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ABSTRACT

Programmed ribosomal frameshifting provides a
mechanism to decode information located in two
overlapping reading frames by diverting a propor-
tion of translating ribosomes into a second open
reading frame (ORF). The result is the production of
two proteins: the product of standard translation
from ORF1 and an ORF1–ORF2 fusion protein. Such
programmed frameshifting is commonly utilized as
a gene expression mechanism in viruses that infect
eukaryotic cells and in a subset of cellular genes.
RNA secondary structures, consisting of pseudo-
knots or stem–loops, located downstream of the
shift site often act as cis-stimulators of frameshift-
ing. Here, we demonstrate for the first time that
antisense oligonucleotides can functionally mimic
these RNA structures to induce 11 ribosomal frame-
shifting when annealed downstream of the frame-
shift site, UCC UGA. Antisense-induced shifting of
the ribosome into the 11 reading frame is highly
efficient in both rabbit reticulocyte lysate translation
reactions and in cultured mammalian cells. The
efficiency of antisense-induced frameshifting at this
site is responsive to the sequence context 50 of the
shift site and to polyamine levels.

INTRODUCTION

The standard triplet readout of the genetic code can be repro-
grammed by signals in the mRNA to induce ribosomal
frameshifting [reviewed in (1–3)]. Generally, the resulting
trans-frame protein product is functional and may in some
cases be expressed in equal amounts to the product of stan-
dard translation. This elaboration of the genetic code (4,5)
demonstrates versatility in decoding.

Requirements for eukaryotic ribosomal frameshifting
include a shift-prone sequence at the decoding site and
often a downstream secondary structure in mRNA. The
majority of �1 programmed frameshift sites consist of a
heptanucleotide sequence X XXY YYZ [where X can be A,
G, C or U; Y can be A or U; and Z can be any nucleotide (6)].

In this configuration, the P- and A-site tRNAs can re-pair
with at least 2 out of 3 nt when shifted 1 nt towards the
50 end of the mRNA. Similarly, for +1 frameshift sites, the
identity of the codons in the P- and A-sites of the ribosome
is critical for efficient frameshifting. One factor affecting
+1 frameshift efficiency is the initial stability of the P-site
tRNA–mRNA interaction in the 0 frame (7). High-efficiency
frameshifting occurs when the P-site tRNA does not form
standard codon–anticodon interactions (8). In some studies,
a correlation between +1 frameshift efficiency and the final
stability of the P-site tRNA–mRNA interaction in the
+1 frame has been shown previously (9,10). However, in
other systems there appears to be little correlation (11). In
addition, competition between decoding of the 0 frame and
+1 frame codons in the A-site may affect frameshifting effi-
ciency (7). Slow to decode 0 frame codons such as stop
codons or those decoded by low abundance tRNAs favor
frameshifting, as do +1 frame codons with high levels of
corresponding cognate tRNAs (12–16).

High levels of frameshifting are often achieved by the
stimulatory action of a cis-acting element located down-
stream of the shift site. A wide variety of structures, most
commonly H-type pseudoknots (17), have been identified
which stimulate �1 frameshifting in eukaryotes [for reviews
see (18,19)]. Mutagenic and structural data for several of the
frameshift stimulators have demonstrated that each pseudo-
knot has key structural features required for frameshift stimu-
lation (20–28). However, unifying structural feature essential
for frameshifting has not yet been identified. This observation
combined with recent reports that simple antisense oligonu-
cleotides can functionally mimic cis-acting 30 stimulators of
�1 frameshifting (29,30) demonstrates that many different
structures can stimulate frameshifting. Although it should
be noted that not all structures of equal thermodynamic
stability can stimulate frameshifting (Discussion).

