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The Rhodococcus opacus TadD protein mediates
triacylglycerol metabolism by regulating
intracellular NAD(P)H pools
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Abstract

Background: The Gram-positive actinomycete Rhodococcus opacus is widely studied for its innate ability to store
large amounts of carbon in the form of triacylglycerol (TAG). Several groups have demonstrated that R. opacus
PD630 is capable of storing anywhere from 50 to 76% of its cell dry weight as TAG. While numerous studies have
focused on phenomenological aspects of this process, few have sought to identify the underlying molecular and
biochemical mechanisms responsible for the biosynthesis and storage of this molecule.

Results: Herein we further our previous efforts to illuminate the black box that is lipid metabolism in actinomycetes
using a genetic approach. Utilizing a simple, colorimetric genetic screen, we have identified a gene, referred to herein
as tadD (triacylglycerol accumulation deficient), which is critical for TAG biosynthesis in R. opacus PD630. Furthermore,
we demonstrate that the purified protein product of this gene is capable of oxidizing glyceraldehyde-3-phosphate,
while simultaneously reducing NAD(P)+ to NAD(P)H. Supporting this biochemical data, we observed that the ratio of
NAD(P)H to NAD(P)+ is elevated in wildtype cultures grown under lipid production conditions as compared to cultures
grown under vegetative growth conditions, while the mutant strain demonstrated no change irrespective of growth
conditions. Finally, we demonstrate that over-expressing a putative phosphorylative glyceraldehyde-3-phosphate
dehydrogenase leads to decreased TAG production during growth on TAG accumulation conditions.

Conclusion: Taken together, the data support the identification of a key metabolic branch point separating vegetative
growth and lipid accumulation lifestyles in Rhodococcus.
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Background
The vast majority of organisms are capable of storing
excess carbon and often do so when other nutrients are
limiting, i.e. nitrogen, phosphorous, etc. [1-3]. Amongst
bacteria, this stored carbon exists primarily as polyhy-
droxyalkanoate, though there are examples of other
polymeric storage compounds including glycogen and
complex, long-chain hydrocarbons [4-9]. Several acti-
nomycetes, including Mycobacterium tuberculosis and
several species of both Streptomyces and Rhodococcus
have been shown to store excess carbon in the form of
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triacylglycerol (TAG) [10-14]. Indeed, R. opacus PD630
has previously been shown to accumulate up to 76% of
its cell dry weight (CDW) as TAG when grown under
nitrogen limiting conditions [13,14]. While several stu-
dies have been performed to characterize TAG biosyn-
thesis and storage in R. opacus PD630 the underlying
molecular and biochemical mechanisms remain poorly
understood [12,15,16]. Work by the Sinskey lab has pre-
viously detailed the use of a Sudan Black based genetic
screen to identify genes which mediate the biosynthesis
and storage of TAG in R. opacus PD630 [17]. This work
identified a novel protein, termed TadA, which mediates
lipid storage in R. opacus. Furthermore, work by Alvarez
and colleagues has identified the enzymes Atf1 and Atf2
which mediate late stages of the TAG biosynthetic path-
way [15,18].
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The non-phosphorylative glyceraldehyde 3-phosphate
dehydrogenase (NP-G3P) family of enzymes, a sub-family
of the larger aldehyde dehydrogenase family, was ori-
ginally associated with green eukaryotes, plants and algae
primarily, wherein it catalyzes the irreversible oxidation of
glyceradehyde-3-phosphate (G3P) to 3-phosphoglycerate
(3PG) while concomitantly reducing NAD(P)+ to NAD(P)
H [19]. This reaction is mediated by the GapN protein in
most organisms. This is in contrast to the canonical phos-
phorylative glyceraldehyde 3-phosphate dehydrogenase
(GapA) which oxidizes G3P to 1,3-bisphosphoglycerate
(1,3BPG) while reducing NAD+ to NADH. 1,3-BPG is
subsequently dephosphorylated to 3-PG by the enzyme
phosphoglycerate kinase yielding one molecule of adeno-
sine triphosphate (ATP) (Figure 1) [20]. Thus instead of
yielding one molecule of NADH and ATP, as would be
the case in the phosphorylative branch of glycolysis, the
non-phosphorylative branch yields a single molecule of
NAD(P)H, an essential reducing equivalent in most bio-
synthetic pathways including fatty acid biosynthesis.
While this family of enzymes was initially associated
strictly with green eukaryotes, sequence and functional
homologs have been identified in a number of eubac-
teria and archaea [21-23].
In this study we performed a genetic screen to iden-

tify genes that play a role in TAG biosynthesis and
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Figure 1 Proposed model for the role of TadD in TAG metabolism in
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accumulation in R. opacus PD630. One of the mutants
isolated in this screen has a transposon insertion in the 5′
end of a gene predicted to encode an aldehyde dehydro-
genase. Utilizing a variety of techniques we demonstrate
that the encoded product possesses NAD(P)H-dependent
glyceraldehyde 3-phosphate dehydrogenase (ND-G3PD)
activity. We propose that the predicted ND-G3PD enzyme
is necessary for the generation of NAD(P)H utilized in the
biosynthesis of fatty acids. Furthermore, our data suggests
that activation (or derepression) of this protein may con-
stitute an early switch from a vegetative lifestyle to a sto-
rage one. While several studies have identified genes that
play a role in the later stages of TAG biosynthesis, we
believe this study may be the first to identify one of the
initial steps in this process.

