
1Scientific RepoRts | 6:31595 | DOI: 10.1038/srep31595

www.nature.com/scientificreports

Surface-anchored poly(acryloyl-
L(D)-valine) with enhanced 
chirality-selective effect on cellular 
uptake of gold nanoparticles
Jun Deng, Sai Wu, Mengyun Yao & Changyou Gao

Chirality is one of the ubiquitous phenomena in biological systems. The left handed (L-) amino acids 
and right handed (D-) sugars are normally found in proteins, and in RNAs and DNAs, respectively. The 
effect of chiral surfaces at the nanoscale on cellular uptake has, however, not been explored. This study 
reveals for the first time the molecular chirality on gold nanoparticles (AuNPs) functions as a direct 
regulator for cellular uptake. Monolayers of 2-mercaptoacetyl-L(D)-valine (L(D)-MAV) and poly(acryloyl-
L(D)-valine (L(D)-PAV) chiral molecules were formed on AuNPs surface, respectively. The internalized 
amount of PAV-AuNPs was several times larger than that of MAV-AuNPs by A549 and HepG2 cells, 
regardless of the chirality difference. However, the D-PAV-AuNPs were internalized with significantly 
larger amount than the L-PAV-AuNPs. This chirality-dependent uptake effect is likely attributed to the 
preferable interaction between the L-phospholipid-based cell membrane and the D-enantiomers.

The design of smart multifunctional nanoparticles (NPs) for targeted therapies and intracellular imaging requires 
insight understanding of cellular uptake of NPs and their intracellular fates1,2. For clinical and biological appli-
cations, controlling and manipulating the accumulation of NPs for an extended period of time inside cells can 
achieve improvements in diagnostic sensitivity and therapeutic efficiency3.

NP uptake begins with an initial adhesion of the NP to cell membrane and the interaction with integral  
proteins, polysaccharides, lipids, and other components of the cell membrane. The cellular uptake is an 
energy-dependent uptake process4,5, allowing internalization of NPs4,6. One of the key steps in NP uptake is 
therefore the very initial interaction. From a viewpoint of chemistry, the cell membrane is composed of phospho-
lipid bilayers integrated with proteins and polysaccharides7. As an amphiphilic molecule containing a hydrophilic 
head and a hydrophobic tail, the phospholipid possesses the chiral nature, showing the L-enantiomer (Fig. 1). 
The amino acids in proteins of the membrane, except of glycine, are “left-handed”, whereas all the sugars in 
polysaccharides of the cell membrane are based on the “right-handed” sugar ring8 (Fig. 1). The highly ordered 
arrangement of these molecules endows the membrane with an apparent asymmetric feature, which is one of 
the predominant biochemical signatures of life. Many chiral superstructures can be self-assembled from chiral 
or achiral molecules, and these chiral superstructures may be used in various fields as templates for helical crys-
tallization, molecular recognition, catalysis and so on9–12. Recently, pioneering works have been conducted to 
reveal the cell behaviors such as cell adhesion13 and differentiation14, and protein adsorption15,16 (e.g. amount and 
affinity) on flat substrates anchored with different chiral molecules. Some other works attempted to develop chiral 
gold nanoclusters (AuNCs) and quantum dots (QDs) with optical activities using different chiral stabilizers for 
cell imaging17. Although the most biological effects of NPs can be linked to their different cellular uptake, little is 
known on how NP surface chirality at the nanoscale affects the cellular uptake and the successive biological fates. 
More recently, attend is paid to investigating the cytotoxicity induced by surface chirality at the nano or sub-nano 
levels18,19. However, how the NP surface chirality at the nano level influences the cellular uptake has not been 
explored. These facts inspire us to introduce the surface chirality at the nanoscale and to study the difference in 
NP uptake from a biomimetic point of view.
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Gold nanoparticles (AuNPs) have great potentials as anticancer drug delivery carriers and photothermal can-
cer treatment agents because of their unique chemical and physical properties (e.g. size- and shape-dependent 
optical and electronic features, high surface-to-volume ratio, excellent biocompatibility and chemical stability)20. 
These properties indicate that AuNPs can act as an ideal platform to investigate the chiral effect on NP uptake, 
when they are combined with chiral characteristics. In nature most amino acids exist as the L-enatiomers, and the 
chirality of amino acids strongly influences the steric configurations and higher-order conformations of proteins 
and other biomacromolecules. Valine is one of the eight essential amino acids of human body, playing essential 
roles in a wide variety of physiological processes16,21–23.

In this study the L- and D-valine are selected as the chiral centers, and polymers containing L- and D-valine are 
prepared to enhance the chiral effect (Fig. 1). For this purpose, small 2-mercaptoacetyl-L(D)-valine (L(D)-MAV) 
and poly(acryloyl-L(D)-valine) (L(D)-PAV) molecules are synthesized, and are further grafted onto AuNPs to 
explore the chiral effect on cellular uptake (Fig. 1). Lung and liver are the major organs that NPs will accumulate 
when they enter into the body. Therefore, lung cells and liver cells are widely used in the in vitro cell culture to 
study cell-NP interactions. This chirality-associated regulation of cellular uptake highlights the important role of 
the conformation of the stabilizers, and has important medical implications for the design of novel AuNPs.

