
Original Articles

Matrix Metalloproteinase Expression
in Contusional Traumatic Brain Injury:

A Paired Microdialysis Study

Mathew R. Guilfoyle,1 Keri L.H. Carpenter,1 Adel Helmy,1 John D. Pickard,1

David K. Menon,2 and Peter J.A. Hutchinson1

Abstract

Matrix metalloproteinases (MMPs) are extracellular enzymes that have been implicated in the pathophysiology of blood–

brain barrier (BBB) breakdown, contusion expansion, and vasogenic edema after traumatic brain injury (TBI). Specifi-

cally, in focal injury models, increased MMP-9 expression has been observed in pericontusional brain, and MMP-9

inhibitors reduce brain swelling and final lesion volume. The aim of this study was to examine whether there is a similarly

localized increase of MMP concentrations in patients with contusional TBI. Paired microdialysis catheters were inserted

into 12 patients with contusional TBI (with or without associated mass lesion) targeting pericontusional and radiologically

normal brain defined on admission computed tomography scan. Microdialysate was pooled every 8 h and analyzed for

MMP-1, -2, -7, -9, and -10 using a multiplex immunoassay. Concentrations of MMP-1, -2, and -10 were similar at both

monitoring sites and did not show discernible temporal trends. Overall, there was a gradual increase in MMP-7 con-

centrations in both normal and injured brain over the monitoring period, although this was not consistent in every patient.

MMP-9 concentrations were elevated in pericontusional, compared to normal, brain, with the maximal difference at the

earliest monitoring times (i.e., < 24 h postinjury). Repeated-measures analysis of variance showed that MMP-9 concen-

trations were significantly higher in pericontusional brain ( p = 0.03) and within the first 72 h of injury, compared with later

in the monitoring period ( p = 0.04). No significant differences were found for the other MMPs assayed. MMP-9 con-

centrations are increased in pericontusional brain early post-TBI and may represent a potential therapeutic target to reduce

hemorrhagic progression and vasogenic edema.
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Introduction

Focal traumatic brain contusions display a variable degree

of progression during the hours and days after the primary

injury. Hemorrhagic expansion of the contusion core and elevation

of intracranial pressure (ICP) as a result of pericontusional edema

are major contributors to secondary brain injury.

Matrix metalloproteinases (MMPs) are a family of over 20 ex-

tracellular endopeptidases that cleave a wide range of protein

substrates in diverse signaling pathways.1 In particular, the sub-

family of gelatinases, MMP-2 (gelatinase A) and MMP-9 (gelati-

nase B), have been implicated as key mediators of proteolytic

blood–brain barrier (BBB) disruption associated with traumatic

injury,2 ischemia,3 and neuroinflammatory disorders.4

In the rat cortical contusion model, MMP-9 expression was in-

creased in lesioned tissue, compared to contralateral uninjured

brain, and was associated with local BBB permeability and edema.5

Correspondingly, an MMP inhibitor (GM6001) reduced the degree

of BBB leakage and the extent of edema. In a similar mouse model,

MMP-9 knockout animals were found to have smaller final lesion

volume and better functional recovery, compared to wild-type

mice.2

Tissue samples from patients requiring surgical resection of

brain contusions have been shown to have significantly higher
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expression of MMP-9, compared with lobectomies performed for

nontrauma indications.6 Further, in vivo microdialysis studies in

traumatic brain injury (TBI) patients have also shown increased

concentrations of MMP-9 and, possibly, MMP-2 early post-

injury.7,8 However, it is unclear from human studies to date whether

MMP-9 overexpression in TBI patients is localized to pericontu-

sional brain, as found in animal models, or is a more generalized

response to trauma.

This study sought to address this question by monitoring the

temporal and spatial concentration of selected MMPs (-1, -2, -7,

-9, and -10) in TBI patients using paired microdialysis catheters

inserted simultaneously within pericontusional and radiologically

normal brain.

