organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Pirimicarb: 2-dimethylamino-5,6dimethylpyrimidin-4-yl dimethylcarbamate

Hojin Yang,^a Tae Ho Kim,^a* Yong Woon Shin,^b Ki-Min Park^a and Jineun Kim^a*

^aDepartment of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 660-701, Republic of Korea, and ^bTest & Analytical Laboratory, Korea Food & Drug Administration, 123-7 Yongdang-dong, Busan 608-829, Republic of Korea

Correspondence e-mail: thkim@gnu.ac.kr, jekim@gnu.ac.kr

Received 28 June 2010; accepted 7 July 2010

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.002 Å; R factor = 0.048; wR factor = 0.146; data-to-parameter ratio = 19.3.

In the title compound, $C_{11}H_{18}N_4O_2$ (systematic name: 2dimethylamino-5,6-dimethylpyrimidin-4-yl *N*,*N*-dimethylcarbamate), the pyrimidine ring and dimethylamino group are almost in the same plane, making a dihedral angle of 1.6 (1)°. The dihedral angle between the mean plane of the pyrimidine ring and that of the dimethylcarbamate group is 83.42 (5)°. In the crystal structure, intermolecular $C-H\cdots O$ hydrogen bonds contribute to the stabilization of the packing.

Related literature

For the toxicity and insecticidal properties of the title compound, see: Pirisi *et al.* (1996). For related structures, see: Dalpozzo *et al.* (2001); Madre *et al.* (2008).

Experimental

Crystal data C₁₁H₁₈N₄O₂

 $M_r = 238.29$

Monoclinic, $P2_1/c$ a = 13.5607 (7) Å b = 7.7868 (4) Å c = 13.1323 (7) Å $\beta = 114.907$ (3)° V = 1257.72 (11) Å ³	Z = 4 Mo K α radiation $\mu = 0.09 \text{ mm}^{-1}$ T = 173 K $0.29 \times 0.25 \times 0.11 \text{ mm}$
Data collection Bruker APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T _{min} = 0.975, T _{max} = 0.990	11979 measured reflections 3093 independent reflections 2390 reflections with $I > 2\sigma(I)$ $R_{int} = 0.031$
Refinement	
$R[F^2 > 2\sigma(F^2)] = 0.048$	160 parameters
$wR(F^{2}) = 0.146$	H-atom parameters constrained

Table 1

S = 1.05

3093 reflections

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C5-H5C\cdots O2^i$	0.98	2.60	3.549 (2)	163
$C10-H10C\cdots O2^{ii}$	0.98	2.51	3.431 (2)	157
		1.1.(")	. 3 . 1	

 $\Delta \rho_{\rm max} = 0.27 \text{ e } \text{\AA}^-$

 $\Delta \rho_{\rm min} = -0.26$ e Å⁻³

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) x, $-y + \frac{3}{2}$, $z + \frac{1}{2}$.

Data collection: *APEX2* (Bruker, 2006); cell refinement: *SAINT* (Bruker, 2006); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL* and *DIAMOND* (Brandenburg, 1998); software used to prepare material for publication: *SHELXTL*.

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (No. 2010–0016386).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ5033).

References

Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany. Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Dalpozzo, R., Nino, A. D., Maiuolo, L., Procopio, A., Munno, G. D. & Sindona, G. (2001). *Tetrahedron*, **57**, 4035–4038.

Madre, M., Petrova, M. & Belyakov, S. (2008). Synthesis, 19, 3053-3060.

Pirisi, F. M., Cabras, P., Garau, V. L., Melis, M. & Secchi, E. (1996). J. Agric. Food Chem. 44, 2417–2422.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

Acta Cryst. (2010). E66, o1998 [doi:10.1107/S160053681002684X]

Pirimicarb: 2-dimethylamino-5,6-dimethylpyrimidin-4-yl dimethylcarbamate

H. Yang, T. H. Kim, Y. W. Shin, K.-M. Park and J. Kim

Comment

Pirimicarb (systematic name: 2-dimethylamino-5,6-dimethylpyrimidin-4-yl dimethylcarbamate), is a well known insecticide used to control aphids on vegetable, cereal and orchard crops by inhibiting acetylcholinesterase activity (Pirisi *et al.*, 1996). However it's crystal structure has not been reported yet.