RNA pseudoknots have also been shown to stimulate
programmed +1 frameshifting in many eukaryotic antizyme
genes (31,32). Antizyme is a negative regulator of cellular
polyamine levels through its ability to target ornithine decar-
boxylase (the rate-limiting enzyme in polyamine biosynthe-
sis) for degradation (33–35), inhibits polyamine import
(36,37) and stimulates export (38). Antizyme expression is
induced by high-intracellular polyamine levels, and decreased
with lowered levels. The polyamine sensor is a programmed
+1 frameshift event that is required for antizyme synthesis.
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At low polyamine levels, termination at the end of open read-
ing frame 1 (ORF1) is efficient, whereas at high levels of
polyamines, a substantial proportion of ribosomes shift to
the +1 reading frame and then resume standard decoding to
synthesize the full-length and active antizyme protein.
Frameshifting at the mammalian antizyme mRNA shift site,
UCC UGA, is stimulated by two cis-acting signals (39,40).
One of these, the 50 element, encompasses �50 bases
upstream of shift site and is important for the polyamine
effect (39–41). The other cis-acting element is a pseudoknot
located 30 of the shift site. The mammalian antizyme pseudo-
knot and a structurally distinct counterpart in a subset
of invertebrate antizyme mRNAs (31) are the only pseudo-
knots known to act as stimulators for +1 frameshifting in
eukaryotes.

Although it is unknown if pseudoknots stimulate �1
frameshifting and +1 frameshifting by different mechanisms,
one notable difference is found in positioning of the down-
stream structure relative to the shift site. Naturally occurring
pseudoknots or stem–loop stimulators of �1 frameshifting
typically begin �6–9 nt downstream of the A-site codon of
the shift site (18), whereas +1 frameshift pseudoknots are
located closer with only a 2–3 nt separation from the A-site
codon (31). Mutagenic studies have revealed that altering
the size of the spacer affects frameshifting and, in general,
reduces efficiency (27,31,42–44).

Here we have tested the ability of antisense oligonu-
cleotides, annealed downstream of the shift-prone site, UCC
UGA, to induce shifting of the ribosome to the +1 reading
frame. The directionality of frameshifting (either into the
+1 or �1 reading frame) is shown to be dependent upon
the position of the duplex region relative to the shift
site, and the efficiency of frameshifting is responsive to poly-
amine levels and enhanced by the inclusion of stimulatory
sequences found upstream of the human antizyme +1
programmed frameshift site.

MATERIALS AND METHODS

Frameshift reporter constructs and 20-O-Methyl
oligonucleotides

Complementary oligonucleotides, to construct the sequences
described in this paper, were synthesized at the University
of Utah DNA/Peptide Core Facility such that when annealed
they would have appropriate ends to ligate into the SalI/
BamHI sites of the dual luciferase vector, p2luc (45). Dual
luciferase constructs were prepared and their sequence was
verified as described previously (46).

Insert sequences with shift site in boldface is given as
follows:

P2lucAZ1wt: TCGACGGTCTCCCTCCACTGCTGTAG-
TAACCCGGGTCCGGGGCCTCGGTGGTGCTCCTGATG-
CCCCTCACCCACCCCTGAAGATCCCAGGTGGGCGAG-
GGAATAGTCAGAGGGATCACAACGGATC;

P2lucAZ10sp: TCGACGGTCTCCCTCCACTGCTGTAG-
TAACCCGGGTCCGGGGCCTCGGTGGTGCTCCTGAC-
CCTCACCCACCCCTGAAGATCCCAGGTGGGCGAGG-
GAATAGTCAGAGGGATCACAACGGATC;

P2lucAZ1hp: TCGACGGTCTCCCTCCACTGCTGTAG-
TAACCCGGGTCCGGGGCCTCGGTGGTGCTCCTGATG-

CCCCTCACCCACCCCTGAAGATCCCAGGTGGGCGAG-
GGAATGGATC;

P2lucAZ1PKdel: TCGACGGTCTCCCTCCACTGCTG-
TAGTAACCCGGGTCCGGGGCCTCGGTGGTGCTCCT-
GATGCCCCTGGATC;

P2lucAZ1PKm1: TCGACGGTCTCCCTCCACTGCTGT-
AGTAACCCGGGTCCGGGGCCTCGGTGGTGCTCCTG-
ATGCCCCTCACCCACCGGGATCACAAGGATC;

P2lucAZ1sl: TCGACGGTCTCCCTCCACTGCTGTAGT-
AACCCGGGTCCGGGGCCTCGGTGGTGCTCCTGATG-
CCCCTCACCCACCCGGATC;

P2lucAZ1FS: TCGACGTGCTCCTGATGCCCCTG-
GATC;

P2lucAZ1FSUGG: TCGACGTGCTCCTGGTGCCCCTG-
GATC.

