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Abstract
Subinhibitory concentrations (subMIC) of antibiotics, although not able to kill bacteria, can modify their physicochemical characteristics and

may interfere with some bacterial functions. This study aimed to investigate the effect of subMIC of imipenem and piperacillin on the

transcriptional expression of virulence-related genes toxA and exoS in Pseudomonas auroginosa. Five clinical isolates of P. aeruginosa were

screened for the presence of toxA and exoS genes and MICs of imipenem and piperacillin were determined using broth macrodilution.

The expression levels of toxA and exoS at subMIC concentrations of antibiotics were measured by real-time PCR. Our results showed

that the expression of toxA decreased at all subinhibitory concentrations of imipenem, especially at concentrations 2, 4 and 8 mg/L

(p < 0.05). Whereas, exoS expression was increased 4.1- to 7-fold at subinhibitory concentrations of imipenem. The increase of toxA

expression was measured at concentrations 16, 4, 2, 0.25 and 0.125 mg/L of piperacillin. However, piperacillin had no significant

influence on exoS expression (p > 0.05). Further studies will be required to assess whether subMIC of imipenem can improve the

outcomes of severe and serious infections caused by P. aeruginosa.
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Introduction
Pseudomonas aeruginosa, as an opportunistic human pathogen,
can cause severe acute and chronic infections especially in

immunocompromised individuals [1]. The emergence of
multidrug-resistant (MDR) P. aeruginosa has become a serious

problem in health-care settings in developing countries [2].
Treatment of infections associated with MDR P. aeruginosa is
further complicated in Asian countries such as Japan, Taiwan,

India and Iran [3]. Imipenem and piperacillin are potent, broad-
spectrum penicillins with activity against β-lactamase-producing

Gram-negative and Gram-positive organisms, especially against
This is an open access arti
P. aeruginosa [4]. Some reports have demonstrated that treat-
ment with subinhibitory concentrations (subMIC) of some an-
tibiotics may influence bacterial virulence factors such as

adherence, cell surface hydrophobicity, biofilm formation,
sensitivity to oxidative stress and motility [4,5]. Previous studies

have suggested that treatment with subMIC of macrolides may
benefit patients with P. aeruginosa infections [6] However, a

limited number of antibiotics are known to have beneficial ef-
fects on the expression of virulence factors at subMIC [6].

The pathogenesis of P. aeruginosa depends on the production
of several cell-associated and extracellular virulence factors.
The virulence factors play important pathological roles in

colonization, the survival of the bacteria and the invasion of
tissues [7,8]. Among the extracellular toxins, exotoxin A and

exoenzyme S have the most important roles in pathogenesis
and lead to local and systemic toxicity [9,10]. The expression of

these toxins is regulated by Quorum sensing [10,11].
Exotoxin A is a type II secreted extracellular enzyme

encoded by the toxA gene. This enzyme alone or synergistically
with other hydrolases causes cell death, severe tissue damage
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and necrosis in the human host [10,12]. Exotoxin A is an ADP-

ribosyl transferase that transfers an ADP-ribosyl moiety to
elongation factor 2, resulting in an inhibition of protein syn-

thesis in mammalian cells [9,10,12]. Exoenzyme S is a type III
secreted bifunctional enzyme containing an N-terminal GTPase-

activating protein domain and a C-terminal ADP-ribosylation
domain encoded by the exoS gene. The 14-3-3 protein is a
eukaryotic cell cofactor, required for ADP-ribosyl transferase

activity of exoenzyme S [9,12]. Exoenzyme S inhibits phagocy-
tosis by disrupting actin cytoskeletal rearrangement, focal ad-

hesions and signal transduction cascades [9].
To the authors’ knowledge, the effects of subMIC of imi-

penem and piperacillin on P. aeruginosa toxA and exoS expres-
sion have never been reported. To identify beneficial effects of

imipenem and piperacillin on expression of the virulence fac-
tors of P. aeruginosa we assessed the effect of subMIC of these
antibiotics on toxA and exoS transcriptional expression using

real-time PCR.
Materials and methods
Bacterial strains
Five strains of P. aeruginosa were isolated from clinical speci-
mens. The identification of isolates was performed by routine
biochemical tests. Verified isolates of P. aeruginosa were pre-

served at –70°C in trypticase soy broth (Merck, Darmstadt,
Germany) containing 20% (volume/volume) glycerol for further

analysis.