Results and Discussion
Characterization of chiral poly(acryloyl-L(D)-valine) and 2-mercaptoacetyl-L(D)-valine. To 
synthesize the PAV molecules, the monomers of L(D)-acryloylated amino acids were synthesized and polymer-
ized via the reversible addition-fragmentation chain transfer (RAFT) polymerization method. According to GPC, 
the L-PAV and D-PAV had a similar weight average molecular weight (Mw) of 3580 Da and 3610 Da, and narrow 
polydispersity (D) of 1.14 and 1.15, respectively (Fig. 2A). The small 2-mercaptoacetyl-L-valine (L-MAV) and 
2-mercaptoacetyl-D-valine (D-MAV) were successfully synthesized as well: [M-H]−: 189.9 for L(D)-MAV and 
[M-H]−: 231.7 for un-reacted 2-(thioacetyl)acetyl-L(D)-valine (Fig. 2B).

Characterization of AuNPs. The synthesized small and polymer molecules were grafted onto water-dispersible  
AuNPs by a simple co-incubation, respectively. Transmission electron microscopy (TEM) showed that both the 
MAV-AuNPs (Fig. 3a,b) and PAV-AuNPs (Fig. 3c,d) were approximately spherical in shape and narrowly distrib-
uted (Figure S1).

The density of MAV and PAV molecules on the AuNPs being calculated from TGA (Figure S2) was 2.4 mol-
ecules/nm2 and 0.8 molecules/nm2, respectively. However, the density of AV unit on the PAV-AuNPs (16.2 
units/nm2) was significantly larger than that on the MAV-AuNPs (2.4 units/nm2). The CD signal of PAV-AuNPs 
was significantly stronger than that of MAV-AuNPs because of more AV units on the PAV-AuNPs (Fig. 3e). 
Importantly, the L-PAV-AuNPs and D-PAV-AuNPs (or the L-MAV-AuNPs and D-MAV-AuNPs) showed essen-
tial mirror image CD spectra in the region of 190 to 300 nm (Fig. 3e). Although the free L- and D-MAV molecules 
showed mirror CD spectra, their CD direction was reversed after immobilization onto the AuNPs (Fig. 3f). Such 
reversal of CD signals after small molecule adsorption onto NP surface has been reported previously24,25.

Figure 1. Chiral nature of phospholipid, and amino acid and sugar units in cell membrane inspires the 
study of influence of chirality on cellular uptake, in which the chiral molecules (MAV and PAV) are grafted 
onto AuNPs and are used as a platform to study the chirality-dependent cellular uptake. 
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The more negative surface zeta potential of PAV-AuNPs in water (− 36 mV) than that of the MAV-AuNPs  
(~ −26 mV) is consistent with the larger number of carboxyl groups (more AV units) on the PAV-AuNPs (Table 1). 
Moreover, the hydration diameter of PAV-AuNPs (~25 nm) was significantly smaller than that of MAV-AuNPs 
(~35 nm), revealing that the MAV-AuNPs were aggregated to a larger degree in water. Furthermore, the AuNPs 

Figure 2. (A) GPC curves of (Left) L-PAV and (Right) D-PAV. (B) MS spectra of (Left) L-MAV and (Right) D-MAV.

Figure 3. Nanoparticle characterization. TEM images of (a) L-MAV-AuNPs, (b) D-MAV-AuNPs, (c) L-PAV-
AuNPs and (d) D-PAV-AuNPs. Insets are corresponding digital images. CD spectra of (e) L(D)-MAV-AuNPs 
and L(D)-PAV-AuNPs, and (f) L(D)-MAV and L(D)-PAV molecules. The concentrations of the AuNPs in (e) 
and the MAV or PAV molecules in (f) were 10 nM and 15 μM, respectively.
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stability was monitored by measuring the AuNPs surface plasmon resonance (SPR), a parameter that is extremely 
sensitive to nanoparticle size and interparticle spacing26. A slight red-shift (4 nm) was observed in the SPR 
peaks of PAV-AuNPs compared to that of the citrate-AuNPs, without significant peak broadening (Figure S3a).  
By contrast, the MAV-AuNPs underwent a red shift of 13 nm, accompanying by slight peak broadening, which 
are indicative of slight aggregation (Figure S3a). Compared with the small molecules, the polymer chains with 
a steric bulk can cap the gold cores more effectively to enhance the colloidal stability of NPs, leading to better 
dispersion in medium14.

The stability of the NPs in 10% FBS/DMEM, in which cells were cultured, was further characterized. The 
SPR peak of PAV-AuNPs was kept at 521 nm without change, whereas the SPR peak of MAV-AuNPs was slightly 
blue-shifted (9 nm) (Figure S3b,c). The diameter change was further examined by TEM. The MAV-AuNPs were 
better dispersed after adsorption of proteins by incubation in FBS containing medium (Figure S4a,b,e,f), whereas 
the dispersion of PAV-AuNPs was not affected by the medium significantly. These results are well consistent with 
the SPR results (Figure S3b,c). Moreover, the diameters of the MAV-AuNPs and PAV-AuNPs before and after 
protein adsorption showed no significant difference in a dry state, which is consistent with previous observa-
tion27. Hence, the hydrodynamic diameters of the MAV-AuNPs and PAV-AuNPs being incubated in 10% FBS/
DMEM were measured by DLS (Table 1). In 10% FBS/DMEM, the hydrodynamic diameters of MAV-AuNPs 
and PAV-AuNPs were both 38 nm without significant difference, and their surface charge became less nega-
tive (Table 1) due to the adsorption of serum proteins including albumin, fibrinogen, and immunoglobulin etc. 
Therefore, both MAV-AuNPs and PAV-AuNPs possess excellent colloidal stability in 10% FBS/DMEM, and their 
surface charge and hydrodynamic diameters had no significant difference.