Results
Genetic screen for triacylglycerol accumulation deficient
(tad) mutants
The lipophylic dye Sudan Black was used to screen a
library of 5000 Ez-Tn5 R. opacus mutants [17]. Mutants
were grown under nitrogen limiting conditions on solidi-
fied minimal medium supplemented with 4% glucose
and 0.15% ammonium sulfate followed by staining with
Sudan Black. As previously described, TAG accumula-
tion is evidenced by very dark blue staining of a colony
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as can be seen in the wildtype example from MacEachran
et al., 2010 and as shown in Figure 2A of this manuscript
[17]. Mutants deficient in TAG accumulation stained a
much lighter color as is shown for the 44B2 mutant
(Figure 2A).

Kinetics of TAG accumulation in the wildtype and 44B2
mutant strains
To better understand the kinetics of the TAG storage
phenotype in strain 44B2 lipid storage was studied over
time. The wildtype strain of R. opacus PD630, as well as
the 44B2 mutant strain, was grown in minimal medium
supplemented with 4% (w/v) glucose and 0.15% (w/v) am-
monium sulfate. Cultures were sampled every 24 hours
and several metrics were observed including glucose and
nitrogen concentration, optical density at 600 nm, pH of
the growth medium, the lipid content of the cells and the
colony forming units. Interestingly, thin-layer chromato-
graphy (TLC) analysis demonstrated a marked decrease in
neutral lipid accumulation in the 44B2 strain as compared
to the wildtype strain (Figure 2B). There was no discer-
nible difference in polar lipids between the two strains
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Figure 2 The R. opacus PD630 44B2 transposon mutant accumulates
staining of wildtype (WT) and 44B2 colonies grown on minimal medium su
sulfate. The lipophylic dye Sudan Black was used to identify transposon mu
accumulating less TAGs absorb and retain less of the dye than the wildtyp
matography of the wildtype and 44B2 mutant grown for varying lengths o
were resolved using a two solvent system to separate TAGs from other lipi
the Rf value for TAGs under the chromatographic conditions used. The 44B
while the relevant abundance of other lipids remains largely unchanged. C
the resulting FAMEs were separated via gas chromatography and detected
curve of methyl esters. The wildtype strain produced more lipids than the
cell dry weight at 120 hours post inoculation as compared to the 44B2 mu
demonstrating that the defect seems to be specific to the
biosynthesis of neutral, storage lipids. It is worth noting
that the wildtype control shown in this experiment was
previously published [17]. Densitometrical analysis of the
TLC results suggests a 70-80% reduction in TAG accu-
mulation in the mutant strain. Furthermore, there was no
measurable difference in either glucose and nitrogen
consumption nor colony forming units between the two
strains suggesting no significant growth defect (data not
shown).
To further confirm that the 44B2 mutant accumulated

less lipids than the wildtype strain we utilized gas chro-
matography. Cell pellets from kinetic experiments iden-
tical to those described above were lyophilized and the
total lipids extracted and converted to fatty acid methyl
esters (FAMEs) for use in GC and subsequently detected
using a Flame Ionization Detector (FID) (Figure 2C).
Consistent with the TLC results, we found that after
120 hours of growth the mutant accumulated 18.66%
(+/− 2.09%) lipids as a percentage of cell dry weight
(mg lipids/mg CDW) while the wildtype accumulated
37.75% (+/− 1.95%) a difference of roughly 50%.
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e strain as can be seen in the 44B2 mutant colony. B. Thin-layer chro-
f time. Lipid extracts from the two strains from progressive time points
d species followed by charring. TAG standards were used to identify
2 mutant accumulates less TAGs than the wildtype at all time points
. Biomass from kinetic assays was subjected to transesterification and
using FID. The resulting spectrum was quantified against a standard
44B2 mutant at all time points reaching a maximum of 37.74% of total
tant which peaked at 18.66% lipids.



MacEachran and Sinskey Microbial Cell Factories 2013, 12:104 Page 4 of 12
http://www.microbialcellfactories.com/content/12/1/104
Utilizing a marker rescue-like approach we identified
the transposon insertion site in the 44B2 mutant as lying
17 base pairs 3′ from the predicted start codon of a
gene, termed herein tadD, predicted to encode a hypo-
thetical protein with approximately 50% sequence iden-
tity to the aldehyde dehydrogenase family of proteins.
The accession number for this protein is EHI47090
(encoded by OPAG_03892). Interestingly, this protein is
predicted to contain a well-conserved NAD(P)+ binding
domain.