Detection of toxA and exoS in P. aeruginosa isolates
All P. aeruginosa isolates were screened for the presence of
exotoxin A (toxA) and exoenzyme S (exoS) genes using the
primers listed in Table 1. Extraction of DNA was performed

according to the protocol provided with the Qiagen Mini Amp
kit (QIAGEN Inc., Valencia, CA). The PCR was performed in a

reaction mixture with total volume of 25 μL, containing 2 μL
template DNA; 0.2 mM of each deoxynucleoside triphosphate;
TABLE 1. Primers used in this study

Gene Primer sequence
Amplicon
size (bp) Ref.

toxA-F 50-ACA TCA AGG TGT TCA TCC -30 125 [23]
toxA -R 50-GAC GAA GAA GGT GGC ATC -30
exoS-F 50-GGC GGA TGC GGA AAA GTA C -30 121 [11]
exoS-R 50-CTG ACG CAG AGC GCG ATT -30
oprL-F 50-AAC AGC GGT GCC GTT GAC -30 87 [11]
oprL-F 50-GTC GGA GCT GTC GTA CTC GAA -30

© 2019 The Authors. Published by Elsevier Ltd, NMNI, 32, 100608
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10 pmol of each primer; 10 mM Tris–HCl; 1.5 mM MgCl2; 50 mM

KCl; 1.5 U of Taq DNA polymerase. PCR was performed with
the Gene Atlas 322 system (ASTEC, Fukouka, Japan). Amplifi-

cation involved an initial denaturation at 94°C for 5 min fol-
lowed by 30 cycles of denaturation (94°C, 1 min), annealing

(60°C, 1 min) and extension (72°C, 1 min), with a final
extension step at 72°C for 10 min. The amplified DNA was
separated by submarine gel electrophoresis on 1.5% agarose,

stained with ethidium bromide and visualized under UV trans-
illumination. The P. aeruginosa reference strain PAO1 was used

as a positive control for amplification of toxA and exoS genes.

MIC determination of imipenem and piperacillin
The MIC of imipenem (MAST, Merseyside, UK) and piperacillin
(Sigma, St Louis, MO, USA) were determined using the broth
macrodilution method according to the CLSI guidelines [13].

Concentrations below MIC were considered subinhibitory (sub-
MIC). The range of concentrations tested for imipenem and

piperacillin was 0.125–128 mg/L. The P. aeruginosa reference stain
ATCC27853was used as positive control for susceptibility testing.

According to the CLSI guidelines, MIC values of imipenem and
piperacillin for the reference strain were 1–4 mg/L and 1–8 mg/L,

respectively.

RNA extraction and cDNA synthesis
To investigate whether subMIC of imipenem and piperacillin

can influence toxA and exoS expression, RNA was extracted
from the all subMIC tubes using an RNeasy Mini kit with 1 h on-

column DNase digestion (Qiagen) according to the RNeasy
Mini kit handbook. cDNA was synthesized using the High-

Capacity cDNA Reverse Transcription Kit (Applied Bio-
systems, Foster City, CA). Reverse transcription was per-

formed in a reaction mixture with a total volume of 20 μL
containing 10 μL RNA, 2 μL reverse transcription buffer (10×),
0.8 μL deoxynucleoside triphosphate (25×), 2 μL RT random

primers (100 mM) and 1 μL reverse transcriptase (1 U). The
reactions were incubated at 25°C for 10 min, 37°C for 120

min, 85°C for 5 min and 4°C for 10 min.

Real-time PCR
One hundred nanograms of cDNA and 50 nM (final concen-
tration) of each primer were mixed with 10 μL 2× SYBR Green
PCR Master Mix (ABI, UK). Assays were performed in duplicate

with an ABI Prism model 7300 instrument. All data were
normalized to the internal standard oprL (encoding the outer

membrane protein), and melting curve analysis demonstrated
that the accumulation of SYBR Green-bound DNA was target

gene specific. The negative control was included in all
experiments.
nses/by-nc-nd/4.0/).
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The threshold cycle values (Ct) were determined for each

reaction. To calculate the ΔCt values, the threshold cycle (Ct)
for each gene amplification was normalized to the Ct of the oprl

gene amplified from the corresponding sample. Then ΔCt

values obtained from each sample were compared with control

culture without antibiotic.

ΔCt sample = Ct sample – Ct oprL sample

ΔCt control = Ct control – Ct oprL control

Statistical analysis
The data were analysed with SPSS version 17.0 software (SPSS

Inc., Chicago, IL, USA) and expressed as means and standard
deviations of ΔCt values. The chi-square test was used to

determine the statistical significance of the data. A p value of
<0.05 was considered significant.
Results
FIG. 1. Effect of subinhibitory concentrations of imipenem on (a) the

toxA and (b) the exoS expression in Pseudomonas aeruginosa isolates. ΔCt

values obtained for each subinhibitory concentrations of imipenem

were compared with the control culture without antibiotic. *p < 0.05.
MIC determination of imipenem and piperacillin
The MIC values of imipenem and piperacillin for five clinical
isolates were in the range 0.5–16 mg/L and 1–64 mg/L,

respectively.

Effect of subMIC of imipenem on the toxA expression
Imipenem was applied in subMIC ranging from 0.125 to 8 mg/L.