Methods

All study protocols were approved by the East of England
(Essex) NHS Research Ethics Committee (ref 11/EE/0075). Assent
from patients’ next of kin was obtained. Eligible patients were
adults ( > 18 years) admitted post-TBI with contusions evident on
computed tomography (CT) imaging and requiring neurointensive
care treatment. Patients were classified as having severe injury if
the presenting Glasgow Coma Scale (GCS) score was less than or
equal to 8.9 Severity of injury based on the initial computed to-
mography (CT) scan was graded using the modified Marshall
scoring system.10 All patients received sedation (with or without
neuromuscular blockade) and mechanical ventilation, together with
multi-modality monitoring, and were managed according to a
standardized tiered therapy protocol.11 Recovery at 6 months was
measured on the Glasgow Outcome Scale (GOS) and dichotomized
as good (GOS 4 or 5) or poor (GOS 1–3) outcome.12

Monitoring

Invasive neuromonitoring was inserted at two sites for each
patient with the intention of having a microdialysis catheter within
radiologically normal white matter and another within pericontu-
sional brain, but avoiding the hemorrhagic core. On admission, a
triple-lumen cranial access device (Technicam, Newton Abbot,
UK) was placed in the right or left frontal region as standard in our
unit. An ICP monitor (Codman, Raynham, MA), a brain-tissue
oxygen probe (Licox Neurosciences, Andover, UK), and a micro-
dialysis catheter (CMA 71; 100-kDA molecular weight cutoff)
perfused with 3.5% (w/v) human albumin solution (Pharmacy

Manufacturing Unit, Ipswich Hospital NHS Trust, Ipswich, UK) in
central nervous system (CNS) perfusion fluid were introduced
through the access device. After assent, up to three further invasive
monitors, at least one of which was a microdialysis catheter (CMA
71 and perfused with 3.5% albumin solution, as described above)
were placed in proximity to a contusion, either through a second
cranial access device or twist drill holes. If the first set of monitors
happened to be placed adjacent to a contusion, the second set were
inserted in radiologically normal brain on the contralateral frontal
region. In patients requiring an emergent craniotomy for an acute
subdural hematoma (SDH), the pericontusional monitoring was
placed adjacent to underlying contusions under direct vision at the
end of surgery, tunneled through the scalp.

Sample analysis

Hourly microdialysates were pooled into 8-h samples. All
samples were analyzed using the Milliplex Multi-Analyte Profiling
Human MMP five-plex (MMP-1, MMP-2, MMP-7, MMP-9, and
MMP-10) analyte premixed kit (Millipore, St Charles, MI), ac-
cording to the manufacturer’s instructions. All samples were as-
sayed in duplicate wells (25 lL per well), and the mean of these
results was used. Plates were read using a Luminex 200 analyzer
(Luminex Corporation, Austin, TX) running STarStation software
(Applied Cytometry Systems, Sheffield, UK). Protein concentra-
tions were calculated by reference to an eight-point spline fit curve
for each MMP.

Statistical analysis

To mitigate the effects of different monitoring periods in each
patient, the mean concentrations of each MMP in the first 72 h post-
injury ( < 72 h) and in the subsequent 72 h ( > 72 h) were calculated for
each patient. Repeated-measures analysis of variance (ANOVA) with
MMP concentration as the dependent variable, and site of monitoring
(normal vs. injured) and time ( < 72 h vs. > 72 h) as the independent
variables, was then applied for each MMP separately. Univariate
subgroup comparisons were analyzed with the independent-samples
t-test. All calculations were performed in R software (v3.0.2, www
.r-project.org) and considered significant at 5%.

Results

Twelve patients (10 male; mean age, 46 years; range, 21–65)

were enrolled (Table 1). Paired microdialysis monitoring was

Table 1. Details of the Patient Cohort

No. Sex
Age

(years)
Mechanism

of Injury
GCS at

presentation
Pupil reaction

(R/L) CT scana
Evacuated

SDH
GOSb

(6 months)

1 M 28 Fall 8 + / + 2d — 4
2 M 67 Fall 6 + / + 5b Right 3
3 M 31 Fall 5 - / + 3 — 3
4 M 67 Pedestrian RTA 10 + / + 2c — 5
5 F 59 Fall 12 + / - 2d — 1 (10 days)
6 M 65 Fall 11 + / + 2d — 4
7 M 55 RTA 9 + / + 5b Left 5
8 F 42 Fall 3 - / + 5b Left 3
9 M 30 RTA 7 + / + 5b Right 5