With these characterizations, one can conclude that the L-PAV-AuNPs and D-PAV-AuNPs, or the 
L-MAV-AuNPs and D-MAV-AuNPs have identical physicochemical properties except of the reverse molecular 
chirality, respectively. The PAV-capped AuNPs show significantly enhanced chirality that those MAV-capped ones.

Cellular uptake. Next, the cellular uptake of these chiral molecules-capped NPs was investigated by using 
A549 cells and HepG2 cells. First, MTT assay was performed to evaluate the cytoviability, which reflects the cell 
metabolic activity based on the ability of mitochondrial succinate/tetrazolium reductase system in living cells. 
According to literatures and our experiences, the highest cellular loading of NPs such as thiol acids-protected 
AuNPs and poly(lactic-co-glycolic acid) (PLGA NPs) could be achieved within 24 h28,29, and some cationic NPs 
are rapidly internalized within a few hours30,31. After the cells were treated with PAV-AuNPs at an Au concentra-
tion of 40 μg/mL, no significant cytotoxicity was found for the A549 and the HepG2 cells (Figure S5a,b). When 
the Au concentration of PAV-AuNPs increased to 80 μ g/mL, the cytoviability was still above 80% though cell tox-
icity was significant for the A549 cells (p <  0.01) (Figure S5a). No cytotoxicity was observed for the HepG2 cells 
(Figure S5b). These results suggest that the AuNPs represent low toxicity to cells. Therefore, 50 μg/mL of AuNPs 
(MAV-AuNPs or PAV-AuNPs) was used to study the cellular uptake, which showed no significant cell toxicity 
for both A549 and HepG2 cells. The cellular uptake amount of AuNPs (including minor amount of cell-surface 
attached) was quantified by ICP-MS with high detection sensitivity. Figure 4a shows that the internalized amount 
of PAV-AuNPs was significantly larger than that of MAV-AuNPs (p <  0.01) regardless of the chirality, whereas the 
amount of internalized L-MAV-AuNPs and D-MAV-AuNPs by A549 cells had no significant difference (p >  0.05). 
The non-influence of small chiral molecules reveals the very weak chirality effects, which is consistent with pre-
vious finding that the uptake of L- and D-peptides has no significant difference32,33. By sharp contrast, the AuNPs 
capped with PAV of a larger number of AV repeating unit per area did show the chirality-dependent uptake by 
A549 cells: the internalized amount of D-PAV-AuNPs was nearly 2.6 times higher than that of the L-PAV-AuNPs 
(Fig. 4a). The internalized amount of MAV-AuNPs and PAV-AuNPs by HepG2 cells had the similar trend to the 
A549 cells (Figure S6a). Moreover, the relatively larger uptake of D-PAV-AuNPs over L-PAV-AuNPs (p <  0.01) 
was observed at different NPs concentration (10–100 μg·mL−1) (Figure S7), although the absolute amount for 
both types of NPs increased along with the increase of NPs concentration. These results suggest that the chiral 
effects on cellular uptake can be enhanced by the polymerization of chiral monomers, and the PAV polymers with 
stronger ellipticity than their smaller counterparts enhance the chirality-dependent interaction with cells, leading 
to significantly higher uptake of the PAV-AuNPs than MAV-AuNPs.

The chirality-dependent NP uptake is likely tied with the feature of cell membrane. One possibility is that a 
larger number of targeted receptors exist on the A549 and HepG2 cells (the typical cancer cells) and specifically 

AuNPs
Diameter 

(TEM, nm)
Molecules density 
(molecules/nm2)

Diameter (DLS, nm) Zeta potential (mV)

Water 10% FBS water 10% FBS

L-MAV-AuNPs 15.5 ±  1.5 2.47 35.1 ±  3.4 38.1 ±  4.2 − 27.4 ±  1.8 − 
5.8 ±  1.6

D-MAV-AuNPs 15.9 ±  1.8 2.43 34.5 ±  2.1 37.9 ±  1.9 − 25.8 ±  0.9 − 
5.8 ±  1.2

L-PAV-AuNPs 15.9 ±  0.7 0.833# 27.2 ±  1.3 38.2 ±  3.3 − 36.4 ±  1.4 − 
9.1 ±  1.1

D-PAV-AuNPs 16.3 ±  0.6 0.822# 24.1 ±  2.2 34.5 ±  2.3 − 36.3 ±  1.6 − 
9.3 ±  0.8