The expression level of toxA at all subMIC of imipenem was
decreased in comparison with the control culture without

antibiotic (Fig. 1a). Decrease in expression level of toxA at
subMIC of 2, 4 and 8 mg/L of imipenem was significant

(p < 0.05).

Effect of subMIC of imipenem on the exoS expression
The expression level of exoS at all subMIC of imipenem was

increased in comparison with the control culture without
antibiotic (Fig. 1b). Increase in expression level of exoS at

subMIC of 0.125, 1, 2 and 4 mg/L of imipenem was statistically
significant (p < 0.05).

Effect of subMIC of piperacillin on the toxA expression
Piperacillin was applied in subMIC ranging from 0.125 to 32 mg/
L. The expression level of toxA at subMIC of 0.125, 0.25, 2, 4

and 16 mg/L of piperacillin was increased in comparison with
the control culture without antibiotic. Whereas at other con-

centrations of piperacillin, the expression level of toxA was
decreased in comparison with control (Fig. 2a). These differ-

ences in expression level of toxA were statistically significant
only at concentrations of 0.125 and 0.25 mg/L of piperacillin

(p < 0.05).
This is an open access artic
Effect of subMIC of piperacillin on the exoS expression
The expression level of exoS at concentrations of 2, 4 and 32

mg/L of piperacillin was increased in comparison with the
control culture without antibiotic (Fig. 2b). At other concen-

trations of piperacillin, the expression level was decreased in
comparison with control. These differences in expression level

of exoS were not significant (p > 0.05).
© 2019 The Authors. Published by Elsevier Ltd, NMNI, 32, 100608
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FIG. 2. Effect of subinhibitory concentrations of piperacillin on (a) the

toxA and (b) the exoS expression in Pseudomonas aeruginosa isolates. ΔCt

values obtained for each subinhibitory concentration of piperacillin

were compared with the control culture without antibiotic. *p < 0.05.
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Discussion
Subinhibitory antibiotic concentrations are known to exhibit
effects on the cell structure and the expression of important

bacterial virulence factors such as adhesins or toxins [14,15].
Several studies have now shown that subMIC of antibiotics can

transcriptionally modulate a large number of genes [16]. In this
study, we have therefore analysed the effect of subMIC of
imipenem and piperacillin on the expression of toxA and exoS

genes. Our results showed that the expression of the toxA
decreased at all subMIC of imipenem, especially at
© 2019 The Authors. Published by Elsevier Ltd, NMNI, 32, 100608
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concentrations 2, 4 and 8 mg/L (p < 0.05). Whereas, the exoS

expression was increased 4.1- to 7-fold at subMIC of imipenem.
The increase of toxA expression was measured at concentra-

tions 16, 4, 2, 0.25 and 0.125 mg/L of piperacillin. However,
piperacillin had no significant influence on exoS expression

(p > 0.05). The effect of subMIC of various antibiotics has been
studied on morphology and biochemical properties [6], the
expression of resistance-related genes [17], biofilm formation

[18], and motility and flagella formation [4,6] in P. aeruginosa.
According to Shen et al., the expression of some virulence

factors in P. aeruginosa was increased at subMIC of vancomycin,
tetracycline, ampicillin and azithromycin [19].

Treatment with subMIC of some antibiotics suppresses the
expression of virulence factors in various Gram-negative bac-

teria. Recent studies showed that subMIC of macrolides and
clindamycin inhibit the biofilm formation in P. aeruginosa and
macrolides suppress the flagellin expression in P. aeruginosa and

Proteus mirabilis [5,6]. Horii et al. showed that subMIC of
mupirocin decreased the flagella formation in P. aeruginosa [6].

In a study carried out by Fonseca et al., subMIC of piperacillin
and tazobactam interfered with the pathogenic potential of

P. aeruginosa as adhesiveness, cell-surface hydrophobicity,
motility, biofilm formation and sensitivity to oxidative stress [4].

Previous studies demonstrated that subMIC of azithromycin
interfere with the synthesis of autoinducers such as 3-oxo-C12-

homoserine lactone (HSL) and C4-HSL in the quorum-sensing
cell-to-cell signalling system, leading to a decrease in expres-
sion of virulence factors [20–22]. In fact, subMIC of azi-

thromycin were shown by microarray analysis to repress a
large number of genes that are quorum-sensing-regulated, and

similar observations were made with other antibiotics [16].
Babic et al. showed that tobramycin at subMIC inhibits the RhlI/

R quorum-sensing system in P. aeruginosa [16].
In conclusion, we have shown that subMIC of imipenem can

reduce toxA expression in P. aeruginosa. Further studies will be
required to assess whether subMIC of imipenem can improve
the outcomes of severe and serious infections caused by

P. aeruginosa.
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