10 M 22 Assault 8 + / + 5b Right 4
11 M 42 Fall 7 + / + 5b Left 5
12 M 48 Assault 10 + / + 2d — 1 (7 days)

aModified Marshall computed tomography classification.10

b5 = good recovery, 4 = moderate disability, 3 = severe disability, 2 = vegetative state, 1 = death.12

GCS, Glasgow Coma Scale9; R, right; L, left; CT, computed tomography; SDH, subdural hematoma; GOS, Glasgow Outcome Scale; RTA, road traffic
accident.
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commenced a mean of 36 h (range, 16–48) postinjury. No com-

plications attributable to the additional study monitoring were ob-

served. Two patients died during their intensive care treatment as a

result of refractory intracranial hypertension. Of the 10 patients

who survived, 7 had a favorable outcome (GOS 4–5, moderate

disability or good recovery) at 6 months follow-up, and 3 were

severely disabled (GOS 3)

Mean time-concentration plots across for each MMP assayed are

shown in Figure 1. Examples of catheter placement and corre-

sponding individual time courses of the five MMPs assayed are

shown in Figure 2. Although, in some patients, MMP-2 concen-

trations gradually increased in pericontusional brain, overall con-

centrations of MMPs -1, -2, and -10 were similar at both sites

during the monitoring period and did not demonstrate consistent

temporal trends across the cohort of patients. There was a gradual

increase in the concentration of MMP-7 at both monitoring sites,

but this was not observed in all patients.

In contrast, MMP-9 concentrations were consistently higher in

the injured brain, compared to radiologically normal brain. The

highest concentrations of MMP-9 were observed at the earliest

monitoring times (i.e., < 24 h) within injured brain. Thereafter,

MMP-9 concentrations decreased, but remained higher, within

injured brain, compared to radiologically normal brain, to 72 h

postinjury and beyond.

Mean concentrations of the five MMPs in normal and injured

brain in the periods < 72 and > 72 h postadmission are shown in

Figure 3. Repeated-measures ANOVA showed no significant dif-

ference in MMP-1, -2, -7, or -10 concentrations between normal or

injured sites and no effect of time. However, MMP-9 concentra-

tions were significantly higher in pericontusional brain, compared

to radiologically normal brain ( p = 0.03), and were also signifi-

cantly higher in the early monitoring period ( < 72 h), compared

with later time points ( > 72 h; p = 0.04).

There were no significant differences ( p > 0.05) in concentra-

tions of any of the assayed MMPs when the cohort of patients was

divided into two groups based either on presenting severity of TBI

(GCS £ 8 vs. > 8), whether or not the patient had an SDH evacu-

ated, and functional outcome (GOS 1–3 vs. 4–5).

Discussion

This study has demonstrated that there is a specific, early, and

localized increase in MMP-9 concentrations within pericontusional

brain post-TBI. Although the concentration of MMP-7 appeared to

gradually increase over the monitoring period in both injured and

uninjured brain, no significant differences were found in the con-

centrations of MMP-1, - 2, -7, and -10 with respect to monitoring

site or time. Comparing patient groups based on presenting GCS,

presence of subdural haematoma requiring evacuation, and func-

tional outcome, found no significant differences in MMP concen-

trations. However, it is unsurprising that in a relatively small cohort

of patients there is no statistical relationship between interstitial

MMP concentrations and clinical features that are dependent on a

plurality of factors.

