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Mammalian target of rapamycin (mTOR), which is part of
mTOR complex 1 (mTORC1) and mTORC2, controls cellular
metabolism in response to levels of nutrients and other growth
signals. A hallmark ofmTORC2 activation is the phosphorylation
of Akt, which becomes upregulated in cancer. How mTORC2
modulates Akt phosphorylation remains poorly understood.
Here, we found that the RNA-binding protein, AUF1 (ARE/
poly(U)-binding/degradation factor 1), modulates mTORC2/Akt
signaling. We determined that AUF1 is required for phosphory-
lation of Akt at Thr308, Thr450, and Ser473 and that AUF1 also
mediates phosphorylation of the mTORC2-modulated metabolic
enzyme glutamine fructose-6-phosphate amidotransferase 1 at
Ser243. In addition, AUF1 immunoprecipitation followed by
quantitative RT–PCR revealed that themRNAs of Akt, glutamine
fructose-6-phosphate amidotransferase 1, and the mTORC2
component SIN1 associate with AUF1. Furthermore, expression
of the p40 and p45, but not the p37 or p42, isoforms of AUF1
specificallymediateAkt phosphorylation. In the absenceofAUF1,
subcellular fractionation indicated that Akt fails to localize to the
membrane. However, ectopic expression of amembrane-targeted
allele of Akt is sufficient to allow Akt-Ser473 phosphorylation
despite AUF1 depletion. Finally, conditions that enhance
mTORC2signaling, suchasacute glutaminewithdrawal, augment
AUF1 phosphorylation, whereas mTOR inhibition abolishes
AUF1 phosphorylation. Our findings unravel a role for AUF1 in
promoting membrane localization of Akt to facilitate its phos-
phorylation on this cellular compartment. Targeting AUF1 could
have therapeutic benefit for cancers with upregulated mTORC2/
Akt signaling.

Cells respond to the availability of nutrients by controlling
gene expression at the level of both transcription and trans-
lation. Mammalian target of rapamycin (mTOR) plays a cen-
tral role in sensing the nutritional status of the cell and triggers
a cascade of intracellular signaling that ultimately promotes
anabolic metabolism, growth, and proliferation (1–3). Dereg-
ulation of mTOR signaling occurs in many diseases, including
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cancer, diabetes, autoimmunity, and neurological disorders.
Dampening mTOR signals is a promising strategy for the
treatment of these diseases and to improve health span (4, 5).
mTOR forms two distinct protein complexes, mTOR complex
1 (mTORC1) and mTOR complex 2 (mTORC2). Many studies
have revealed how mTORC1, which is sensitive to rapamycin,
is regulated by nutrients and how intracellular signaling mol-
ecules mediate its functions. In contrast, how mTORC2 is
regulated and the identity of its downstream effectors remain
poorly understood (6).

One of the hallmarks of increased mTORC2 activation is the
allosteric phosphorylation of Akt at the hydrophobic motif site,
Ser473 (7–9). Upon growth factor signaling, PI3K becomes
activated leading to increased phosphatidylinositol 3,4,5-
trisphosphate (PIP3) levels in the membrane. Enhanced PIP3
levels attract signaling molecules with the pleckstrin homology
(PH) domain, such as Akt, to the membrane where it becomes
phosphorylated at the activation loop site, Thr308, by PDK1
and at Ser473 via an mTORC2-dependent mechanism (8–11).
Both PDK1 and mTORC2 have been found to localize on the
membrane. PDK1 and the mTORC2 components SIN1 and
possibly rictor each harbor a PH domain that could deliver
them to the membrane to promote Akt activation (12–14). In
addition to phosphorylation at Ser473, mTORC2 also mediates
Akt phosphorylation at the “turn motif” site, Thr450 (15, 16).
Unlike Ser473, the phosphorylation of this site is PI3K inde-
pendent and occurs during translation (17). Thr450 phos-
phorylation is sensitive to glucose deprivation and acute ATP
depletion (18).

We and others have shown that mTORC2 is activated
during withdrawal of nutrients such as glucose or glutamine
(19, 20). mTORC2 responds to the levels of intracellular
glutamine metabolites during glucose or glutamine starvation
(19). Its activation is important to maintain flux through the
hexosamine biosynthesis pathway (HBP) viamodulation of the
rate-limiting enzyme of the de novo HBP, glutamine fructose-
6-phosphate amidotransferase 1 (GFAT1). These findings
reveal that mTORC2 responds not only to the presence of
growth signals but also to nutrient fluctuations in order to
restore metabolic homeostasis.