TadD has NAD(P)H-dependent glyceraldehyde
3-phosphate dehydrogenase activity
With the demonstration that loss of tadD expression re-
sulted in a significant decrease in TAG accumulation we
sought to better understand the biochemical underpin-
nings of the TadD protein. Bioinformatic analysis of the
TadD protein suggested that it may possess NAD(P)H-
dependent glyceraldehyde 3-phosphate dehydrogenase
activity (ND-G3PDH). This family of proteins were
initially identified in and thought to occur exclusively
in the so-called green eukaryotes. More recently, ND-
G3PDH homologs have been identified in several Gram-
positive organisms [21,24,25].
To assess whether the TadD protein possessed ND-

G3PDH activity we constructed a C-terminal hexa-histidine
tagged variant of the TadD protein, expressed it in E. coli
and purified the protein utilizing nickel affinity chro-
matography (Figure 3A). Additionally, supernatant from
E. coli containing the parental plasmid was used as an
empty vector control. Fractions containing the histidine
50kDa

20kDa

A B

Figure 3 Purified TadD demonstrates NAD(P)+-dependent glyceraldeh
A. SDS-PAGE analysis of purified TadD. A C-terminal hexa-histidine tagged
pDPM21 and purified using nickel affinity chromatography. The arrow mark
the presence of glyceraldehyde 3-phosphate (G3P). The purified histidine-ta
(P)H formation was monitored as an increase in absorbance at 340 nm. Val
protein per minute. We observed a marked increase in specific activity in fr
harboring the empty vector.
tagged TadD protein (and the corresponding fractions
from the empty vector fractionation) were then used in
ND-G3PDH activity assays. As shown in Figure 3B reac-
tions containing the purified TadD protein generated
more NAD(P)H than those containing extract from the
empty vector strain as demonstrated by the increase in
optical density at 340 nm suggesting that indeed TadD
possesses ND-G3PDH activity.

TadD ND-G3PDH activity is induced under lipid storage
conditions
With the demonstration that the TadD protein possessed
ND-G3PDH activity we sought to determine whether
this activity was coordinated with lipid biosynthesis. As
NAD(P)H is essential to numerous biosynthetic path-
ways, specifically fatty acid biosynthesis, we hypothesized
that we would see an increase in TadD-dependent ND-
G3PDH activity in cells that have begun to accumulate
TAGs.
To assess whether the observed TadD ND-G3PDH ac-

tivity was induced under lipid storage conditions we grew
wildtype and the tadD transposon mutant in either rich
LB medium (non TAG storage conditions) or MR me-
dium supplemented with 4% (w/v) glucose and either 1%
(w/v) (low TAG storage conditions) or 0.15% (w/v) (TAG
storage conditions) ammonium sulfate for 24 hours. As
we sought to determine whether TadD-dependent ND-
G3PDH activity changed under TAG storage versus non-
storage conditions we first needed to determine whether
there was in fact any difference in lipid accumulation
under these three different conditions. To this end we
yde 3-phosphate dehydrogenase (ND-G3PDH) activity.
variant of TadD was expressed recombinantly in E. coli from plasmid
s the recombinant TadD protein. B. Purified TadD reduces NAD(P)+ in
gged variant of TadD was incubated with G3P and NAD(P)+ and NAD
ues are expressed as a change in absorbance at 340 nm per mg of
actions containing the TadD protein as compared to those from cells



MacEachran and Sinskey Microbial Cell Factories 2013, 12:104 Page 5 of 12
http://www.microbialcellfactories.com/content/12/1/104
assayed for the total fatty acid content of cultures grown
under these three conditions using GC-FAMEs followed
by FID (Figure 4A). Wildtype R. opacus accumulated more
fatty acids per mg of cell dry weight under the TAG stor-
age conditions than either the high nitrogen or rich media
conditions. Furthermore, as expected the tadD transposon
mutant accumulated less fatty acids than the wildtype
under all of the conditions tested.
These same cultures were then assayed for ND-G3PDH

activity using the previously described assay. As we
hypothesized, we saw a sharp increase in ND-G3PDH
activity in cultures grown under lipid storage conditions
(Figure 4B). Interestingly, the ND-G3PDH activity is
superimposable over the GC-FAMES data with very low
activity and fatty acid accumulation in the LB grown cul-
tures, an intermediate phenotype for both metrics under
the high nitrogen conditions and high ND-G3PDH acti-
vity and fat storage under the low nitrogen condition. It is
worth noting that there does appear to be some residual
ND-G3PDH activity in the tadD transposon mutant. This
could be the result of either partial activity of the mutant
tadD gene product or the result of another protein with
redundant or promiscuous ND-G3PDH activity.
While we have shown that TadD-dependent ND-G3PDH