In the title compound (Scheme 1, Fig.1), the pyrimidyl ring and dimethylamino group lie in the same plane with a dihedral angle of 1.6 (1)°. This coplanarity may be assisted by the conjugation of π -electrons between pyrimidyl group and nitrogen atom of dimethylamino group. The dihedral angle between the mean plane of the pyrimidyl ring(C1/N1/C2/N2/C3/C4) and the mean plane of the carbamate (O1/O2/C9/N4) is 83.42 (5)° (Fig.1). All bond lengths and bond angles are normal and comparable to those observed in similar structures (Dalpozzo *et al.*, 2001; Madre *et al.*, 2008).

In the crystal structure, weak C—H···O hydrogen bonds are observed [C5—H5C···O2; H5C···O2 = 2.60 Å; C5—H5C···O2 = 163°; C5···O2 = 3.549 (2) Å; -x + 1, -y + 1, -z + 1 and C10—H10C···O2; H10C···O2 = 2.51 Å; C10—H10C···O2 = 157°; C10···O2 = 3.431 (2) Å; x, -y + 3/2, z + 1/2] (Fig. 2).

Experimental

The title compound was purchased from the Dr. Ehrenstorfer GmbH Company. Slow evaporation of a solution in CH_2Cl_2 gave single crystals suitable for X-ray analysis.

Refinement

All H-atoms were positioned geometrically and refined using a riding model with d(C-H) = 0.98 Å, $U_{iso} = 1.5U_{eq}(C)$ for the H atoms of the methyl groups.

Figures

Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids drawn at the 50% probability level.

Fig. 2. Crystal packing of the title compound with hydrogen bonds shown as dashed lines. H atoms not involved in intermolecular interactions have been omitted for clarity.

2-dimethylamino-5,6-dimethylpyrimidin-4-yl N,N-dimethylcarbamate

F(000) = 512 $D_{\rm x} = 1.258 {\rm Mg m}^{-3}$

 $\theta = 3.1 - 28.1^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ *T* = 173 K Block, colorless $0.29 \times 0.25 \times 0.11 \text{ mm}$

Mo *K* α radiation, $\lambda = 0.71073$ Å Cell parameters from 3964 reflections

$C_{11}H_{18}N_4O_2$
$M_r = 238.29$
Monoclinic, $P2_1/c$
Hall symbol: -P 2ybc
a = 13.5607 (7) Å
<i>b</i> = 7.7868 (4) Å
c = 13.1323 (7) Å
$\beta = 114.907 (3)^{\circ}$
$V = 1257.72 (11) \text{ Å}^3$
Z = 4

Data co

Data collection	
Bruker APEXII CCD diffractometer	3093 independent reflections
Radiation source: fine-focus sealed tube	2390 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.031$
Detector resolution: 10.0 pixels mm ⁻¹	$\theta_{\text{max}} = 28.3^{\circ}, \ \theta_{\text{min}} = 1.7^{\circ}$
ϕ and ω scans	$h = -17 \rightarrow 18$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$k = -10 \rightarrow 10$
$T_{\min} = 0.975, T_{\max} = 0.990$	$l = -15 \rightarrow 17$
11979 measured reflections	

