in Drosophila S2 cells. NOS mRNA levels (A) and NO concentrations (B) after E coli infection. NO levels in
the medium samples after NOS RNAi and treatment with killed E coli (C) or the NOC (D). Cont, PBS treatment at 0 h One-way ANOVA followed by Tukey’s test was used to
compare control and treatment groups (A, B, D). Student’s t-test was used to analyze significance in (C). *p < 0.05; **p < 0.01; ***p < 0.001.
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inhibitor and knockdown to inhibit the activity of CanA1 and
reduce the transcript level of CanA1, respectively. We found that
CanA1 inhibitor could significantly block the expression of
CecropinA1, Defensin, Diptericin and Drosomycin, which were
induced by NO (Figures 8A–D). In addition, knockdown of
CanA1 in S2 cells also decreased the expression of CanA1
induced by the NOC (Figure 8E), and significantly suppressed
the upregulation of CecropinA1, Defensin, Diptericin and
Drosomycin by NO (Figures 8F–I). These results directly
indicated that the AMP expression induced by NO was
mediated by CanA1.
DISCUSSION

After insect innate immunity was discovered, the robust defense
system has been well investigated in different species (8, 58). In
particular, the immune signaling pathways such as ROS reaction,
Toll and IMD pathways, and PPO cascade are well studied (14,
37, 38, 58–60). As a member of the ROS family, NO induced by
pathogen infections participates in the regulation of AMP
production, mainly regulated via classic Toll and IMD
pathways. That means that there are cross-talks between the
ROS reaction and AMP signaling pathway. In this study, we used
a lepidopteran pest O. furnacalis to analyze the regulatory
mechanism of NO on AMP production and found that
bacterial infection can upregulate the expression of NOS, CanA
and certain AMPs through NO production. NO and CanA are
Frontiers in Immunology | www.frontiersin.org 7
needed to fight against bacterial infection in O. furnacalis. Using
S2 cells, we confirmed that CanA1 mediated the regulation of
AMP productions between NO signal and IMD pathway. Our
work suggests that NO signal might play as the messenger
between rapid ROS reaction and AMP signaling pathway.

The mechanism of how CanA regulates the AMPs expression
is still unclear. As a member of the protein phosphatase 2B
family, calcineurin is a Ca2+-dependent phosphatase, involved in
many physiological processes such as regulation of Ca2+

homeostasis, transcription, and innate immunity (61–63).
Calcineurin comprises a catalytic subunit A and a regulatory
subunit B (41). In Drosophila, there are three catalytic subunits
including calcineurin A1, protein phosphatase 2B-14D and
calcineurin A-14F (64). Protein phosphatase 2B-14D and
calcineurin A-14F can respond to Gram-positive bacterial
infection and activate Dorsal to induce AMPs production (41).
While calcineurin A1 has effects on regulation of AMPs
production via Relish in response to Gram-negative bacterial
infections or NO challenge (41, 46). Subunit calcineurin A1 can
directly receive the signal of NO and act on Relish without the
components of IMD pathway, subunits protein phosphatase 2B-
14D and calcineurin A-14F directly activate Dorsal/Dif activity
dependent on the calcium level altered by Gram-positive
bacterial infections (41), suggesting that the regulation of
AMPs production by calcineurin subunit A is directly
mediated by NF-kB and independent of Toll/IMD pathways.
In contrast, the NO-induced AMPs production is dependent on
Toll/IMD pathway in S. exigua (25). In this study, our results
A B

DC

FIGURE 5 | NOC induced AMP expression in Drosophila S2 cells. The NOC at a final concentration of 2.5 mM was used to treat S2 cells. Transcript levels of the
four AMPs Cecropin A1 (A), Defensin (B), Diptericin (C), and Drosomycin (D) at different time points were measured by qPCR. One-way ANOVA followed by Tukey’s
test was used to compare control and treated groups. **p < 0.01; ***p < 0.001.
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indicate that IMD pathway is required for calcineurin A to
mediate the regulation of AMPs by NO. These differences
between non-NO and NO mediated AMPs production via the
CanA1 regulation remain to be fully deciphered in the future. In
B. mori and D. melanogaster, eicosanoids are involved in AMPs
Frontiers in Immunology | www.frontiersin.org 8
production (65, 66). Inhibition of phospholipase A2 (PLA2)
activity can reduce the biosynthesis of eicosanoids, and finally
decreases AMPs production in S. exigua (67). In addition, NO
increased the activity of PLA2, and PLA2 was capable to
upregulate the AMP production via eicosanoids in S. exigua
A B