activity increases dramatically under conditions that
promote lipid accumulation we wanted to determine
if this translated into a change in the NAD(P)H and
NADH pools within the cells. Accordingly, we grew
wildtype R. opacus and the tadD transposon mutant in
minimal medium supplemented with 4% (w/v) glucose
and either 1% (w/v) or 0.15% (w/v) ammonium sulfate
as described above. We then determined the concentra-
tion of NAD(P)+ and NAD(P)H (Figure 5A) or NAD+
%
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Figure 4 TadD-dependent ND-G3PDH activity increases under lipid ac
increases during nitrogen limiting conditions. Lipids were extracted from w
minimal medium supplemented with either 1% (w/v) or 0.15% (w/v) ammo
observed an increase in total fatty acids when wildtype R. opacus PD630 w
replete conditions. Additionally, the tadD mutant demonstrated decreased
B. ND-G3PDH activity in crude lysates from cultures grown under vegetativ
the crude lysates assayed for ND-G3PDH activity. As with the total fatty aci
grown under nitrogen limiting conditions as compared to those grown un
lower ND-G3PH activity in the tadD mutant.
and NADH (Figure 5B) which are expressed as the ratios
of the oxidized form divided by the reduced form. Con-
sistent with the changes in TadD-dependent ND-G3PDH
activity described above we observed a dramatic decrease
in the ratio of NAD(P)+ to NAD(P)H with a concomitant
increase in the NAD+ to NADH ratio when comparing
the wildtype strain grown under nitrogen replete condi-
tions to wildtype grown under nitrogen limiting condi-
tions. As expected we did not observe any difference in
NAD(P)+/NAD(P)H or NAD+/NADH ratios for the tadD
mutant.

Over-expression of a potential GapA homolog results in a
decrease in fatty acid accumulation
Many bacteria metabolize glucose via either the Emden-
Meyerhof or the Entner-Doudoroff pathway. One of the
key energy generating steps of these pathways is the
NAD+-dependent dehydrogenation of glyceraldehyde 3-
phosphate by the canonical glyceraldehyde 3-phosphate
dehydrogenase GapA, followed by a subsequent sub-
strate level phosphorylation by phosphoglycerate kinase,
yielding one molecule of NADH, ATP and 3-phospho-
glycerate. NAD(P)+-dependent glyceraldehyde 3-phos-
phate dehydrogenases have been shown to bypass these
two steps yielding a single molecule of NAD(P)H and
3-phosphoglycerate (Figure 6A). Based on our data we
hypothesized that during vegetative growth, R. opacus
PD630 metabolizes glucose and other hexoses via either
of the two pathways described above utilizing the
GapA-dependent pathway. However during lipid stor-
age, we hypothesize that R. opacus switches to a GapN-
dependent pathway thus yielding NAD(P)H, an essential
cofactor in fatty acid biosynthesis. Accordingly, we
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Figure 5 NAD(P)+/NAD(P)H and NAD+/NADH ratios in the wildtype and tadD mutant. A. NAD(P)+/NAD(P)H ratios decrease during early
nitrogen limitation. Wildtype R. opacus PD630 and the tadD mutant were grown in minimal medium supplemented with either 1% (w/v) or
0.15% (w/v) ammonium sulfate, the resulting cell lysates were assayed for NAD(P)+ and NAD(P)H concentrations. Consistent with our data
concerning ND-G3PDH activity we observed a decrease in the ratio of NAD(P)+/NAD(P)H under nitrogen limitation as compared to nitrogen
replete conditions. Additionally, we see no change in the ratio of NAD(P)+/NAD(P)H in the tadD mutant. B. The ratio of NAD+/NADH increases
under nitrogen limiting conditions. Cell lysates from above were also assayed for NAD+ and NADH concentrations. We observed a marked
increase in the ratio or NAD+ to NADH under nitrogen limiting conditions as compared to nitrogen replete conditions, while no difference was
observed in the tadD mutant. It is worth noting that the NAD+/NADH ratio in the tadD mutant is significantly lower than that observed for
the wildtype.
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Figure 6 Overexpression of a predicted R. opacus PD630 GapA homolog results in a decrease in TAG accumulation. A. We hypothesize
that GapA and GapN compete for G3P during glycolysis in R. opacus PD630. B. Extrachromosomal expression of GapA results in a decrease in
TAG accumulation. Lipid extracts from wildtype R. opacus PD630 expressing either GFP, TadD or the R. jostii RHA1 GapA homolog encoded by
the ro07177 gene grown in minimal medium supplemented with gentamycin were resolved using TLC. As described above, expression of the
TadD protein resulted in an increase in TAGs while expression of the ro07177 protein resulted in a dramatic decrease in TAGs as compared to the
wildtype strain containing the empty vector pDPM70.
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hypothesized that over-expressing GapA should result
in a decrease in available NAD(P)H and thus a decrease
in lipid accumulation.
To this end we cloned a predicted R. opacus PD630