Accumulating evidence supports that the expression levels of
mTORC2 components could modulate its activity, and their
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deregulation occurs in cancer (21–28). Given the central role of
mTORC2 in modulating metabolism and cell proliferation, a
better understanding of the different mechanisms of mTORC2
regulation at the level of translation control could provide in-
sights on more specific therapeutic strategies in cancer. Using
photoactivatable ribonucleoside-enhanced crosslinking and
immunoprecipitation (PAR-CLIP) transcriptome-wide screen,
themRNAs encodingmTORC2 componentsmTOR, rictor, and
the HBP enzyme GFAT1 were among the putative targets of the
RNA-binding protein (RBP) AUF1 (ARE/poly(U)-binding/
degradation factor 1; also known as heterogeneous nuclear
ribonucleoprotein D [hnRNP D]) (29). AUF1 has been linked to
the regulation ofmRNAdecay, translation, andmiRNA (30–32).
It can either stabilize or destabilize mRNAs, but it remains
obscure how AUF1 can perform distinct functions on diverse
RNA targets (33–36). It has strong affinity for AU-rich RNA
sequences, but recent studies indicate that it primarily recog-
nizes U-/GU-rich sequences in mRNAs and noncoding RNAs
(29). AUF1 consists of four isoforms that are generated by
alternative splicing of a common pre-mRNA (37). The isoforms
display varying affinities with their RNA targets (36). Based on
the emerging role of mRNA regulation of mTORC2 compo-
nents in modulating mTORC2 activity (38–40), we investigated
how AUF1 might function in modulating mTORC2 signaling
and function. We found that AUF1 is required for the phos-
phorylation of Akt at the sites regulated by PDK1 andmTORC2.
This is surprising given the known role of AUF1 in modulating
mRNA stability and translation of its targets. We demonstrate
that AUF1 mediates the membrane localization of Akt where it
is phosphorylated in response to growth signals. We also found
that AUF1 is modulated by signals that enhance mTORC2
activation. Our findings identify a role for AUF1 in regulating
mTORC2 signaling.
Results

Phosphorylation of Akt is abolished upon AUF1 knockdown

In a transcriptome-wide screen to analyze genes that are
regulated by AUF1, components of the mTOR pathway
including mTOR and rictor were identified by PAR-CLIP
analysis (29). We therefore hypothesized that AUF1 could
modulate mTOR signaling. Using the human promonocytic
cell line THP-1, we knocked down AUF1 by stable transfection
of an shAUF1 expression plasmid and analyzed readouts of
both mTORC1 and mTORC2 signaling. Strikingly, phos-
phorylation of the mTORC2 target sites in Akt, Ser473 and
Thr450, was diminished in AUF1-depleted cells but not in
shCTRL plasmid-transfected cells (Fig. 1A). The phosphory-
lation of the activation loop site in Akt, Thr308, which is
mediated by PDK1 was also abolished upon AUF1 knockdown.
We have recently shown that the key metabolic enzyme of the
HBP, GFAT1 (aka GFPT1) was modulated by mTORC2.
Interestingly, GFPT1 mRNA was also identified in the PAR-
CLIP analysis (29). We therefore examined its phosphoryla-
tion and found that it was also diminished upon AUF1
knockdown. In contrast, phosphorylation of the mTORC1
target S6K (at Thr389) was not affected. Consistent with a
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defective mTORC2 signaling, there was a slight decrease in
SIN1 but not rictor expression in THP-1 cells.

We also knocked down AUF1 in HeLa cells by transient
transfection with the shAUF1 expression plasmid or siAUF1
and found that the phosphorylation of Akt was diminished in
AUF1-depleted cells but not in plasmid shCTRL- or
si-scrambled transfected cells (Figs. 1B and S1, respectively).
This indicates that the impact of shAUF1 on Akt phosphory-
lation was not because of an off-target effect of the shAUF1
sequence or an indirect effect of shRNA expression.