20-O-Methyl antisense oligonucleotides were synthesized
by Integrated DNA Technologies (Coralville, IA).

AZ1A: AGUUGAAGGAUCCAGGGGCA; AZ1B: GGA-
AGUUGAAGGAUCCAGGG; AZ1C: CAGGGAAGUUGA-
AGGAUCCA; PKm1: GAUCCCGGUGGGUGAGGG;
PKm2: GAUCCCAGGUGGGCGAGGG; SL1: GGUGGGU-
GAGGG; and SL2: GGAUCCGGGUGGGUGAGGG.

In vitro transcription and translation

The dual luciferase constructs (0.1 mg) described above were
added directly to TNT coupled reticulocyte lysate reactions
(Promega) with 35S-labeled methionine in a volume of
10 ml. Reactions were incubated at 30�C for 1 h. Radiolabeled
proteins were separated by SDS–PAGE and the gels were
fixed with 7.5% acetic acid and methanol for 20 min. After
drying under vacuum, the gels were visualized using a
Storm 860 PhosphorImager (Molecular Dynamics) and
radioactive bands quantified using ImageQuant software.
Percent frameshifting was calculated as the percentage of
full-length (frameshift) product relative to the termination
product and the full-length product combined. The value of
each product was corrected for the number of methionine
codons present in the coding sequence. The reported values
are the average and standard deviations obtained from at
least three independent measurements. Tables showing per-
cent frameshifting and standard deviations can be found in
Supplementary Data.

Analysis of antisense-induced frameshifting in
mammalian cultured cells

Plasmid p2lucAZ1PKdel was co-transfected into CV-1 cells
with varying concentrations of AZ1B 20-O-Methyl antisense
oligonucleotides under the following conditions. CV-1 cells
(1.5 · 104) in 50 ml of DMEM + 5% fetal bovine serum
were added to wells (1/2 area 96-well tissue culture treated
plates) containing 25 ng of DNA, varying amounts of
AZ1B antisense oligonucleotides and 0.4 ml Lipofectamine
2000 (Invitrogen) in 25 ml of Optimem. Cells were incubated
at 37�C (5% CO2) for 20 h. Media were then removed from
the cells and the transfected cells were lysed in 12.5 ml
lysis buffer and luciferase activity determined by measuring
light emission following injection of 25 ml of luminescence
reagent (Promega). Percent frameshifting was calculated
by comparing firefly/Renilla luciferase ratios of experi-
mental constructs with those of control constructs: (firefly
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experimental RLUs/Renilla experimental RLUs)/(firefly
control RLUs/Renilla control RLUs) · 100.

RESULTS

The ability of cis-acting RNA structures or trans-acting
20-O-Methyl antisense oligonucleotides to induce ribosomal
frameshifting was determined by in vitro transcription and

translation of a dual luciferase reporter vector, p2Luc.
p2Luc contains the Renilla and firefly luciferase genes on
either side of a multiple cloning site, and can be transcribed
using the T7 promoter located upstream of the Renilla
luciferase gene (45). Sequences containing shift-prone
sites were cloned between the two reporter genes such
that the downstream firefly luciferase gene is in the
+1 reading frame. The resulting constructs were then tran-
scribed and translated in vitro with or without complementary

Figure 1. (A) Reporter construct design: cis- and trans-acting stimulators of frameshifting. Sequence of the shift site and downstream sequences for dual
luciferase constructs containing cis-acting structures used in this paper. P2luc-AZ1wt contains the wild-type antizyme frameshift cassette, p2luc-AZ1-0sp has a
3 bp deletion of the spacer sequences separating the shift site from the pseudoknot and p2luc-AZ1hp contains a hairpin replacement of the pseudoknot structure.
S1 and S2 refer to stem 1 and stem 2 of the RNA pseudoknot. L1 and L2 refer to loops 1 and 2 of the pseudoknot. Fluc and Rluc represent Firefly and Renilla
luciferase genes, respectively. (B) Sequence of the shift site and downstream sequences for dual luciferase constructs and their complementary antisense
oligonucleotide partners. Fluc and Rluc represent Firefly and Renilla luciferase genes, respectively.
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20-O-Methyl oligonucleotides, using rabbit reticulocyte lysate
in the presence of 35S-labeled methionine, and the products
analyzed by electrophoresis on SDS–polyacrylamide gels as
described in Materials and Methods.