Our findings are in accord with pre-clinical evidence that MMP-9

expression is increased in perilesional brain after experimental brain

FIG. 1. Mean time-concentration curves for each MMP across all patients. Error bars represent standard error of the mean (SEM).
MMP, matrix metalloproteinase. Color image is available online at www.liebertpub.com/neu
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FIG. 2. Examples of patient computed tomography scans demonstrating catheter placement and corresponding time-concentration curves
for each MMP. Top: patient 5; bottom: patient 2 (see Table 1). Red circles highlight the tip of the microdialysis catheter in pericontusional
brain; green circles indicate the microdialysis catheter in normal brain. MMP, matrix metalloproteinase; SEM, standard error of the mean.
Color image is available online at www.liebertpub.com/neu
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contusion and, in these models, corresponds with the development of

BBB permeability and expansion of final lesion volume.2,5 Me-

chanistically, MMPs have been shown to directly disrupt tight

junctions between endothelial cells through cleavage of the extra-

cellular domains of critical structural proteins, including claudin and

occludin.13,14 This process dramatically alters water reflectance and

solute permeability of the BBB, exacerbating vasogenic edema, and

also contributing to immune cell invasion into the CNS. These mo-

lecular events provide a framework for the microvascular failure,

which is thought to underlie contusion expansion.15 Multiple up-

stream signaling molecules have been shown to have a role in reg-

ulating expression and activation of MMP-9, including cytokines

(e.g., interleukin-1b), growth factors (e.g., transforming growth

factor TGF-b and vascular endothelial growth factor VEGF), neu-

rotransmitters and small molecules (e.g., histamine and nitric oxide),

and hormones (e.g., epinephrine).16 In the wider experimental brain

injury literature, MMPs have been identified as mediators of lesion

expansion and perilesional edema in models of ischemic stroke and

intracerebral hemorrhage.17,18 Importantly, recent evidence has

highlighted the crucial roles that MMPs have in the subacute and

chronic reparative processes after brain injury, such as neurovascular

remodeling and migration of cells from the subventricular zone to

damaged tissue.19,20

Grosslete and colleagues and Zheng and colleagues have pre-

viously reported elevated levels of MMP-9 in cerebrospinal fluid

(CSF) sampled acutely from TBI patients by ventriculostomy, with

comparable temporal profiles demonstrating greatest concentra-

tions in the first sample at 24 h postinjury followed by a decline, but

remaining higher than control CSF for at least 72 h.21,22 Vilalta and

colleagues studied 4 patients with diffuse brain injury using mi-

crodialysis and found similar early elevation of cerebral MMP-9

concentrations.7 More recently, Roberts and colleagues conducted

a single-site microdialysis study of MMP-1, -2, -3, -7, -8, and -9 in 8

TBI patients with a mixture of diffuse and focal injuries; similarly

to the present study, they found that MMP-9 was increased early

postinjury and thereafter declined.8

The present data both corroborate these temporal MMP-9 pro-

files in a larger cohort of TBI patients and add the important new

finding that, in patients with predominantly focal or contusional

injury, MMP-9 response is localized to perilesional brain. The

paired catheter design means that it is far less likely that the ob-

served changes in MMP-9 are attributable to artefact from catheter

insertion, given that a similar effect would have been observed at

both monitoring sites. The evidence from this study goes some

way to supporting the hypothesis that the mechanisms of MMP-9-

induced BBB disruption and edema elucidated in animal models

are also relevant in human TBI. Indeed, the temporal pattern of

MMP-9 changes is consistent with MRI studies of contusion ex-

pansion in humans.23

Both previous microdialysis studies have found evidence for

increased cerebral expression of MMP-2 post-TBI, although Vialta

and colleagues identified an early peak similar to MMP-9, whereas

in the later study by Roberts and colleagues, MMP-2 concentration

was initially low and increased at approximately 48 h postinjury,

with a subsequent decrease.7,8 In the present study, patients ex-

hibited variable MMP-2 responses, with no consistent spatio-

temporal pattern emerging on averaging across the cohort.