GFAT1 phosphorylation was also reduced upon AUF1
depletion in HeLa cells (Fig. 1B). In contrast, the phosphory-
lation of the mTORC1 effectors, S6K and the ribosomal pro-
tein S6, was not altered. Interestingly, the expression of SIN1,
rictor, and mTOR was not diminished when AUF1 expression
was reduced. Furthermore, mTORC2 integrity was not
compromised in AUF1-depleted cells, as both mTOR and
rictor co-IP with SIN1 regardless of AUF1 expression levels
(Fig. S2). Hence, the decrease in Akt phosphorylation during
AUF1 knockdown in HeLa cells is likely because of a more
direct effect on Akt, rather than mTORC2.

AUF1 binds to Akt, GFAT1, and SIN1 mRNAs

We next investigated if AUF1 binds to Akt mRNA. Using
messenger ribonucleoprotein (mRNP) immunoprecipitation
analysis, we immunoprecipitated AUF1 and then quantitated
AUF1-bound transcripts by quantitative RT–PCR (qRT–PCR).
Compared with precipitates using nonimmune serum, Akt
mRNA was enriched in the AUF1 immunoprecipitates about
fivefold, thus indicating that AUF1 forms an mRNP complex
with Akt mRNA (Fig. 2A). As expected, c-myc mRNA robustly
binds to AUF1, whereas GAPDH mRNA does not (41). Since
SIN1 expression was diminished upon AUF1 knockdown in
THP-1 but not HeLa cells, we also examined AUF1 association
with SIN1 mRNA. Consistent with the slight decrease in
expression of SIN1 in THP-1 cells, a discernible, but statisti-
cally significant, increase in association of SIN1 mRNA with
AUF1 in THP-1 but not in HeLa cells occurred (Fig. 2B).
Finally, since GFAT1 phosphorylation was also altered upon
knockdown of AUF1, we then examined if its mRNA associ-
ates with AUF1. Consistent with the PAR-CLIP transcriptome-
wide analysis (29), we confirmed that AUF1 binds to GFAT1
mRNA (Fig. 2C). Together, our findings indicate that AUF1
associates with mRNAs of Akt and other proteins that are
linked to mTORC2 signaling.

AUF1 facilitates Akt phosphorylation by mediating membrane
localization

Since Akt phosphorylation occurs at the membrane, we
asked if AUF1 is involved in localizing Akt in this compart-
ment. By cellular fractionation, we found that whereas Akt
predominantly localizes to the membrane-containing high-
speed pellet (HSP) fractions in the control (shCTRL) cells
(Fig. 3A, lane 3), it was absent in this compartment (lane 6) and
instead was mainly present in the cytosolic fractions in AUF1-
knocked down cells (lane 5). Phosphorylated Akt (at Ser473,
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Figure 1. Phosphorylation of Akt is abolished upon AUF1 knockdown. A, THP-1 cells were stably transfected with plasmids expressing either control
shCTRL or shAUF1. Cell extracts were subjected to SDS-PAGE and immunoblotting. B, HeLa cells were transiently transfected with control shCTRL or shAUF1
plasmids. After 2 days, HeLa cells were harvested, and cellular extracts were subjected to SDS-PAGE and immunoblotting. Phosphorylated or total proteins
are indicated. AUF1, ARE/poly(U)-binding/degradation factor 1.
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Thr450, and Thr308) was present only in the HSP fractions in
the control cells (lane 3). The Akt that fractionated at the
cytosolic fractions in AUF1-knocked down cells was unphos-
phorylated (lane 5). In contrast, PDK1 localization in the
cytosol and HSP was not altered in the absence of AUF1 (lanes
2 and 3 versus lanes 5 and 6). These findings indicate that
AUF1 facilitates the localization of Akt at the subcellular
membrane-containing compartments that fractionate in the
HSP. Furthermore, AUF1 is required for Akt phosphorylation
at these compartments.
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Since the aforementioned findings suggest that AUF1 is
necessary for Akt phosphorylation at the membrane, we next
asked whether AUF1 is still required for Akt phosphorylation
once Akt is already at the membrane. To address this, we
expressed the Myr-Akt fusion construct, which constitutively
localizes Akt to the membrane (15) under AUF1-replete
(shCTRL) or AUF1-deplete (shAUF1) conditions. When
AUF1 expression was silenced, the phosphorylation of Myr-
Akt at Ser473 remained similar to control cells, whereas the
endogenous Akt had diminished phosphorylation (Fig. 3B).
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Overexpression of Myr-Akt with a kinase-dead (KD) mutation
(15) prevented phosphorylation of Myr-Akt, confirming that
the kinase activity of Akt is required for Ser473 phosphoryla-
tion (42). Together, these findings indicate that AUF1 medi-
ates the membrane localization of Akt where it becomes
phosphorylated at Ser473.
p40 and p45 AUF1 isoforms specifically promote Akt
phosphorylation