cis-Acting stimulators of frameshifting at the
antizyme shift site

Initially, three dual luciferase reporter vectors were generated
containing the human antizyme 1 frameshift cassette (p2luc-
AZ1wt) with the 50 and 30 stimulators of frameshifting, with
the pseudoknot deleted (p2luc-AZ1PKdel), or replaced with
a stem–loop (p2luc-AZ1hp) (Figure 1). Each constructs was
then subjected to coupled transcription and translation reac-
tions in the presence of increasing amounts of spermidine,
and the 35S-labeled products separated by SDS–PAGE.
Frameshifting efficiency was measured by comparing the
amount of full-length frameshift product (+1 FS) to the prod-
uct of termination (Term) at the shift site stop codon
(Figure 2 and Supplementary Table 1). Maximum levels of
frameshifting (AZ1wt 5.6%, AZ1PKdel 2.1% and AZ1hp
1.5%) were observed in the presence of 0.4 mM spermidine.
Low-level frameshifting, 0.1% or less, was observed in the
absence of exogenous spermidine.

Trans-acting stimulators of frameshifting at the
antizyme shift site

20-O-Methyl antisense oligonucleotides were designed to
anneal downstream of the UCC UGA shift site of RNA pro-
duced from p2luc-AZ1PKdel (AZ1PKdel) such that the 30

ends were located 0 (AZ1A), 3 (AZ1B) or 6 (AZ1C) nt down-
stream of the UGA codon of the shift site (Figure 1B). Frame-
shift efficiency was measured following transcription/
translation reactions of p2luc-AZ1PKdel in the presence of
2 mM of each antisense oligonucleotide and increasing
amounts of spermidine (Figure 3A–C and Supplementary
Table 2). Maximal levels of frameshifting were found to
occur when 2–4 mM of antisense oligonucleotide was added
to the transcription/translation reactions (Supplementary
Table 3). In the presence of 0.4 mM exogenous spermidine,
highly efficient shifting of ribosomes into the +1 reading
frame (higher than that observed in the wild-type antizyme
frameshift cassette) was observed with the addition of
AZ1A (26.1%), AZ1B (51.8%) and AZ1C (31.8%) (Supple-
mentary Table 2). The most efficient frameshifting is obser-
ved with the antisense oligonucleotide AZ1B which anneals
such that spacing between the shift site and the beginning
of the duplex region is the same as that observed between
the shift site and the beginning of stem 1 of the natural
antizyme 30 pseudoknot structure (i.e. each has a 3 nt spacer).
To verify that the antisense oligonucleotide was activating
ribosomal frameshifting and not transcription slippage,
RNA was transcribed from p2luc-AZ1PKdel in the absence
of oligonucleotide and added to reticulocyte lysate transla-
tions in the presence of increasing amounts of 20-O-Methyl
AZ1B oligonucleotide. Frameshifting levels were increased
to the same level as that observed in coupled transcription
and translation reactions demonstrating that the oligonu-
cleotide acts to induce frameshifting during translation (Sup-
plementary Figure).

Surprisingly, the addition of AZ1A (0 spacer) also induced
high-level frameshifting into the �1 reading frame in a
manner which was modestly inhibited by the addition of sper-
midine (19% in the absence and 10% in the presence of
0.4 mM exogenous spermidine) (Figure 3A and Supplemen-
tary Table 2). No �1 frameshift product was observed when
the wild-type antizyme cassette was examined in the absence
of antisense oligonucleotide addition (Figure 2; AZwt). As
the AZ1A antisense oligonucleotide was designed to anneal
directly adjacent to the UGA codon of the shift site, it was
of interest to determine whether the wild-type antizyme

Figure 2. Cis-acting 30 stimulators of frameshifting. Plasmids p2Luc-AZ1wt
(AZ1wt), p2luc-AZ1PKdel (AZ1PKdel) and p2luc-AZ1hp (AZ1hp) were
transcribed and translated in rabbit reticulocyte lysate in the absence or
presence of increasing amounts of spermidine (final concentration indicated
in mM). SDS–PAGE of 35S-methionine-labeled protein products from
transcription and translation reactions is shown. The location of the full-
length frameshift product (+1 FS) and non-frameshift termination product
(Term) are indicated. The efficiency of frameshifting (% FS) is indicated.
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pseudoknot could induce �1 frameshifting when located in
the equivalent position. To address this, a new construct
p2luc-AZ1-0sp (Figure 1A) was made by deleting the 3 nt
spacer between the pseudoknot and the shift site of p2luc-
AZ1wt. In this case, the wild-type pseudoknot is directly 30

adjacent to the shift site. The products of in vitro transcription
and translation were separated by SDS–PAGE. No �1 frame-
shift product was observed and levels of the +1 frameshift
product were significantly reduced to �3% (Figure 3D and
Supplementary Table 2).