Table 1.  Physicochemical properties of AuNPs. Note: #Means PAV density. The density of AV units 
(defined as the repeating chiral unit) on the L-PAV-AuNPs and D-PAV-AuNPs are 16.23 and 16.21 units/nm2, 
respectively.
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interact with the D-enantiomers than the L-enantiomers. To testify this hypothesis, A549 cells and HepG2 cells 
were pre-treated with D-valine for 1 h before incubated with the PAV-AuNPs to block the possible receptors on 
the cells, which specifically interact with D-enantiomers. Figures 4b and S6b show that the pre-treatment with 
D-valine impaired the NP cellular uptake to some extent, but the level was insignificant (p >  0.05) regardless of the 
surface chirality. The polymer structure may play a role in the interaction of PAV-AuNPs and cells. Thus, A549 cells 
and HepG2 cells were pre-treated with D-PAV for 1 h before incubated with the PAV-AuNPs. Figures 4b and S6b  
show that the internalized amount of AuNPs was largely decreased (p <  0.01) regardless of the surface chirality. 
These results suggest that the larger uptake of the D-enantiomers is likely attributed to the specific receptors or 
biomolecules in A549 or HepG2 cells that can recognize the right-handed polymers rather than the small coun-
terparts. In fact, the investigation on the interaction between surface chiral molecules (e.g. peptides with different 
chiral amino acid groups) and cells has not found chirality-dependent cell receptors so far32,34–36. Hence, some 
other factors or biomolecules in the cells may take the role on the chirality-dependent cellular uptake.

Upon contact with biological fluid, the NPs are rapidly covered by biomolecules, especially proteins, forming 
a biomolecular corona that effectively screens the bare NP surface2. The surface-adsorbed proteins can interact 
with the receptors of cell membrane, and thereby influence the following cellular uptake. Wang et al. have found 
that surface chirality could influence the protein adsorption16. Zhou et al. found that serum proteins play an 
important role in mediating the selective adhesion of cells on chiral surfaces3. To clarify this point, the inter-
nalization experiments were further conducted in a serum-free medium. As shown in Figures S3c and S4, the 
L-PAV-AuNPs and D-PAV-AuNPs in serum-free medium showed well dispersion too, ruling out the possible 
influence of NP aggregation on cellular uptake37. Figures 4c and S6c show that the cells still ingested much more 
D-PAV-AuNPs than L-PAV-AuNPs (p <  0.01), and the internalized amount was intensively enhanced than that 
in the serum-containing medium. The reduction of NPs uptake in serum is likely attributed to the decrease of 
the surface energy of NPs and the nonspecific interactions between NPs and cell membrane as a result of protein 
adsorption38. Figure S8 shows that L-PAV-AuNPs adsorbed significantly larger amount of serum proteins and 
albumin than D-PAV-AuNPs. When being incubated under the same conditions, for example, in cell culture 
medium containing 10% FBS or merely albumin, the largely adsorbed proteins are reported to enhance cellular 
uptake of NPs39–41. However, the results here are on the contrary. Nonetheless, these results substantiate the con-
clusion that the chirality-dependent cellular uptake of PAV-AuNPs is mainly governed by their surface-chirality 
property, rather than the surface protein corona.

Figure 4. Internalized amount by A549 cells at an Au concentration of 50 μg/mL. (a) L(D)-MAV-AuNPs 
and L(D)-PAV-AuNPs in 10% FBS/DMEM, (b) PAV-AuNPs pretreated with 1 mg/mL D-valine or D-PAV  
(Mw: 18743 Da) in 10% FBS/DMEM, and (c) PAV-AuNPs in serum-free DMEM after co-incubation for 24 h.  
(d) Influence of pharmacological inhibitors on uptake of L-PAV-AuNPs and D-PAV-AuNPs, respectively. The 
cells were cultured without or with pretreatment by amantadine-HCl (Aman, 1 mM, inhibitor of clathrin-
mediated endocytosis), genistein (Ge, 100 μ M, inhibitor of caveolaemediated endocytosis), amiloride-HCl 
(Amilo, 2 mM, inhibitor of macropinocytosis), cytochalasin D (CytD, 10 μ g·mL−1, inhibitor of cytoskeleton), 
NaN3 (0.1% (w/v), inhibit energy-dependent process) for 1 h, and then cultured with PAV-AuNPs for another 
4 h. * and * *  indicate significant difference at p <  0.05 and p <  0.01, respectively.
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It is known that the extracellular substances can be transported into cells through several different path-
ways such as transmembrane diffusion, phagocytosis, and receptor-mediated or nonspecific endocytosis29,42,43. 
To ascertain the uptake mechanisms of the PAV-AuNPs, some special inhibitors were used to pretreat the cells 
before co-culture. All the inhibitors presented no significant cytotoxicity at the concentration used (Figure 
S5c,d). Figures 4d and S6d show that the uptake efficiency of the A549 cells and HepG2 cells was significantly 
blocked (~31% decrease) by addition of 100 μM NaN3, revealing the energy-dependent process. Moreover, cel-
lular uptake of both types of PAV-AuNPs was largely blocked by amantadine-HCl that could prevent budding of 
clathrin-coated pits (p <  0.05, p >  0.01) (Fig. 4d), and especially by the amiloride-HCl due to the disturbing of 
Na+/H+ channels (p <  0.01). Therefore, internalization of the PAV-AuNPs by the A549 cells should be mediated 
by macropinocytosis and clathrin-mediated endocytosis mechanisms, and macropinocytosis takes the major role 
for both PAV-AuNPs regardless of their surface chirality. For the HepG2 cells, the NP uptake was only signifi-
cantly inhibited by amiloride-HCl (p <  0.01), regardless of the surface chirality (Figure S6d).