AUF1 consists of four isoforms that are generated by
alternative splicing of a common pre-mRNA. All isoforms
contain the RNA recognition motif domains, RRM1 and
RRM2 followed by a glutamine (Q)-rich domain (Fig. 4A). p40
and p45 isoforms have an additional 19-amino acid N-terminal
region generated from alternatively spliced exon 2, whereas
p42 and 45 isoforms harbor an extended C-terminal region
generated from alternatively spliced exon 7. AUF1 is phos-
phorylated within the exon 2-encoded domain at Ser83, Ser87,
and Thr91 (43, 44). This domain is present in p40 and p45 but
not p37 and p42. Dephosphorylation of these sites is linked to
induction of a more condensed RNA conformation on AUF1
substrates that could influence mRNA stability (43). We thus
investigated which of these AUF1 isoforms might be required
for Akt phosphorylation. Using HeLa cells in which endoge-
nous AUF1 expression was reduced by transfection of the
shAUF1 expression plasmid, we reconstituted expression of
each individual AUF1 isoform in HeLa cells by transfecting a
plasmid encoding the respective isoform that contained AUF1
sequences refractory to shAUF1 (designated by “R” in their
names) because of silent mutations (45). Expression of p40R

and p45R, but not p37R or p42R, enabled phosphorylation of
Akt in shAUF1-expressing cells, suggesting that the additional
N-terminal region that harbors the phosphoregulatory sites in
AUF1 is required to mediate Akt phosphorylation (Fig. 4B,
lanes 6 and 10). Expression of the phosphomimetic p40DR, in
which both Ser83 and Ser87 were mutated to Asp, restored
Akt phosphorylation (Fig. 4B, lane 8). By contrast, the phos-
phodeficient p40AR mutant, harboring Ala instead of Ser,
failed to restore Akt phosphorylation (Fig. 4B, compare lane 8
to lane 7). Western blot analysis of cell lysates confirmed
comparable expression of each ectopically expressed AUF1
isoform (Fig. 4B, lanes 5–10). The expression of PI3K, PDK1,
and PTEN was not altered by restoring expression of any of the
AUF1 isoforms, supporting that the effect of these isoforms on
Akt phosphorylation is likely not via alteration of expression of
each of these Akt signaling modulators. Hence, p40 and p45
specifically regulate Akt phosphorylation.
AUF1 is phosphorylated by signals that enhance mTORC2
signaling

Since we found that phosphorylated p40 is necessary for Akt
phosphorylation, we next examined how AUF1 phosphoryla-
tion could be modulated by signals that enhance mTORC2
signaling. First, we analyzed how serum stimulation, which
increases mTORC2/Akt signaling, could affect AUF1 phos-
phorylation. Serum stimulation increased Akt-Ser473 phos-
phorylation robustly from 30 to 60 min and coincided with a
discernible increase in AUF1 phosphorylation during these
time points (Fig. 5A). We and others have also demonstrated
that glucose limitation augments Akt phosphorylation (19, 20).
Prolonged incubation (24 h) of HeLa cells in complete media
enhanced Akt phosphorylation as well as AUF1 phosphoryla-
tion (Fig. 5B). Withdrawal of glucose from the media robustly
increased AUF1 phosphorylation at all time points examined,
similar to Akt phosphorylation. During acute glutamine with-
drawal (up to 24 h in HeLa), Akt Ser473 phosphorylation
remained robust, and this coincided with increased AUF1
phosphorylation (Fig. 5C). By 36 to 48 h glutamine starvation,
Akt phosphorylation declined as we previously reported (19),
J. Biol. Chem. (2022) 298(10) 102437 5
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and AUF1 phosphorylation was absent during these time points
(Fig. 5D). Since Akt phosphorylation is abolished by mTORC2
inhibition, we therefore examined if AUF1 phosphorylation is
also sensitive to this treatment. We used Torin1, which inhibits
mTOR (both mTORC1 and mTORC2) and assessed its effect
on AUF1 phosphorylation during combined glucose and
glutamine withdrawal. Torin1 prevented the increase in AUF1
phosphorylation during glucose and glutamine starvation
(Fig. 5E). As expected, it abolished Akt-Ser473 phosphorylation.
6 J. Biol. Chem. (2022) 298(10) 102437
These findings reveal that AUF1 phosphorylation is positively
modulated by signals that enhance mTORC2 signaling.
AUF1 expression is increased in liver tumors