AZ1A, AZ1B and AZ1C were designed to complement
RNA sequences encoded by the originating vector. To deter-
mine if duplexes formed between the antisense oligonu-
cleotide and 30 adjacent antizyme sequences would result in
more efficient frameshift stimulation, reporter vectors were
designed to contain a portion of the antizyme 30 stimulator.
Construct p2luc-AZ1PKm1 contains sequences from the 50

half of the axis formed by the stacking of stem 1 and stem

2 of the pseudoknot (Figure 1A). Two complementary 20-O-
Methyl antisense oligonucleotides were designed. First,
PKm1 has perfect complimentarity to the region starting
3 nt and ending 21 nt downstream of the UGA shift site
codon. Second, PKm2 is the same except that a mispaired
C and bulged A were located at positions 9 and 16, respec-
tively. These two alterations were included to more closely
mimic the natural pseudoknot which also contains a mis-
paired C and bulged A at equivalent positions along the
extended stem formed by the stacking of pseudoknot stems
1 and 2 (Figure 1; compare p2luc-AZ1wt with the duplex
formed between p2luc-PKm1 and antisense oligonucleotide
PKm2). PKm1 and PKm2 induced 30 and 22% frameshifting,
respectively, when added to coupled transcription and trans-
lation reactions of p2luc-AZ1PKm1 in the presence spermi-
dine (Figure 4A and B, and Supplementary Table 4).
Neither PKm1 nor Pkm2 induced frameshifting to the same
levels seen with AZ1B, suggesting that the sequence content

Figure 3. Antisense oligonucleotide stimulators of frameshifting. Plasmids p2Luc-AZ1PKdel (AZ1PKdel) or p2luc-AZ1-0sp (AZ1-0sp) were transcribed and
translated in rabbit reticulocyte lysate in the absence or presence of increasing amounts of spermidine (final concentration indicated in mM). Either 20-O-Methyl
antisense oligonucleotide AZ1A (A), AZ1B (B) or AZ1C (C) was added to the transcription and translation reactions at 2 mM final concentration. No antisense
oligonucleotide was added to reactions with AZ1-0sp (D). SDS–PAGE of 35S-methionine-labeled protein products from transcription and translation reactions is
shown. The efficiency of frameshifting (% FS) is indicated.

4306 Nucleic Acids Research, 2006, Vol. 34, No. 15



of the duplex region can affect the efficiency of frameshift
stimulation and that native antizyme sequences are not
required.

A second construct, p2luc-AZ1sl, was designed to contain
only the 50 half of stem 1 of the antizyme pseudoknot down-
stream from the UCC UGA shift site (Figure 1A). 20-O-
Methyl antisense oligonucleotides were designed to
anneal between 3 and 15 nt (SL1) or 3 and 22 nt (SL2) down-
stream from the UGA codon of the shift site. Frameshift
efficiency induced by these two antisense oligonucleotides,
8 and 22% respectively, was somewhat lower than that
observed with PKm1 and PKm2 (Figure 4C and D and
Supplementary Table 4). In these cases frameshift efficiency
was higher for the longer antisense oligonucleotide (SL2),
suggesting that frameshift efficiency most probably correlates
with stability of the duplex. As was seen with AZ1A, AZ1B
and AZ1C, frameshifting efficiency stimulated by antisense
oligonucleotides PKm1, PKm2, SL1 and SL2 was also
strongly correlated with the concentration of exogenously
added spermidine (Supplementary Table 5).