Interactions of surface chiral molecules and lipids. The above cellular uptake results suggest that the 
chirality-dependent endocytosis should be governed by the very initial steps during the uptake, e.g. NP adhe-
sion to the cell membrane and interaction with the membrane phospholipids44. However, the adhesion of NP 
to the cell membrane is difficult to disentangle in the presence of simultaneous internalization. Thus, L-lecithin 
molecules, a type of phospholipids and composed of phosphoric acid with choline, glycerol or other fatty 
acids, were used as a model to study the interactions of chiral PAV molecules and lipids by isothermal titration  
calorimetry (ITC)45. As shown in Fig. 5a,b, the complexion of L-lecithin with L-PAV-AuNPs and D-PAV-AuNPs 
was consistently exothermic throughout the titration process. Of all the heat profiles, both the complexion of 
L-lecithin with L-PAV-AuNP and D-PAV-AuNPs could be satisfactorily fitted by a single set of binding sites avail-
able model46, and best-fit parameters were calculated by using nonlinear least-squares fitting. The results (Table 2) 
show that the interaction of L- and D-PAV-AuNPs and L-lecithin featured a favorable enthalpy change (Δ H <  0), 
which was offsetted partially by an unfavorable entropy loss (Δ S <  0), resulting in an overall negative free energy 
change (Δ G <  0). Moreover, the complex stability constant K value for the D-PAV-AuNPs (9.86 ×  103 M−1) was 
about 2.4 folds higher than that for the L-PAV-AuNPs (4.04 ×  103 M−1), revealing a remarkably stronger affinity 
for the D-PAV-AuNPs to L-lecithin. The maximum ratios of L-lecithin to L-PAV-AuNPs and D-PAV-AuNPs 
were about 32.1 and 115, respectively. These results indicate that the L-lecithin molecules prefer to interact with 
D-PAV-AuNPs.

Figure 5. Interactions of surface chiral molecules and lecithin. ITC results showing the evolved heat 
per mole of added lecithin molecules (corrected for the heat of lecithin dilution) against the molar ratio of 
(a) lecithin/L-PAV-AuNPs and (b) lecithin/D-PAV-AuNPs, respectively. The QCM-D results showing the 
interaction processes between liposomes with (c) L-PAV and (d) D-PAV. The n insets mean the overtone 
numbers of QCM-D.
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In order to further mimic the interaction of surface chiral PAV molecules and cell membrane, a model study 
was performed by using the surface chiral molecules-immobilized gold-covered electrode and lipid bilayers, whose 
interaction was monitored by QCM-D. The bilayers composed of L-lecithin were prepared by surface-mediated 
vesicle fusion47. The hydration diameter of vesicles was about 100 nm (number-average). QCM-D can be used to 
monitor the kinetics of adsorption of small molecules, proteins, or in our case, the interaction with lipid vesicles and 
chiral PAV molecules grafted on the gold-covered electrode. The lipid vesicles interacted rapidly with the L-PAV 
(Fig. 5c), whereas rather slowly with the D-PAV (Fig. 5d). As the frequency shift measured by QCM-D is related 
to the adsorbed mass, more vesicles were attached onto the D-PAV surface than onto the L-PAV surface eventually 
(Fig. 5c,d). Hence, the L-lecithin-based vesicles prefer to interact with the D-PAV than with the L-PAV. With these 
results, one can conclude that the left-handed phospholipids-based cell membrane has chiral selective interactions 
with molecules or NPs. The cell membrane interacts more strongly with the D-PAV-AuNPs than the L-PAV-AuNPs 
(Fig. 6), leading to larger uptake amount of D-PAV-AuNPs by A549 and HepG2 cells.

To further assess the chirality-dependent or independent cellular distribution of PAV-AuNPs, CLSM and 
TEM (Fig. 7) characterizations were performed. The PAV-AuNPs (red color) were mainly distributed in the cyto-
plasm, and no signal was detected in the nuclei of A549 cells regardless of the chirality of PAV (Fig. 7). There were 
more D-PAV-AuNPs (Fig. 7A, Right) than L-PAV-AuNPs (Fig. 7A, Left) in the cytoplasm, and were closer around 
the cell nuclei (Fig. 7A). TEM observation shows that almost all the L-PAV-AuNPs were located in lysosomes 
(Fig. 7B, Left). Most of the D-PAV-AuNPs were aggregated in lysosomes too, but some escaped from lysosomes 
and entered into the cytoplasm as a consequence of larger internalization (Fig. 7B, Right). For HepG2 cells, the 
L-PAV-AuNPs and D-PAV-AuNPs were mainly distributed in lysosomes regardless of chirality (Figure S7). The 
cell slice images obtained by TEM here cannot be used to determine the cellular uptake amount of the NPs 
because the thickness and layers of the cell slice are different.

NPs
K  

(× 103 M−1)
Δ H  

(× 104 kcal·mol−1)
Δ S  

(cal·mol−1.K−1) N

L-PAV-AuNPs 4.04 − 5.655 − 173 32.1

D-PAV-AuNPs 9.86 − 1.484 − 31.5 115

Table 2.  Thermodynamic quantities of L-lecithin interaction with L-PAV-AuNPs and D-PAV-AuNPs.