GapA homolog (homologous to the R. jostii ro07177 gene)
into the E. coli/Rhodococcus/Saccharomyces expression
vector pDPM70 and mobilized it into wildtype R. opacus
PD630. Cultures of wildtype R. opacus containing the
empty vector or expressing either the gapA homolog or
tadD were grown in minimal medium supplemented with
4% (w/v) glucose, 0.15% (w/v) ammonium sulfate and gen-
tamycin for 48 hours at 30°C. Fatty acid content was
assayed via TLC (Figure 6B) and GC-FAMEs. We ob-
served that, as predicted, over-expression of the GapA
homolog resulted in a dramatic decrease in total fatty
acids while over-expression of TadD resulted in an
increase in TAG accumulation. These data are further
supported by GC-FAMEs analysis with the empty vector
strain containing 17.59% (+/−0.92%) total lipids (FAMEs/
CDW), the tadD overexpressing strain containing 23.10%
(+/− 1.59%) lipids and the gapA overexpressing strain con-
taining 12.82% (+/− 0.84%) lipids. It is worth noting that,
in general, the use of this plasmid system in Rhodococcus
leads to overall decreases in lipid content within the host
strain as can be observed in the difference in FAMEs bet-
ween the wildtype strain harboring the empty vector
(17.59% lipids per CDW) and the wildtype strain lacking
any plasmid (29.4% lipids per CDW). At this time the
cause of this reduction is not fully understood though it is
believed that physiological stress of carrying the plasmid
as well as the presence of antibiotics in the growth
medium hamper lipid production and cellular growth.
The inclusion of a vector control allows for normalization
of these effects when studying the effects of gene expres-
sion on lipid biosynthesis.

Discussion
Several species of actinomycetes have been shown to
produce TAG, a process unique amongst bacteria
[26-30]. Indeed, R. opacus PD630 has been shown to ac-
cumulate up to 76% of its cell dry weight as TAG when
grown under nitrogen limiting conditions [14]. Similarly,
M. tuberculosis has been shown to accumulate TAG in
distinct, intracellular inclusion bodies when grown under
nutrient limiting conditions, conditions similar to those
believed to exist in the human lung during infection
[31,32]. It is thought that these lipids are an important
part of the pathogenic lifestyle in M. tuberculosis [32]. In
addition to their potential role in pathogenesis, microbial
lipids have garnered significant attention recently as po-
tential feedstocks for the production of renewable green
fuels including biodiesel, gasoline, diesel and jet fuel.
The innate ability of R. opacus to produce large quan-
tities of storage lipids, specifically TAG, makes this a
model organism for the microbial conversion of ligno-
cellulosic biomass to green, fungible fuels. By better
understanding the underlying molecular and bioche-
mical mechanisms mediating this process, more efficient
strains and processes can be engineered.
Despite the importance of this pathway little work has

focused on the molecular and biochemical processes
underlying lipid production and storage in actinomy-
cetes. Work by Alvarez et al. was the first to demon-
strate that the acyltransferase protein Atf1 played a key
role in lipid storage in R. opacus PD630 [15]. Indeed,
disruption of this protein resulted in a 2-fold reduction
in TAG content. Previous work by the Sinskey lab has
demonstrated that the heparin-binding hemagglutinin
TadA regulates lipid body maturation in R. opacus
PD630. While the exact mechanism is not fully under-
stood it is believed that the protein acts as an aggrega-
tion factor, leading to coalescence of nascent lipid bodies
into larger mature storage inclusions [17]. Interestingly,
recent work by Ding et al. has substantiated these find-
ings by further demonstrating that the TadA protein is
highly enriched in R. opacus lipid bodies where it is
thought to play a role in maturation of lipid bodies [33].
It is worth noting that recent work by Pfeiffer and col-
leagues identified a protein in Ralstonia eutropha which
is believed to work in a similar manner [34]. While the
two proteins differ significantly in their sequence, there
are striking similarities in their predicted structures and
domains. Additionally, several studies have identified
acyltransferase proteins that play a role in TAG biosyn-
thesis in M. tuberculosis [11,29,35]. All of these studies
have focused on the latter stages of TAG biosynthesis
and storage. There is a relative dearth of knowledge re-
garding both the early steps of this process as well as the
regulatory mechanisms that control TAG biosynthesis
and storage in actinomycetes.
We have previously described a Sudan Black-based