Trans-acting stimulators of frameshifting at a simple
sequence, UCC UGA

The importance of the antizyme 50 sequence context to
antisense oligonucleotide induced ribosome frameshifting
was examined by testing the frameshift site, UCC UGA,
without the 50 and 30 stimulatory antizyme sequences. To
this end, the 50 antizyme stimulatory sequences were deleted
from p2luc-AZ1PKdel to make p2luc-AZ1FS. Each of the
antisense oligonucleotides AZ1A, AZ1B or AZ1C was
added to coupled transcription and translation reactions
with p2luc-AZ1FS in the presence or absence of spermidine.
Frameshift efficiency was measured at 11, 8 and 4%, in the
presence of spermidine and 3, 0.4 and 0.2% in its absence
for AZ1A, AZ1B and AZ1C, respectively (Figure 5A and B).

To determine whether the stop codon of the shift site is
essential for frameshifting, the UGA codon of p2luc-AZ1FS
was altered to UGG such that the shift site was UCC UGG
(p2luc-AZ1-UGG). Frameshift efficiency was significant,
but reduced, compared to the shift site UCC UGA, and

Figure 4. Sequence effect 30 of the shift site on 20-O-Methyl induced frameshifting. Plasmids p2Luc-AZ1PKm1 (AZ1PKm1) (A and B) or p2luc-AZ1sl (AZ1SL)
(C and D) were transcribed and translated in rabbit reticulocyte lysate in the presence of 0.4 mM spermidine. Either 20-O-Methyl antisense oligonucleotide PKm1
(A), PKm2 (B), SL1 (C) or SL2 (D) was added to the transcription and translation reactions at increasing concentrations. Final concentration of the antisense
oligonucleotide (AO) is indicated in mM. SDS–PAGE of 35S-methionine-labeled protein products from transcription and translation reactions is shown. The
efficiency of frameshifting (% FS) is indicated.
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shows little stimulation by the addition of spermidine; AZ1A,
AZ1B and AZ1C induced 3, 1 and 1.4% frameshifting in the
presence of spermidine, and 1.9, 0.8 and 1.7% frameshifting
in its absence, respectively (Figure 5C and D).

Trans-acting stimulators of frameshifting in cultured
mammalian cells

The ability of antisense oligonucleotides to induce frame-
shifting in cultured mammalian cells was examined by
co-transfection of CV-1 cells with p2lucAZ1PKdel and
increasing amounts of 20-O-Methyl antisense oligonu-
cleotides AZ1B as described in Materials and Methods. In
the absence of antisense oligonucleotide frameshifting levels
were determined to be 1.1%, whereas a graded increase in
frameshift levels was observed upon the addition of AZ1B
(Figure 6). Maximal frameshifting levels were 13% in the
presence of 2 mM AZ1B in the transfection media.

DISCUSSION

Several models attempting to explain pseudoknot stimulation
of programmed �1 frameshifting have been proposed [for
reviews see (18,19)]. Most models invoke a pausing mecha-
nism whereby the ribosome is paused over the shift site such
that time is allowed for the tRNAs to reposition in the new

reading frame. This explanation is clearly too simplistic as
stem–loops and pseudoknots of similar thermodynamic
stability that cause ribosome pausing are not necessarily
effective frameshift stimulators (47–49). In addition, varia-
tions of the IBV pseudoknot have demonstrated a lack
of correlation between the extent of pausing and the effici-
ency of frameshifting (47). A recent publication by Brierley

Figure 5. Sequence effect 50 of the shift site on 20-O-Methyl induced frameshifting. Plasmids p2Luc-AZ1FS (AZ1 FS) (A and B) or p2luc-AZ1FS-UGG (AZ1FS-
UGG) (C and D) were transcribed and translated in rabbit reticulocyte lysate in the presence or absence of 0.4 mM spermidine. Either 20-O-Methyl antisense
oligonucleotide AZ1A, AZ1B or AZ1C were present. SDS–PAGE of 35S-methionine-labeled protein products from transcription and translation reactions is
shown for AZ1FS (A) and AZ1FS-UGG (C). The efficiency of frameshifting (% FS) is indicated.