Figure 6. Schematic illustration showing the interactions of NPs and cell membrane. Up, the cell membrane 
interacts with (Left) L-PAV-AuNPs and (Right) D-PAV-AuNPs, respectively. The double L-lipid bilayers have a 
stronger interaction with the D-PAV molecules, and thereby the internalized amount of D-PAV-AuNPs is larger. 
Bottom, the diagram of structure of L-lipid and L(D)-PAV-AuNPs.
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Conclusions
This work provides new insights into cellular uptake being triggered by chiral polymers-capped NPs, demonstrating 
the chirality-dependent uptake amount and intracellular distribution. Two groups of AuNPs modified with MAV 
and PAV of different chirality were successfully prepared. These two groups of particles had a diameter about 16 nm 
and narrow size distribution in a dry state. The density of MAV and PAV being grafted on AuNPs was 2.4 molecules/
nm2 and 0.8 molecules/nm2, respectively. Compared to MAV, the PAV grafting endowed the AuNPs with enhanced 
optical activity due to a larger number of AV units. All the chiral molecules-capped AuNPs possessed good colloidal 
stability in culture medium, and showed similar physicochemical properties except of reversed ellipticity. While the 
small chiral molecules-capped L- and D-MAV-AuNPs did not show significant difference in terms of uptake amount 
by A549 cells and HepG2 cells, the chiral polymers-capped PAV-AuNPs did show chirality-dependent uptake 
behaviors, and the D-PAV-AuNPs were internalized with significantly larger amount than the L-PAV-AuNPs. The 
chirality-dependent cellular uptake is likely attributed to the chiral selective interaction between the cell membrane 
and the chiral PAV on the NPs, as inferred from the fact that the L-phospholipid-based vesicles prefer to interact 
with the D-PAV molecules. Identification of this chirality-dependent cellular uptake of NPs provides a new idea that 
chiral effect can act as a novel strategy for designing bio-interface materials and may open a new avenue for further 
development of AuNPs for biomedical applications.

Materials and Methods
Materials. L-lecithin, L-Valine, D-valine, thioacetic, 1-butanethiol, carbon disulfide (CS2), ethyl 2-bromo-
propionate, thioacetic acid and acryloyl chloride were purchased from Aladdin company. Triethylamine (TEA), 
dimethyl formamide (DMF) and dichloromethane (DCM) were obtained from Sinopharm Chemical Regent Co., 
Ltd, and were vacuum-distilled prior to use. Gold (III) chloride hydrate (HAuCl4), and trisodium citrate dihydrate 
(C6H5Na3O7·2H2O) were purchased from Sinopharm group Co. Ld. Amiloride-HCl (Amilo), amantadine-HCl 
(Aman), sodium azide (NaN3), genistein (Ge), Triton X-100, 4′ ,6-diamidino-2-phenylindole (DAPI), cytochalasin 
D (CytD) and 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) were obtained from Sigma. 
Acryloyl-L(D)-valine monomers, and methyl 2-(butylthiocarbonothioylthio)propanoate (MCEBTTC) were synthe-
sized and characterized in Supporting information. All other chemicals were of analytical grade and used without 
further treatment if not specially mentioned. The MilliQ water was used throughout the experiments. For AuNPs 
synthesis, all glasswares used were cleaned by freshly prepared aqua regia solution (HCl/HNO3, 3:1).

Synthesis and characterization of poly(acryloyl-L(D)-valine).

Schematic illustration of synthesis of poly(acryloyl-L(D)-valine) (L(D)-PAV). * Represents chiral center.
Polymerization was carried out in a 10 mL dry Schlenk flask equipped with a magnetic stirrer. Methyl 2-(but-

ylthiocarbonothioylthio)propanoate (50.4 mg), azodiisobutyronitrile (AIBN, 3.4 mg) and acryloyl valine (1.37 g) 
were dissolved in 5 mL N,N-dimethylformamide (DMF). The mixture was deoxygenated by purging with nitro-
gen for 20 min, and then heated at 70 °C for 4 h. The reaction was stopped by exposure to air. The mixture was 
precipitated in excess diethyl ether, and then separated by centrifugation. The dissolution and precipitation cycle 
was repeated 3 times. The polymers were dried under high vacuum for 48 h at room temperature to give a yellow 
solid product, which was characterized by gel permeation chromatography (GPC, eluent tetrahydrofuran, Waters 
1515 Isocratic HPLC).

Synthesis and characterization of 2-mercaptoacetyl-L(D)-valine.
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Synthesis of 2-mercaptoacetyl-L(D)-valine (L(D)-MAV).
2-Mercaptoacetyl-L(D)-valine molecules were synthesized using a previously reported method with mod-

ification16. First, the chloracetyl-L(D)-valine was synthesized by using reagents of chloracetylchloride and 
L(D)-valine with the similar method mentioned in Supporting Information (Synthesis and characterization of 
acryloyl-L(D)-valine monomers). 1.1 mL triethylamine and 1.1 mL thioacetic acid were mixed within an ice bath, 
into which 1 g chloracetyl-L(D)-valine dissolved in 18 mL dichloromethane was added slowly under stirring and 
nitrogen bubbling. This solution was stirred overnight. After washed 3 times with water, the solvent was removed 
by vacuum evaporation. The solid product was purified by chromatography on silica gel with ethyl acetate/hexane 
(v/v =  30:70) as the eluent. The obtained 2-(thioacetyl)acetyl-L(D)-valine (50 mg) and several drops of HCl solu-
tion (1 M) were mixed in 10 mL methanol for 2 h to yield 2-mercaptoacetyl-L(D)-valine, which was character-
ized by a Bruker Esquire 3000 plus ion trap mass spectrometer (Brucker-Franzen Analytik GmbH, Bremen, 
Germany).