Interestingly, an earlier study of contusion resection tissue also

found MMP-2 concentrations that varied widely, and the resulting

overall difference in expression, compared to control patient

samples, was modest.6 Together, these findings suggest that MMP-

2 concentrations may be significantly elevated in only a subset of

TBI patients; whether this is a function of injury severity or other

patient-specific clinical factors will require larger studies to re-

solve. The relative importance of MMP-2 compared with MMP-9

in the pathogenesis of contusion expansion and brain edema is

unclear, and there is conflicting evidence on the role of MMP-2 in

exacerbating lesion volume from different brain injury models.2,24

However, because both MMP-2 and -9 are gelatinases and act on

similar substrates, they may represent redundant pathways in post-

traumatic proteolytic breakdown of the BBB. If interventions tar-

geted at MMP activity are to be successful, a more complete

FIG. 3. Group mean (SEM) concentration of each MMP at each monitoring site < 72 h postinjury and > 72 h injury. Repeated-
measures analysis of variance demonstrated significant differences between monitoring sites ( p = 0.03) and between monitoring periods
( p = 0.04) for MMP-9; no significant differences were observed for MMP-1, -2, -7, and -10 (see text for full details). MMP, matrix
metalloproteinase; SEM, standard error of the mean. Color image is available online at www.liebertpub.com/neu
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understanding of the role of MMP-2 will be essential, particularly

given that evidence from pre-clinical TBI models suggests that

MMP-2 and MMP-9 show different responses to current therapies,

such as hypothermia.25

This study has a number of limitations. First, no patient was

monitored within the first 12 h of injury, and therefore the expres-

sion pattern of MMPs in the very acute stage remains uncertain.

Second, MMP activity is regulated by endogenous tissue inhibitor

of metalloproteinase (TIMP) proteins, which bind with latent and

activated MMPs.1 Although MMP-TIMP complexes would likely

exceed the 100-kDa cutoff of the CMA 71 microdialysis catheter, it

cannot be determined from the present data whether all MMP-9

assayed was enzymatically active; future studies to address this

question will be challenging owing to low absolute amount of

protein recovered with microdialysis. Third, the findings of the

current study injury do not speak to whether MMP concentrations

will display similar temporal profiles in patients with a predomi-

nantly diffuse axonal injury pattern on initial CT.

Induced hypothermia has been shown to attenuate MMP-9 ex-

pression in rodent TBI and stroke models, but, as yet, this phe-

nomenon has not been investigated in human patients.25,26 Despite

a number of randomized trials, therapeutic hypothermia has not

been conclusively shown to improve outcome post-TBI, though its

use to control ICP remains widespread.11,27,28 Conceivably, tar-

geting hypothermia to patients with increased MMP-9 expression

may be a method to select the subgroup of patients in which the

benefits of this treatment outweigh its deleterious effects.

MMP inhibitors have been investigated as promising therapies

for a number of diseases, most notably in metastatic cancer.

However, despite successful pre-clinical findings, early-phase

clinical trials in cancer patients have proven disappointing owing to

lack of efficacy and excessive adverse effects.29 Of interest, tetra-

cycline antibiotics, most notably doxycycline, inhibit MMP-2 and

-9 through chelation of the zinc ion in the catalytic site.30 Dox-

ycycline, at subantimicrobial doses, has been shown to be of benefit

in periodontitis, likely through its effect on MMP-9 activity.31 On

the same basis, doxycycline has also been suggested as a treatment

to stabilize growth of abdominal aortic aneurysms, although the

evidence to date is conflicting.32 Currently available MMP inhib-

itors are not selective for specific subtypes, but, at the same time,

are not equally active on all members of the enzyme family;

combined with redundancy in MMP pathways, this may be an

explanation for the limited efficacy of MMP inhibitors in clinical

studies to date.

This study suggests that MMP-9 may be a therapeutic target to

reduce lesion progression and brain swelling in contusional TBI.

Investigating the efficacy of MMP inhibitors in this context will

first require further detailed studies of the association between

pericontusional MMP-9 concentration, contusion expansion and

vasogenic edema, ICP and treatment intensity, and cerebral me-

tabolism to establish robust measures of efficacy. Human studies to

date indicate that the useful therapeutic window for MMP-9 inhi-

bition post-TBI may extend up to 72 h postinjury, but it is likely that

any agent will be most effective at minimizing brain edema and

contusion expansion if administered as acutely as possible. Defin-

ing the appropriate duration of MMP inhibition will also need to

consider the later role these enzymes have in postinjury CNS repair.
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