D

E F

G H

C

FIGURE 6 | Effects of IMD, MyD88 or NOS knockdown on AMP expression in Drosophila S2 cells. To analyze possible roles of Toll/IMD pathway and NOS in NO-
induced AMP expression, RNAi of IMD, MyD88 or NOS was performed in S2 cells for 48 h in advance of the treatment by killed E coli. Transcript levels of Cecropin
A1 (A), Defensin (B), Diptericin (C) and Drosomycin (D) were analyzed by qPCR. The effects of IMD knockdown on induction of CecropinA1 (E), Defensin
(F), Diptericin (G) and Drosomycin (H) by the NOC were detected. Student’s t-test was used to analyze significance, *p < 0.05; **p < 0.01; ***p < 0.001.
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(25, 68). Therefore, whether or not calcineurin A can regulate the
PLA2 to alter AMPs production via eicosanoids need
further investigation.

There is organ-to-organ communication during immune
responses. In the Drosophila gut, the ROS reaction and IMD
pathway producing AMPs play primary roles in the elimination
of gut microbes (8). Enterobacteria Ecc15 oral infection can
locally trigger the expression of AMPs and ROS reaction in
Frontiers in Immunology | www.frontiersin.org 9
adult Drosophila gut (4), although Ecc15 can’t cross through the
gut and enter the hemolymph, the local infection in the gut also
upregulates AMPs expression in fat body (69, 70). Furthermore,
ROS stress induced by local Ecc15 oral infection in Drosophila
gut upregulates the production of NO in gut, and then the NO
signal as a messenger is relayed by hemocytes to trigger the
expression of AMP Diptericin in the remote organ fat body (15).
In this study, we found that NOS1 in hemocytes was the primary
A B C

FIGURE 7 | NO contributed to the upregulation of CanA1 induced by killed E coli in Drosophila S2 cells. The expression pattern of CanA1 in response to E coli
treatment (A), NO donor (B), and NOS knockdown followed by E coli treatment (C) was determined by qPCR. Cont: PBS treatment; NOC: Nitric oxide donor. One-
way ANOVA followed by Tukey’s test was used to compare control and treated groups (A, B). Student’s t-test was used to analyze significance (C), *p < 0.05; **p <
0.01; ***p < 0.001.
A B

D E F

G IH

C

FIGURE 8 | Effects of CanA1 knockdown and CanA1 inhibitor on NOC-induced AMP expression. Transcript level changes of Cecropin A (A), Defensin (B), Diptericin (C) and
Drosomycin (D) in NOC treated S2 cells after different concentrations of CanA1 inhibitor treatment were determined by qPCR, The concentrations of FK506 were indicated.
dsRNA of CanA1 was used to evaluate the effects of NOC on the expression of CanA1 (E), Cecropin A1 (F), Defensin (G), Diptericin (H) and Drosomycin (I) in response to
NOC challenge. Cont, PBS used as control; NOC, nitric oxide donor; CanA1, CalcineurinA1. One-way ANOVA followed by Tukey’s test was used to compare control and
treatment groups (A-D). Student’s t-test was used to analyze significance (E-I), *p < 0.05; **p < 0.01; ***p < 0.001.
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NOS in response to bacterial infections in O. furnacalis
(Figures 2, S5), while AMPs were mainly expressed in gut and
fat body (8, 25), we inferred that there might be also a link
between hemocyte producing NO and fat body expressing AMPs
in O. furnacalis. Based on the tissue expression analysis of CanA,
NOS1 and NOS2, and the responses of these three genes to
bacterial infections in O. furnacalis, we inferred NO production
induced by bacteria in hemocytes increased the expression of
CanA in hemocytes together with some unknown factors, which
were released from hemocytes to induce AMPs expression in fat
body via IMD pathway (Figure 9). To further confirm the organ-
to-organ immune signals in O. furnacalis, Ex vivo assay using
hemocytes and fat body from O. furnacalis larvae might need to
be set up in the future. Using condition medium collected from
dead bacteria-challenged hemocytes to stimulate the germ-free
fat body may be an ideal approach to investigate the organ-to-
organ communication and identify the unknown factors from
hemocytes to fat body.