Refinement

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H-atom parameters constrained
$w = 1/[\sigma^2(F_o^2) + (0.0757P)^2 + 0.3375P]$ where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} = 0.001$
$\Delta \rho_{max} = 0.27 \text{ e} \text{ Å}^{-3}$
$\Delta \rho_{min} = -0.26 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	0.24024 (9)	0.53521 (13)	0.53519 (9)	0.0354 (3)
02	0.32335 (9)	0.74531 (13)	0.48118 (9)	0.0370 (3)
N1	0.14628 (10)	0.43992 (15)	0.35622 (10)	0.0312 (3)
N2	0.22281 (10)	0.23436 (15)	0.27478 (10)	0.0294 (3)
N3	0.05012 (11)	0.34353 (18)	0.17468 (11)	0.0402 (3)
N4	0.27470 (12)	0.78741 (17)	0.62525 (11)	0.0385 (3)
C1	0.23902 (12)	0.43542 (17)	0.44613 (12)	0.0293 (3)
C2	0.14204 (11)	0.33785 (18)	0.27129 (12)	0.0296 (3)
C3	0.31494 (11)	0.23573 (17)	0.36835 (12)	0.0287 (3)
C4	0.32953 (12)	0.33878 (18)	0.46103 (12)	0.0302 (3)
C5	0.40316 (13)	0.1190 (2)	0.36877 (15)	0.0417 (4)
H5A	0.3872	0.0846	0.2916	0.063*
H5B	0.4068	0.0166	0.4137	0.063*
H5C	0.4730	0.1794	0.4013	0.063*
C6	0.43355 (14)	0.3450 (2)	0.56746 (13)	0.0416 (4)
H6A	0.4265	0.2707	0.6243	0.062*
H6B	0.4474	0.4632	0.5955	0.062*
H6C	0.4942	0.3049	0.5516	0.062*
C7	0.03605 (14)	0.2330 (2)	0.08023 (14)	0.0444 (4)
H7A	-0.0065	0.1316	0.0811	0.067*
H7B	0.1074	0.1967	0.0861	0.067*
H7C	-0.0023	0.2961	0.0099	0.067*
C8	-0.04504 (14)	0.4381 (3)	0.16659 (16)	0.0493 (4)
H8A	-0.0234	0.5248	0.2262	0.074*
H8B	-0.0972	0.3587	0.1749	0.074*
H8C	-0.0788	0.4948	0.0932	0.074*
C9	0.28291 (11)	0.69672 (18)	0.54274 (11)	0.0292 (3)
C10	0.22081 (15)	0.7283 (2)	0.69413 (14)	0.0451 (4)
H10A	0.2093	0.6039	0.6851	0.068*
H10B	0.1505	0.7863	0.6705	0.068*
H10C	0.2664	0.7548	0.7731	0.068*
C11	0.31354 (17)	0.9642 (2)	0.64121 (17)	0.0536 (5)
H11A	0.3535	0.9857	0.5953	0.080*

supplementary materials

H11B	0.3618	0.9830	0.7205	0.080*
H11C	0.2514	1.0427	0.6185	0.080*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0517 (7)	0.0303 (5)	0.0323 (6)	-0.0064 (4)	0.0258 (5)	-0.0063 (4)
O2	0.0458 (6)	0.0318 (5)	0.0394 (6)	-0.0063 (4)	0.0236 (5)	-0.0044 (4)
N1	0.0350 (6)	0.0273 (6)	0.0343 (7)	-0.0024 (5)	0.0174 (5)	-0.0023 (5)
N2	0.0350 (6)	0.0252 (6)	0.0289 (6)	-0.0022 (5)	0.0145 (5)	-0.0024 (5)
N3	0.0341 (7)	0.0422 (7)	0.0370 (7)	-0.0009 (6)	0.0078 (6)	-0.0073 (6)
N4	0.0487 (8)	0.0343 (7)	0.0350 (7)	0.0003 (6)	0.0200 (6)	-0.0089 (5)
C1	0.0415 (8)	0.0230 (6)	0.0286 (7)	-0.0063 (5)	0.0199 (6)	-0.0022 (5)
C2	0.0327 (7)	0.0258 (6)	0.0315 (7)	-0.0052 (5)	0.0148 (6)	-0.0007 (5)
C3	0.0348 (7)	0.0228 (6)	0.0301 (7)	-0.0024 (5)	0.0151 (6)	0.0010 (5)
C4	0.0371 (7)	0.0259 (7)	0.0275 (7)	-0.0026 (5)	0.0135 (6)	-0.0004 (5)
C5	0.0403 (8)	0.0411 (9)	0.0411 (9)	0.0074 (7)	0.0146 (7)	-0.0054 (7)
C6	0.0461 (9)	0.0405 (8)	0.0305 (8)	0.0011 (7)	0.0088 (7)	-0.0018 (7)
C7	0.0426 (9)	0.0520 (10)	0.0332 (8)	-0.0093 (8)	0.0107 (7)	-0.0084 (7)
C8	0.0358 (9)	0.0564 (11)	0.0496 (10)	0.0051 (7)	0.0120 (8)	0.0006 (8)
C9	0.0311 (7)	0.0275 (7)	0.0259 (7)	0.0024 (5)	0.0090 (6)	-0.0015 (5)
C10	0.0606 (11)	0.0501 (10)	0.0299 (8)	0.0136 (8)	0.0242 (8)	-0.0006 (7)
C11	0.0651 (12)	0.0372 (9)	0.0581 (11)	-0.0025 (8)	0.0257 (10)	-0.0191 (8)