Synthesis of AuNPs and surface L(D)-MAV or L(D)-PAV-immobilization. The 15 nm AuNPs were 
synthesized by a citrate reduction method48. The AuNPs solution was centrifuged to remove free citrate mole-
cules, and the concentrated AuNPs solution was collected as a stock solution.

The surface of the obtained AuNPs was functionalized with 2-mercaptoacetyl-L(D)-valine (L(D)-MAV) or 
poly(acryloyl-L(D)-valine) (L(D)-PAV-AuNPs) using a ligand exchange protocol. Briefly, the stock AuNPs solu-
tion was incubated with a large amount of 1 mg/mL L(D)-MAV or L(D)-PAV solution under heavily shaking 
at room temperature overnight, respectively. The obtained solution was centrifuged (12000 g/min, 60 min) to 
remove the free MAV or PAV molecules, and followed by dialysis in water for 4 d.

Characterization of AuNPs. The gold concentration (m, g/mL) of the NPs solution and the size of NPs were 
measured by using inductively coupled plasma mass spectrometry (ICP-MS, Thermo Elemental Corporation of 
USA, XSeries II) and transmission electron microscopy (TEM, H-7650), respectively48.

The circular dichroism (CD) spectrum was recorded by using a JASCO-820 spectropolarimeter equipped 
with a thermostatically controlled cell holder. The temperature of the sample was controlled at 25 °C. The 
UV region was scanned between 190 and 400 nm with an average of 3 scans. The concentrations of AuNPs 
(L(D)-MAV-AuNPs and L(D)-PAV-AuNPs) were kept at 10 nM. The final spectrum (Δ θ) of L(D)-MAV-AuNPs 
and L(D)-PAV-AuNPs was obtained by subtracting the spectrum of same concentration of AuNPs (without MAV 
or PAV grafting) solution, respectively.

Dynamic light scattering (DLS) and zeta potential measurement. The Z-average hydrodynamic 
diameters of the L(D)-MAV-AuNPs and L(D)-PAV-AuNPs were determined at 37 °C in water and 10% fetal 
bovine serum/Dulbecco’s modified eagle medium (FBS/DMEM) solution by using DLS with a high performance 
particle analyzer (Zetasizer Nano, Malvern) equipped with a 633 nm wavelength laser, respectively. The scattering 
intensity was recorded at a 173° angle in kilo counts per second.

The zeta potentials of the L(D)-MAV-AuNPs and L(D)-PAV-AuNPs were measured at pH 7.4 and 37 °C by 
using the same machine (Zetasizer Nano, Malvern) in water and 10% FBS/DMEM solution, respectively.

Cellular uptake of AuNPs. The amount of L(D)-MAV-AuNPs and L(D)-PAV-AuNPs internalized by 
A549 or HepG2 cells was determined by ICP-MS. Briefly, the cells were seeded on a 12-well plate at a density 
of 5 ×  104 cells/cm2 and allowed to attach for 24 h. The medium was replaced with 10% FBS/DMEM contain-
ing L(D)-MAV-AuNPs or L(D)-PAV-AuNPs with an Au concentration of 50 μg/mL, respectively. After 24 h, the 
plates were washed 5 times with phosphate buffered saline (PBS) to remove the free AuNPs. After the cells were 
harvested by trypsinization, their numbers were quantified by a cell counter. The cells were treated with aqua regia 
(HCl: HNO3 =  1:3, volume ratio) for 2 h. The obtained solution was diluted to determine the Au concentration by 
ICP-MS. The Au amount per 104 cells from ICP-MS analysis is presented as mean ±  standard deviation (n =  4).

To clarify the uptake mechanism, the energy dependence of cell-NP interaction was assessed by treatment 
with 0.1% (w/v) sodium azide (NaN3)49. Different pharmacological inhibitors, including 2 mM amiloride-HCl 
(Amilo), 1 mM amantadine-HCl (Aman), 100 μM genistein (Ge), and 10 μg·mL−1 cytochalasin D (CytD) were 
also used to treat the cells for 1 h before incubation with the PAV-AuNPs, respectively. Then the cells were treated 
with PAV-AuNPs for another 4 h.

To further investigate the chirality-dependent uptake mechanism, the cells were pretreated with 1 mg/mL 
D-valine and D-PAV for 1 h before incubation with the PAV-AuNPs, respectively. Then the cells were treated 
with PAV-AuNPs (containing 1 mg/mL D-valine or D-PAV) for another 24 h. The D-PAV used here to pre-treat 
the cells was polymerized by using the general free radical polymerization (no thioester bond. Mw: 18743 Da; 
polydispersity: 1.7) to avoid the possible ligand exchange (the thioester bond can bind to the gold surface too).