NO plays a minor role in bacteria-induced AMP production.
The classic pathways regulating AMP productions are Toll and
Frontiers in Immunology | www.frontiersin.org 10
IMD pathways in several model insects (71, 72). Toll pathway
and IMD pathway are activated by Lys-peptidoglycans (from
Gram-positive bacteria) and DAP-peptidoglycans (DAP: meso-
diaminopimelic acid, mainly from Gram-negative bacteria),
respectively (73). In this study, different amounts of killed
Gram-positive and Gram-negative bacteria M. luteus and E.
coli were used to treat S2 cells, even a small amount of E. coli
showed stronger activity than M. luteus to induce AMPs
expression in S2 cells. We found that knockdown of NOS did
not totally block the induction of AMPs after bacterial infection,
and NO only induced considerable AMPs, indicating that the
AMPs production induced by NO takes part in the AMP
production through IMD pathway in S2 cells.

So far, the mechanism of NO production after bacterial
infection is unclear. In S. exigua, the expression of AMPs is
under the regulation of Toll pathway and IMD pathway like that
in other insects (14, 25, 74, 75). NO also can regulate the
expression of AMPs in S. exigua, while knockdown of Toll or
Relish decreases the expression of NOS, and reduces NO
concentration in response to bacterial infection, suggesting that
FIGURE 9 | A model for NO-regulated AMP production. Bacterial infection induces NOS expression in hemocytes to convert L-arginine to NO by NOS. NO then
induces CanA expression to produce and release of an unknown factor (X) from hemocytes. Released X activates AMP expression in fat body via IMD pathway to
eliminate the invading bacteria.
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the NO signal is downstream of IMD and Toll pathway in S.
exigua (25). In Drosophila, the NO-induced AMPs production is
independent of Toll and IMD pathways (41). In this study, our
result showed that NO upregulated the expression of CanA1, and
then CanA1 activated the expression of AMPs via IMD pathway
in S2 cells. Knockdown of both NOS and IMD could block
expression of AMPs similar as knockdown of IMD only did,
suggesting that the NO signaled IMD pathway to regulate the
AMP expression.
CONCLUSION

In our study, we found that NO donor could induce the
expression of Cecropin A, Defensin, Diptericin and Drosomycin
in S2 cells (Figure 5), while in O. furnacalis larvae, NO donor
significantly induced the expression of Defensin, Lebocin4 and
Moricin but not Attacin, Cecropin A1 and Gloverin (Figures 3,
S1). NO donor can upregulate the expression of Attacin1/2,
Defensin and Gloverin in S. exigua (25). We also used B. mori to
analyze the AMPs expression after bacterial infection or NO
donor treatment (Figure S6A), and found that NO donor NOC
had strong activity to induce the expression of AMPs Cecropin D,
Cecropin E, Lebocin, Moricin and Defensin A. Moreover,
inhibition of NOS using L-NAME increased the death of
bacterial infected B. mori larvae (Figure S6B), which was
consistent with the survival assay using O. furnacalis larvae.
These data indicated that NO can specifically induce certain
AMPs in different insects.
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Supplementary Figure 6 | Effects of NO donor and bacterial infections on AMP
expression (A) in and survival curves (B) of B. mori larvae. Day 3, 5th instar B. mori
larvae were injected with NO donor NOC or S-nitroso-N-acetylpenicillamine (SNAP)
(20 nmol/larva), 1×107 cells of P. aeruginosa or S. aureus, or 1×107 cells of P.
aeruginosa or S. aureus together with NOS inhibitor L-NAME (2 nmol/larva). Fat
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