Increased Akt phosphorylation is often a hallmark of cancer
(11). We therefore investigated whether AUF1 could be
upregulated in tumors with increased Akt phosphorylation.
We mined The Cancer Genome Atlas (TCGA) database using
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UALCAN to compare AUF1 mRNA (hnRNP D) expression in
normal versus different tumor samples (46). Several types of
cancers are associated with increased AUF1 (hnRNP D) gene
expression (Fig. 6A). However, among these cancers, liver
hepatocellular carcinoma and sarcoma displayed a significant
increase that is linked to poor patient survival (Fig. 6, B and C).
We then examined the expression of AUF1 in a hepatocellular
carcinoma cell line, HepG2. Upon incubation with Torin1,
pSer473 Akt phosphorylation was diminished, corresponding
with decreased AUF1 expression (Fig. 6D). These results are
consistent with the effects of Torin1 in downregulating AUF1
expression in HeLa cells (Fig. 5E). Together, these findings
indicate that AUF1 expression is sensitive to mTOR inhibition
in HepG2 cells.
J. Biol. Chem. (2022) 298(10) 102437 7
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Discussion
mTORC2 is activated by growth factor/PI3K signaling and

nutrient limitation (1, 6). It is required for phosphorylation,
optimal activation, and stability of Akt. How mTORC2
signaling is modulated and how mTORC2 mediates Akt
phosphorylation remain poorly understood. In the current
studies, we found that AUF1, an RBP involved in mRNA
degradation and translation, is essential for Akt phosphoryla-
tion in the membrane. It is also required for the phosphory-
lation of GFAT1, a metabolic enzyme that we have previously
shown to be modulated by mTORC2 (19, 47). In turn, AUF1 is
phosphorylated during conditions that enhance mTORC2
activation. Our findings reveal that in addition to a role for
AUF1 in translation and mRNA stability, it modulates
mTORC2 signaling.

mTORC2 is necessary for the phosphorylation of Akt at
Thr450 and Ser473 (7, 8, 15, 16, 48). Whereas Akt phos-
phorylation at the activation loop site, Thr308, by PDK1 ac-
tivates Akt, the phosphorylation at Thr450 and Ser473
allosterically enhances Akt stability and activity, respectively.
Here, we have shown that AUF1 is required for phosphory-
lation of these sites in Akt (Fig. 1). Previous studies in colo-
rectal cancer cells have also demonstrated that downregulation
of AUF1 diminishes Akt phosphorylation (49). Importantly, we
demonstrate here that AUF1 promotes Akt phosphorylation
by facilitating its membrane localization. The loss of AUF1
excludes Akt from the membrane-containing fractions, thus
preventing Akt phosphorylation (Fig. 3A). Since the phos-
phorylation of Akt at Ser473 and Thr308 occurs during PI3K
activation wherein PDK1 and mTORC2 both localize at the
membrane, our findings support that AUF1 facilitates phos-
phorylation of Akt in the membrane compartment. Hence, in
addition to the Akt PH domain, which allows binding to PIP3
that are present in membranes (50), AUF1 is also necessary for
this membrane localization to allow Akt phosphorylation.
Consistent with the role of AUF1 in facilitating membrane-
localized phosphorylation of Akt, AUF1 is also present in the
HSP fractions that contain membrane-bound organelles
(Fig. 3A). Unlike Akt-Ser473 and Akt-Thr308 phosphorylation,
the phosphorylation of Akt-Thr450 is not dependent on PI3K
but relies on mTORC2 (15, 16). Its phosphorylation occurs
during translation as the nascent Akt polypeptide emerges
from the ribosome (17). Since both mTORC2 and AUF1
associate with ribosomes (17, 43, 51, 52), AUF1 may promote
Thr450 phosphorylation of the nascent Akt chain as part of the
translational complex. Further studies are needed to address
how AUF1 could promote Akt phosphorylation via facilitating
localization to specific membrane compartments and/or
translational complex.