Figure 6. Antisense induced frameshifting in cultured mammalian cells.
Plasmid p2lucAZPKdel was transfected into cultured CV-1 cells along with
increasing amounts of 20-O-Methyl antisense oligonucleotide AZ1B. The
cells were incubated for 20 h and the percent frameshifting was determined
by assaying firefly and Renilla luciferase activity in cell lysates as described
in Materials and Methods.
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and co-workers (50) presents structural data demonstrating
that the IBV frameshift stimulating pseudoknot blocks the
mRNA entrance tunnel and leads to a structural deformation
of the P-site tRNA. The resulting movement of the tRNA dis-
places the anticodon loop towards the 30 end of the mRNA. A
model is presented in which this movement results in disrup-
tion of the codon–anticodon interactions, thus allowing for
tRNA slippage relative to the mRNA. Similar tRNA move-
ments were not observed with non-frameshift stimulating
stem–loop structures. This model provides a feasible mecha-
nistic explanation for the ability of some downstream struc-
tures to induce frameshifting.

The ability of antisense oligonucleotides to induce high-
level �1 frameshifting (29,30) demonstrates that elaborate
tertiary structures are not required, and that a duplex formed
by complementary antisense oligonucleotides (with a variety
of chemistries, including RNA, 20-O-Methyl, morpholino) is
sufficient to induce high-level frameshifting. Here we demon-
strate for the first time that trans-acting antisense oligonu-
cleotides may stimulate ribosome shifting to the +1 reading
frame at surprisingly high levels, levels which are greater
than those achieved by natural 30 cis-acting mRNA pseudo-
knot structures in programmed +1 frameshifting.

Structural studies indicating that the mRNA begins to enter
the ribosome 7–9 nt downstream from the A-site codon is of
direct relevance to this study (50,51). Our results indicate that
maximal frameshifting is induced when the antisense–mRNA
duplex begins 3 nt downstream of the UGA of the shift site,
in agreement with the distance found between the UGA of
the shift site and the beginning of stem 1 of the pseudoknot
stimulator found in antizyme genes. Given this distance,
the implication is that the stimulatory secondary structure
would be encountered by the ribosome when the UCC
codon enters the A-site of the ribosome. Perhaps as suggested
by the structural studies of the IBV-1 frameshift inducing
pseudoknot, the codon–anticodon interactions between the
UCC codon and Ser-tRNASer are disrupted during transloca-
tion to the P-site. Given the importance of the UGA codon
during frameshifting at the UCC UGA shift site, subsequent
events following translocation of the UCC codon to the
P-site and UGA to the A-site must influence frameshifting
efficiency. This latter event most probably involves competi-
tion between termination and +1 frame decoding when the
UGA codon is in the A-site. Various discussions have been
presented for the importance of A-site and P-site events
during ribosomal frameshifting (7,52) and clearly, further
investigations of this topic are warranted.

The observation presented here that the antisense oligonu-
cleotide, AZ1A, which anneals directly adjacent to the UGA
stop codon can induce ribosome frameshifts to either the
+1 or �1 reading frame is surprising. In light of the above
discussion of spacing for naturally occurring cis-acting
frameshift stimulators, it is possible that frameshifting may
occur at codons upstream of the known UCC UGA shift
site. However, visual examination of upstream codons does
not reveal an obvious �1 or +1 frameshift site.

The ability of spermidine to stimulate antisense oligonu-
cleotide induced ribosome frameshifting to the +1 reading
frame at the UCC UGA shift site in the absence of the natural
30 stimulator demonstrates that this cis-acting element is not
required for polyamine responsiveness. Similarly, spermidine

stimulation was observed in the absence of the 50 element but
virtually eliminated by altering the UGA codon of the shift
site to UGG. These observations are in agreement with previ-
ous studies examining the importance of cis-acting elements
for polyamine induced frameshifting during expression of
antizyme genes (39–41).

Finally, the ability to direct ribosomes to the +1 reading
frame in living cells (Figure 6) suggests a potential thera-
peutic application for antisense oligonucleotides. Directed
frameshifting to the +1 reading frame near a disease causing
�1 frameshift mutation would cause some ribosomes to
resume decoding in the wild-type ORF, thus restoring partial
production of full-length protein from mutant alleles. The
importance of the stop codon for efficient frameshifting sug-
gests that the stop codon following the frameshift mutation
presents a promising target for antisense induced phenotypic
suppression, and that modulation of intracellular polyamine
levels, although not essential, may increase the effectiveness
of this approach. Further experiments are required to deter-
mine the therapeutic potential of this approach in vivo includ-
ing the generality and efficiency of frameshift induction at
non-programmed frameshift sites.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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