genetic screen that targeted lipid storage and biosyn-
thesis related genes in R. opacus PD630 [17]. This work
identified the aforementioned tadA gene, which as stated
above, is believed to play a structural role in lipid body
aggregation and maturation. This protein most likely
acts in the later stages of lipid storage, a hypothesis that
is supported by the relatively leaky TAG phenotype. In
this work we continued to employ this genetic screen to
investigate lipid biosynthesis in R. opacus PD630. We
identified a mutant, 44B2, which demonstrated a ~50%
reduction in lipid storage as compared to the wildtype
strain. Mapping of the mutation responsible for this re-
duction identified a transposon insertion at the 5′ end of
a gene predicted to encode an aldehyde dehydrogenase,
which we named tadD for triacylglycerol accumulation
deficient. Bioinformatic analysis of this gene and its pre-
dicted product demonstrated very weak sequence and
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structural homology to the family of non-phosphorylative
glyceraldehyde 3-phosphate dehydrogenases (NP-G3PD),
colloquially referred to as GapN proteins. NP-G3PD
activity assays using purified TadD demonstrated higher,
albeit relatively low, NAD(P)H generation than those per-
formed using the empty vector strain (Figure 3B). Similar
assays using whole cell lysates showed higher NP-G3PD
activity in the wildtype than in the tadD transposon mu-
tant (Figure 4B). Interestingly, the specific activity of the
whole cell lysates was higher than that observed for the
purified protein alone. While the mechanisms underlying
this difference remain unknown it is tempting to speculate
that there are additional factors present in the whole cell
lysates that mediate activity of TadD. Alternatively, similar
to other central carbon metabolism enzymes, it is possible
that TadD is subject to allosteric activation in vivo and
that the lack of this activation in E. coli results in a puri-
fied product that is not in its active state. Consistent with
this hypothesis, previous work has demonstrated that the
GapN protein from Thermoproteus tenax is subject to
complex allosteric regulation [36]. It is worth noting that,
as seen in Figure 4B, there was an increase in ND-G3PD
activity observed in the tadD mutant grown on 1% (w/v)
ammonium sulfate as compared to LB grown cultures.
Furthermore, this activity was approximately 50% of that
of the wildtype under the same conditions. The exact
mechanism for this increased activity is not known. It
could simply be that, as this is a transposon mutant, there
is some level of expression of a truncated protein and that
this basal level is the subject of allosteric regulation that
effects its activity during lower nitrogen conditions. Alter-
natively, it is entirely possible that there are other proteins
with some functional redundancy contained within the
R. opacus 9.1 megabase genome, leading to this increased
activity. Also of interest, this activity does not increase
when the mutant strain is shifted from 1% (w/v) to 0.15%
(w/v) ammonium sulfate while ND-G3PD activity in-
creases dramatically in the wildtype. This further supports
either model. At this time the mechanisms underlying this
observation remain the focus of ongoing studies.
We hypothesized that the R. opacus TadD protein gene-

rates NAD(P)H essential for fatty acid metabolism and
hence TAG production on a variety of carbon substrates.
As most pentose and hexose sugars are metabolized via
the second stage of glycolysis this pathway most likely
plays a role in the conversion of a variety of metabolites to
storage lipids. If this is the case, one would predict that
TadD activity should increase in direct correlation to lipid
biosynthesis. To test this hypothesis, we assayed TadD
activity in cultures grown under vegetative and lipid sto-
rage conditions. Interestingly, as lipid storage increased
(Figure 4A) we observed a concomitant increase in TadD
activity (Figure 4B). As expected, both lipid storage and
TadD activity were low in the tadD mutant under all
conditions tested (Figures 4A and 4B). Following on these
data we hypothesized that the increased TadD activity
observed under lipid storage conditions should result in a
decrease in the ratio of the oxidized vs. reduced form of
NAD(P) (NAD(P)+/NAD(P)H) with a concomitant in-
crease in the NAD+/NADH ratio during growth under
lipid storage conditions. As seen in Figure 5, we observed
a decrease in the ratio of NAD(P)+/NAD(P)H (Figure 5A)
with an increase in the ratio of NAD+/NADH (Figure 5B)
when comparing vegetative growth conditions (1% (w/v)
ammonium sulfate) to lipid storage conditions (0.15%
(w/v) ammonium sulfate). As expected, the tadD mutant
did not display any change in either NAD(P)H or NADH
ratios when comparing the two growth conditions. These
data suggest that during the switch from a vegetative life-
style to lipid storage the cell increases the biosynthesis of
NAD(P)H, a key reducing equivalent for anabolic reac-
tions, while simultaneously decreasing the reduction of
NAD+ to NADH. Furthermore, the tadD mutant showed
a relatively high ratio of NAD(P)+/NAD(P)H with a low
ratio of NAD+/NADH suggesting that the cell was locked
in this vegetative growth condition, an observation con-
sistent with other data presented here.
Based on the in vivo activity data (Figure 4B) and the

redox ratio data (Figures 5A and 5B) we hypothesized
that there is a regulatory switch that is activated during
the conversion from a vegetative lifestyle to a storage
one. We hypothesized that during the vegetative growth
phase, R. opacus metabolizes glucose via a standard
glycolytic pathway, utilizing the phosphorylative GapA
to oxidize G3P to 1,3-BPG which is subsequently sub-
jected to a Pgk mediated substrate-level phosphorylation
yielding one molecule of ATP and 3-PG (Figure 6A).
However, during lipid storage the cell switches to the
non-phosphorylative glycolytic pathway wherein TadD
mediates the non-phosphorylative oxidation of G3P to
3PG (Figure 6B). If this is indeed the case, we would pre-
dict that over-expression of the canonical GapA protein
should result in the maintenance of a vegetative lifestyle,
marked by a relative lack of TAG, while over-expression
of the TadD protein should result in an increase in TAG
content as compared to the wildtype organism. Indeed,
consistent with these results, over-expression of TadD in
a wildtype background resulted in an increase in TAG
while over-expression of GapA resulted in a decrease
in total TAG. It is noteworthy that the TadD over-
expressing strain demonstrated a slight decrease in total
colony forming units as compared to the other two
strains. Similar experiments were conducted using the
44B2 mutant strain with similar results (data not
shown). However, it is worth noting that in this back-
ground, overexpression of the tadD gene did not fully
restore the lipid content to wildtype levels. The under-
lying reason for this remains elusive but could be due to
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either underexpression of the gene from the plasmid
system used, over-expression leading to insolubility of
the protein or some form of post-translational allosteric
regulation.
These data, taken together, suggest that the TadD pro-