Isothermal titration calorimetry (ITC) measurement. The isothermal titration calorimetry measure-
ments were performed by using a thermostated and fully computer-operated isothermal calorimetry (VP-ITC, 
GE, USA) instrument. All microcalorimetric titrations between L-lecithin and PAV-AuNPs were performed in 
aqueous solution (water, pH 7.0) at atmospheric pressure and 298.15 K. Each solution was degassed and thermo-
stated by a ThermoVac accessory before the titration experiment. The titration experiment was involved of 30 
injections of L-lecithin (titrant, 5 μL per injection from a 10 mM stock L-lecithin solution) at 5 min interval into 
the sample cell (1439 μL) which contained the 5.6 ×  10−5 mM PAV-AuNPs (L-PAV-AuNPs or D-PAV-AuNPs) 
solution. The heat of L-lecithin dilution in the water alone was subtracted from the titration data for each experi-
ment. The data were analyzed to determine the binding stoichiometry (N), complex stability constant (K), stand-
ard molar reaction enthalpy (Δ H) and other thermodynamic parameters of the reaction by using the supplied 
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Origin 7.0 software. One set of binding sites model was used to fit the data as reported previously45,50. The 
reported thermodynamic parameters were an average of duplicate experiments.

Figure 7. The distribution of NPs in A549 cells. (A) CLSM images of A549 cells treated with (Left image) 
L-PAV-AuNPs and (Right image) D-PAV-AuNPs for 24 h. Merged images of nucleus staining and bright 
field. (B) Representative TEM micrographs of sectioned A549 cells after being cultured with (Left images) 
L-PAV-AuNPs and (Right images) D-PAV-AuNPs at an Au concentration of 50 μg·mL−1, showing subcellular 
localization of the internalized NPs, respectively. The white arrow heads indicate the PAV-AuNPs, and the black 
arrows indicate the amplification regions. N: Nucleus; Ly: Lysosome; Ve: Vesicle; Cy: Cytosol.
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QCM-D. Liposomes composed of lecithin (Aladdin Company) were prepared from a lipid solution in chlo-
roform (total lipid amount: 15 mg). The solvent was removed under a stream of nitrogen and the resulting lipid 
film was placed under vacuum at least for 4 h. The dried lipid film was then hydrated in PBS to yield a final con-
centration of 1000 μM. To form small unilamellar vesicles (SUVs), the lipid solution was sonicated according to 
the protocols described in literature by using a ultrasonicator (MISONIX Ultrasonic liquid Processors)44. The 
hydration diameter of the SUVs was measured by DLS with a high performance particle analyzer (Zetasizer Nano, 
Malvern) equipped with a 633 nm wavelength laser. The scattering intensity was recorded at a 173° angle in kilo 
counts per second.

The interaction with liposomes and chiral PAV molecules was measured by Quartz Crystal Microbalance 
with dissipation (QCM-D, Q-Sense E4, Sweden) under a flow condition. The PAV molecules were grafted on 
gold-coated piezoelectric crystals via the strong thiocarbonylthio-Au bond. Briefly, the crystals were incubated 
in 5 mg/mL PAV molecules (in ethanol) at 37 °C for at least 4 h. Then the crystals were washed with ethanol and 
water 5 times, respectively.

Intracellular distribution. For confocal laser scanning microscopy (CLSM, Leica TCS SP5) measurement, 
the cells were seeded on a glass bottom cell culture dish (diameter, 20 mm) at a density of 5 ×  103 cells/cm2 and 
allowed to attach for 24 h. Then, the cells were treated with L(D)-PAV-AuNPs (Au, 50 μg/mL) for another 24 h, 
before 5 washes with PBS were applied to remove free L(D)-PAV-AuNPs. The cells were fixed with 0.4% par-
aformaldehyde at 37 °C overnight, and washed with PBS 3 times. The cells were further treated in 0.5% (v/v) 
Triton X-100/PBS for 10 min at 37 °C to increase the permeability of cell membrane. After being blocked with 1% 
BSA/PBS at 37 °C for 2 h, the samples were stained with 4′ ,6-diamidino-2-phenylindole (DAPI, Sigma, 1:50) and 
FITC-phallotoxins (Invitrogen, 1:100) at 37 °C for 30 min, following with 5 washes with PBS.

For TEM cell section analysis, the cells were seeded on a 6-well plate at a density of 5 ×  104 cells/cm2. After 
cultured for 24 h, the cells were further incubated with the L(D)-PAV-AuNPs (Au concentration 50 μg/mL) for 
24 h. The cells were then washed 5 times with PBS, trypsinized, centrifuged, and fixed with 2.5% glutaraldehyde 
at 4 °C for 2 h. After 3 washes with PBS (10 mM, pH 7.4), the samples were fixed with 1% perosmic oxide for 2 h 
at 4 °C. After being washed in water, the samples were dehydrated in a series of ethanol solutions with increased 
concentrations, embedded, and sliced with a thickness of ~50–70 nm.

Statistical Analysis. The experimental data are expressed as mean ±  standard deviation, and the signifi-
cant difference between groups was analyzed by using one-way analysis of variance (ANOVA) (for two groups) 
and two-way ANOVA (for more than two groups) in the Origin software. The statistical significance was set as 
p <  0.05 and p <  0.01, respectively.
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