AUF1 is an RBP with diverse RNA targets and functions
(32). Depending on specific targets, it can either positively or
negatively regulate mRNA stability. It is also involved in other
functions such as translation and miRNA regulation. Our
adenocarcinoma; LUSC, lung squamous cell carcinoma; PAAD, pancreatic aden
adenocarcinoma; READ, rectum adenocarcinoma; SKCM, skin cutaneous mel
thymoma; UCEC, uterine corpus endometrial carcinoma.
studies reveal that it binds to mRNAs of proteins that are
involved in mTORC2 signaling. AUF1 has been reported to
modulate Akt signals (49), but our studies demonstrate for the
first time that AUF1 binds to Akt mRNA (Fig. 2A). The
binding to Akt mRNA suggests that it may have a more direct
role in modulating Akt translation and co/post-translational
phosphorylation by possibly localizing its mRNA to a mem-
brane compartment. However, since AUF1 can also bind to
mTOR and rictor mRNAs, as shown previously using PAR-
CLIP analysis and to SIN1 mRNA as we demonstrate here
(Fig. 2, B and C), it remains to be further investigated how
AUF1 could have a more prevalent role in modulating
mTORC2 signaling in general. AUF1 binds to c-Myc mRNA
and controls its translation by competing for a common
binding site with the translational suppressor TIAR (41). Like
mTORC2, c-Myc responds to nutrients and controls glucose
and glutamine metabolism (1, 53). Hence, whether AUF1
could control mRNA translation and co/post-translational
regulation of nutrient-regulated signalosomes remains to be
investigated. Whether AUF1 modulates mTORC2 signaling
via protein–protein interactions also remains to be addressed.
In this regard, AUF1 has been reported to localize at sites of
DNA damage independently of its RNA regulatory function
(54). Thus, the physical and functional interactions of AUF1
with mTORC2 signaling components warrant further
investigation.

We also demonstrate that AUF1 phosphorylation coincides
with mTORC2 signaling. First, signals that enhance mTORC2
signaling such as serum restimulation and glucose and/or
glutamine withdrawal increase AUF1 phosphorylation. AUF1
has four isoforms that are generated by alternative splicing of
the same pre-mRNA. Among these isoforms, p40 and p45
contain exon 2, which encodes an additional 19 amino acids
adjacent to RRM1 (Fig. 4A), and the protein product of this
region includes the phosphosites, Ser83 and Ser87. Ser87
phosphorylation of AUF1 is modulated by PKA and is linked
to positive regulation of AUF1 activity (43, 55, 56). Since AUF1
phosphorylation is enhanced by signals that increase mTORC2
signaling, this would suggest that PKA could couple signals
from mTORC2 to AUF1. How PKA could mediate mTORC2
signals is poorly understood and thus remains to be further
studied particularly in mammalian cells (57–60). Phosphory-
lation of Ser83 is mediated by glycogen synthase kinase 3
(GSK3) and occurs only when Ser87 is phosphorylated (55).
Ser83 phosphorylation is believed to repress the trans-
activation function of AUF1. Speculatively, this repression may
occur as mTORC2 signals diminish. In support of this notion,
we found that AUF1 phosphorylation is sensitive to nutrient
levels and mTOR activity. When phosphorylated, AUF1 fa-
cilitates Akt phosphorylation and activation. GSK3 is a sub-
strate of Akt. The Akt-mediated GSK3α/β phosphorylation at
Ser21/9 inhibits GSK3 to consequently promote cell survival
and proliferation (11). Hence, it is possible that increased Akt
ocarcinoma; PCPG, pheochromocytoma and paraganglioma; PRAD, prostate
anoma; STAD, stomach adenocarcinoma; THCA, thyroid carcinoma; THYM,
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activation could further boost AUF1 phosphorylation at Ser87
and activity by repression of GSK3.