tein plays an enzymatic role in TAG biosynthesis and
storage. This contrasts the group’s previous data that
demonstrated that the TadA protein most likely acts in
a structural capacity, mediating lipid body aggregation
and maturation. Overall, these two studies begin to illu-
minate the fact that the overall process of lipid biosyn-
thesis and storage in Rhodococcus is most likely highly
complicated with multi-tiered levels of regulation.
There is no doubt that the relative abundance of

reduced NAD(P)H effects the biosynthesis of macro-
molecules in most organisms. Herein we present evi-
dence that the regulation of the reduction of NAD(P)+

to NAD(P)H by the NADP+-dependent glyceraldehyde
3-phosphate dehydrogenase TadD is a key metabolic
Table 1 Strains, plasmids and primers used

Strain Relevant genotype

Rhodococcus

R. opacus
PD630

Wildtype strain

44B2 tadD::Tn5

DPM245 WT + pDPM70

DPM278 WT + pDPM91

DPM279 WT + pDPM92

E. coli

E. coli EC100D F- mcrA Δ(mrr-hsdRMS-mcrBC) φ80dlacZΔM15 ΔlacX74 ara

DPM54 E. coli EC100D + pMQ70

DPM55 E. coli EC100D + pDPM21

S. cerevisiae INVSc1 MATa his3D1 leu2 trp1-289 ura3-52

Plasmids

pMQ70 oriMB1, oriT, bla, araC, ParaBAD, CEN6, URA3

pDPM21 pMQ70 + tadD

pDPM70 oriNG2, CEN6, aacC1, URA3, Psmyc-tetRO

pDPM91 pDPM70 + ro07177

pDPM92 pDPM70 + tadD

Primers Sequence

pDPM21for 5′-GCTTGCATGCCTGCAGGTCGACTCTAGAG GATCCCCGGG
GATGTCGTTTGACCCGCAGCACTCTGTAG-3′

pDPM21rev 5′-CCGTTTTTTTGGGCTAGCGAATTCAGGAG GCTCTCTCTATG

pDPM91for 5′CGATCCGCTCGAGGCATGCAGAAAGGAGG CCATATGGGA

pDPM91rev 5′-GCTATGACCATGATTACGCCAAGCTTGGT A CCGAGCTCG

pDPM92for 5′- CGATCCGCTCGAGGCATGCAGAAAGGAG GCCATATGGG

pDPM92rev 5′- CAGCTATGACCATGATTACGCCAAGCTTGGTA CCGAGCT
switch in the conversion from a vegetative growth phase
to a lipid storage one in R. opacus PD630. We believe
this is the first demonstration of the role in redox pools
in regulating the switch from one mode of life to
another.

Materials and methods
Bacterial strains, chemicals and media
All strains and plasmids used in this study are listed in
Table 1. Bacteria were propagated in lysogeny broth
[37,38] (Difco, Lawrence, Kansas) or minimal media un-
less otherwise noted. Minimal media was prepared as pre-
viously described [39] and supplemented with 4% (w/v)
glucose and either 0.15% (w/v) or 1.0% (w/v) ammonium
sulfate. Growth media was supplemented with kana-
mycin (100 μg/ml), gentamycin (10 μg/ml) or ampicillin
(150 μg/ml). All restriction enzymes were purchased
from New England Biolabs (Ipswich, MA). Chemicals
were purchased from Sigma-Aldrich (St. Louis, MO).
Source

[39]

This study

[17]

This study

This study

D139 Δ(ara, leu) pir-116(DHFR) Epicentre

This study

This study

Invitrogen

[44]

This study

[17]

This study

This study

TACCTTAATGATGATGATGAT

AGTATCGCCGCAGATTCTCT GTCC-3′

CTGCATGACTGTCCGGGTAGG CGTAAACGGTTTCGGCCG-3′

GATCAGAGAGACTTGGCGAC GAGACCGATGAGGTCG-3′

ACTGCATGAGTATCGCCGCAG ATTCTCTGTCC-3′

CGGATCATCGTTTGACCCGCAGCACTC TG-3′
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Transposon mutagenesis and screening
The EZ-Tn5 transposome system from Epicentre
Biotechnologies (Madison, WI) was used to introduce
random mutations throughout the R. opacus PD630
genome [17]. Tn5 mutants were subsequently screened
as previously described [17]. Briefly, Tn5 mutants were
grown on minimal medium supplemented with 4% glu-
cose and 0.15% ammonium sulfate for 120 hours. Fol-
lowing growth colonies were incubated with 0.1% Sudan
Black in 95% EtOH for 15 minutes followed by washing
in 95% EtOH. Lighter staining colonies were selected for
further study. A marker rescue-like approach was used to
map the chromosomal transposon insertion site [17].