Increased mTORC2/Akt signaling is often found in tumors.
The increased phosphorylation of Akt is used as a hallmark of
increased proliferation in cancer cells (11). mTOR and Akt
inhibitors are currently undergoing clinical trials to treat
various cancers and other metabolism-related disorders
(4, 61). AUF1 is overexpressed in different tumors (49, 62–65)
(Fig. 6, A and B). Its increased expression in human liver
carcinoma, sarcoma, and colorectal cancer is associated with
decreased survival or poor prognosis (Fig. 6C) (49). We have
shown here that inhibition of mTOR in the hepatocarcinoma
cell line, HepG2, diminishes AUF1 expression and Akt phos-
phorylation (Fig. 6D). Our findings reveal that AUF1 could
serve as a potential target for modulating mTORC2/Akt
signaling. Further studies to understand how AUF1 can spe-
cifically control Akt phosphorylation would be important for
development of more effective therapeutics against cancer and
metabolic disorders.

Experimental procedures

Materials

AUF1 rabbit polyclonal antibody was previously described
(66); pAUF1 antibody (rabbit polyclonal against exon 2-
encoded, 16-amino acid peptide spanning pSer83 and
pSer87). pSer243 GFAT1 (47); GFAT1 (Abcam; catalog no.:
ab125069); SIN1 (Abcam; catalog no.: ab71152); actin (Santa
Cruz Biotechology; catalog no.: sc-53029); and calnexin (Santa
Cruz Biotechnology; catalog no.: sc-6465). All other antibodies
were obtained from Cell Signaling Technology with the
following catalog numbers: pThr308Akt (13038); pThr450Akt
(9267); pSer473-Akt (4060); Akt (9272); pThr389 S6K1 (9234);
S6K1 (9202); pSer240/244 S6 (2215); S6 (2317); rictor (9476);
mTOR (2983); PDK1 (3062); PTEN (9559); and HKII (2106).
Torin1 was purchased from Tocris.

Plasmids, transfection, and IP

The following AUF1-related plasmids were described pre-
viously: plasmids expressing scrambled (control) shRNA
(shCTRL) or shRNA directed against all four AUF1 isoforms
(shAUF1) and plasmids expressing individual AUF1 isoforms
refractory to shAUF1 (hereafter designated as AUF1R) (45).
Plasmids expressing shAUF1-refractory (R), phosphomimetic
mutations (dual Ser83 and Ser87 to Asp [D]) and shAUF1-
refractory (R) phospho-resistant mutations (dual Ser83 and
Ser 87 to alanine [A]) (67). siRNA for AUF1
(hs.RI.HNRNPD.13.1) and scrambled control were obtained
from IDT. Plasmids expressing WT myristoylated Akt (WT
Myr-Akt) or KD myristoylated Akt (KD Myr-Akt) were pre-
viously described (15).

THP-1 cells were stably transfected using Effectene Trans-
fection Reagent (Qiagen) with plasmids expressing either
shCTRL or shAUF1, and neomycin-resistant cells were pooled
for further experiments, as described previously (45).

Transient transfections of plasmid DNAs into HeLa cells
were performed as previously described (67). For cotransfection
10 J. Biol. Chem. (2022) 298(10) 102437
of shAUF1 or shCTRL andMyr-Akt constructs, HeLa cells were
grown in completemedia until about 60% confluence in a 6-well
plate. Prior to transfections, cells were resuspended in fresh
complete or starvation media as indicated. About 0.5 to 2 μg of
plasmid DNA that was preincubated with Lipofectamine 2000
(Thermo Fisher Scientific) was added per manufacturer’s
directions. About 24 h post-transfection, cells were resus-
pended in corresponding media followed by cell lysis.

mRNP IPs and qRT–PCR (mRNP immunoprecipitation–
qRT–PCR) assays were performed with HeLa and THP-1 cell
lysates and either nonimmune rabbit serum (Sigma) or AUF1
antibody as previously described (68). RNAs were purified
from precipitations and analyzed by qRT–PCR using the
following primer sets:

Akt (Forward: 50aaaaaggtctccgctggcgctgagattgtgtcagc;
Reverse: 50aaaaaggtctcccagcgaagcgggcccggtcctc), SIN1 (For-
ward: 50gtattagaagacgctcaaacgcagctcaaagattagaacga; Reverse:
50tcgttctaatctttgagctgcgtttgagcgtcttctaatac), GFAT1 (Forward:
50ccccagtcccacagaagtat; Reverse: 50aactgacagcattggctttg), rictor
(Forward: 50ctaggtggcattgacattcagc; Reverse: 50ctaggaaacaa
ggaagcattcag), mTOR (Forward: 50ccaagcttatgcttggaaccgga
cctgcc; Reverse: 50aaccgcggccagaaagggcacca); c-Myc (Forward:
50acgaaactttgcccatagca; Reverse: 50gcaaggagagcctttcagag), and
GAPDH (Forward: 50gattgttgccatcaacgacc; Reverse: 50ccatg
gtggtgaagacacca).

Protein co-IP was performed on cells lysed with CHAPS
lysis buffer (40 mM Hepes, 2 mM EDTA, 0.38% CHAPS, and
150 mM NaCl) as described previously (47). Precleared
extracts were incubated with SIN1 antibody, and co-IPs were
recovered using Protein G agarose beads.
Cell culture, lysis, and immunoblotting

MEFs, HeLa, or THP-1 cells were seeded at around 150,000
to 250,000 cells/ml in complete media: Dulbecco’s modified
Eagle’s medium (Sigma; catalog no.: D6546) containing 10%
fetal bovine serum (FBS), 2 mM glutamine (Gibco; catalog no.:
25030-164), and penicillin/streptomycin (Gibco; catalog no.:
15140-122). HepG2 was cultured in Eagle’s minimum essential
medium with L-Gln (American Type Culture Collection; cat-
alog no.: 30-2003) containing 10% FBS. After culturing for 20
to 24 h (to reach 70–80% confluency), the cells were washed in
PBS and resuspended in either fresh complete media or star-
vation media (glucose starvation media, Corning, catalog no.:
17-207-CV; glutamine starvation media, Corning, catalog no.:
15-017-CV) as described previously (19). The following were
also added to resuspension media as denoted: 10% dialyzed
FBS (Hyclone; catalog no.: SH30079.03); 25 mM glucose, or
2 mM glutamine. Cells were harvested with radio-
immunoprecipitation assay lysis buffer (50 mM Tris–HCl; pH
8.0, 100 mM NaCl, 5 mM EDTA, 0.2% SDS, 0.5% sodium
deoxycholate, and 1.0% Triton X-100), containing protease
and phosphatase inhibitors. Protein concentrations were
determined by Bradford analysis, and 20 to 30 μg of sample
proteins was subjected to SDS-PAGE. Proteins were trans-
ferred onto Immobilon polyvinylidene fluoride membrane
(Millipore). Membranes were incubated with primary
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antibodies overnight in PBS/Tween with 0.5% nonfat dry milk.
Membranes were washed in PBS/Tween. After incubation with
the secondary antibody, blots were washed again in PBS/
Tween. Images were visualized by SuperSignal ECL detection
kit (Thermo Fisher Scientific) and captured using Amersham
Biosciences Imager 600 (GE Healthcare).
Cellular fractionation

Cells were lysed in CHAPS lysis buffer and centrifuged at
14,000 rpm. Supernatant is designated as the cytosolic fraction.
The pellets, which consist of membrane-containing compart-
ments, were further passed through a 27G1/2 needle 15 times,
and samples were centrifuged at 1000g for 10 min at 4 �C. The
low-speed pellet was resuspended in radioimmunoprecipitation
assay buffer, and supernatant was ultracentrifuged at 65,000
rpm for 1 h at 4 �C. The resulting HSP was resuspended in HSP
buffer (10 mM Tris–HCl, pH7.5, 75 mM NaCl, 0.5 mM EDTA,
0.5 mM EGTA, and 0.5% Triton X). All buffers were supple-
mented with protease and phosphatase inhibitors.
AUF1 expression analysis from TCGA database

AUF1 mRNA expression from normal versus different tu-
mor samples from the TCGA database was analyzed using
http://ualcan.path.uab.edu as previously described (46). Sta-
tistical significance provided were estimated by Student’s t test.
Kaplan–Meier plot shows the effect of gene expression on
patient survival. The significance of survival impact as pro-
vided was measured by log rank test.
Data availability

All data are available in the main text or the supporting
information. Research materials used in the studies are avail-
able upon request from the authors.
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information.
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