Lipid extraction and Thin-layer chromatography
Extraction of lipids from cultures was performed as pre-
viously described [17,40]. Briefly, cultures were centri-
fuged and the resulting pellets lyophilized. Lipids were
extracted by adding a 1:1 chloroform:methanol solution
to the dried pellets followed by incubation at room
temperature for 60 minutes with agitation. Extracts were
then filtered through a 0.2 μm PVDF filter to remove
particulate matter. Thin-layer chromatography experi-
ments were performed using a two-step resolution
method as previously described [41,42]. 25 μg of lipid
extract was spotted onto glass backed silica gel 60 TLC
plates (EMD Chemicals Inc., Gibbstown, NJ) and dried
under a constant stream of nitrogen. Samples were re-
solved using an initial polar buffer containing 60:35:5
chloroform:methanol:water, followed by a second buffer
containing 70:30:1 hexane:diethyl ether:acetic acid. Plates
were allowed to dry prior to charring by first exposing
the plates to 3% cupric acetate in an 8% aqueous phos-
phoric acid solution followed by baking in a 200°C oven.

Methanolysis and gas chromatography of lipids
Extraction of lipids and subsequent methanolysis to cre-
ate fatty acid methyl esters (FAMEs) was performed as
previously described [17,39,43]. Briefly, lyophilized cell
pellets were resuspended in 1 ml of chloroform to which
1 ml of a 85:15 methanol:sulphuric acid solution was
added. Samples were subsequently heated at 100°C for
2.5 hours followed by rapid cooling on ice. The organic
phase was washed once with water and filtered through
a 0.2 μm PVDF filter to remove any particulate matter.
Gas chromatography of FAMEs (GC-FAMEs) was per-
formed using an Agilent Technologies 6850 series II
network GC system (Agilent Technologies, Santa Clara,
CA) as previously described [39] and FAMEs were
detected using a flame ionization detector (FID).

Construction of plasmids pDPM21, pDPM91 and pDPM92
All plasmids were constructed using Saccharomyces
cerevisiae-based homologous recombination cloning as
previously described [17,44]. The TadD purification vector
pDPM21 was constructed using primers pDPM21for and
pDPM21rev. Full length tadD was amplified from the
R. opacus PD630 chromosome and recombined into line-
arized pMQ70 [44].
The full length R. jostii ro07177 gene, a putative

gapA homolog was amplified from the R. jostii RHA1
chromosome and recombined into the Rhodococcus /
E. coli / Saccharomyces expression vector pDPM70
using primers pDPM91for and pDPM91rev to con-
struct pDPM91 [17].
To construct the TadD expression vector pDPM92,

the full length tadD gene was amplified from the R.
opacus PD630 chromosome and recombined into the
broad host range expression vector pDPM70 using
primers pDPM92for and pDPM92rev.
Plasmid DNA was mobilized into R. opacus PD630

using electroporation as previously described [17].
Purification of TadD
A C-terminal hexahistidine tagged variant of the TadD
protein was purified using nickel affinity chromatogra-
phy. Overnight cultures of E. coli EC100D containing
either pMQ70 (empty vector) or pDPM21 were diluted
1:100 in LB supplemented with ampicillin and arabinose
and grown for 6 hours at 37°C with shaking. Bacterial
cultures were harvested by centrifugation. The resulting
cell pellet was resuspended in 20 mM sodium phosphate
buffer containing 500 mM NaCl and 20 mM imidazole
and lysed via French pressure cell. Bacterial lysates were
centrifuged at 20,000 × g to remove cellular debris. Clari-
fied supernatants were fractionated using a BioRad Bio-
Logic FPLC system equipped with a HisTrap FF nickel
affinity column (GE Healthcare, Piscataway, NJ) over a
20–500 mM linear imidazole gradient. It was determined
that the TadD protein eluted between 100 and 200 mM
imidazole.
NAD(P)H-dependent glyceraldehyde 3 phosphate activity
assay
NP-G3PDH activity was assayed as previously described
with minor modifications [45]. Briefly, reactions con-
tained 1 mM NAD(P)+, 1 mM glyceraldehyde 3-phos-
phate and either 10 μg of purified TadD or 100 μg of
crude bacterial lysate in a final volume of 1 ml. Reac-
tions were incubated at 37°C for one hour. Following
incubation the optical density of the reactions was mea-
sured at 340 nm. R. opacus cultures were grown in
either lysogeny broth or MR medium supplemented with
4% (w/v) glucose and either 1% (w/v) or 0.15% (w/v)
ammonium sulfate for 24 hours prior to mechanical dis-
ruption using a French pressure cell. Cellular debris was
pelted by centrifugation at 20,000 × g for 30 minutes.
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Determination of NAD+/NADH and NAD(P)+/NAD(P)H
ratios
NAD+, NADH, NAD(P)+ and NAD(P)H concentrations
were determined using the Biovision NAD+/NADH
quantification and the Biovision NAD(P)+/NAD(P)H
quantification kits, respectively (Mountain View, CA) per
manufacturer’s instructions. Cell lysates of R. opacus
PD630 were prepared as described above.
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