Geometric parameters (Å, °)

O1—C9	1.3704 (18)	С5—Н5В	0.9800
O1—C1	1.3985 (16)	C5—H5C	0.9800
O2—C9	1.2128 (18)	С6—Н6А	0.9800
N1—C1	1.3138 (19)	С6—Н6В	0.9800
N1—C2	1.3510 (18)	С6—Н6С	0.9800
N2—C3	1.3333 (19)	С7—Н7А	0.9800
N2—C2	1.3449 (19)	С7—Н7В	0.9800
N3—C2	1.3540 (19)	С7—Н7С	0.9800
N3—C8	1.450 (2)	C8—H8A	0.9800
N3—C7	1.455 (2)	С8—Н8В	0.9800
N4—C9	1.3367 (19)	C8—H8C	0.9800
N4—C10	1.456 (2)	C10—H10A	0.9800
N4—C11	1.457 (2)	C10—H10B	0.9800
C1—C4	1.381 (2)	C10—H10C	0.9800
C3—C4	1.401 (2)	C11—H11A	0.9800
C3—C5	1.501 (2)	C11—H11B	0.9800
C4—C6	1.512 (2)	C11—H11C	0.9800
С5—Н5А	0.9800		
C9—O1—C1	115.24 (11)	С4—С6—Н6С	109.5
C1—N1—C2	114.71 (12)	Н6А—С6—Н6С	109.5
C3—N2—C2	117.40 (12)	H6B—C6—H6C	109.5
C2—N3—C8	121.66 (14)	N3—C7—H7A	109.5

C2—N3—C7	121.19 (13)	N3—C7—H7B	109.5
C8—N3—C7	116.42 (13)	H7A—C7—H7B	109.5
C9—N4—C10	124.84 (14)	N3—C7—H7C	109.5
C9—N4—C11	117.86 (14)	H7A—C7—H7C	109.5
C10—N4—C11	117.05 (14)	Н7В—С7—Н7С	109.5
N1—C1—C4	126.79 (13)	N3—C8—H8A	109.5
N1—C1—O1	113.98 (13)	N3—C8—H8B	109.5
C4—C1—O1	119.16 (13)	H8A—C8—H8B	109.5
N2-C2-N1	124.99 (13)	N3—C8—H8C	109.5
N2—C2—N3	117.82 (13)	H8A—C8—H8C	109.5
N1—C2—N3	117.17 (13)	H8B—C8—H8C	109.5
N2—C3—C4	122.69 (13)	O2—C9—N4	126.22 (14)
N2—C3—C5	115.77 (13)	O2—C9—O1	122.26 (12)
C4—C3—C5	121.55 (13)	N4—C9—O1	111.52 (13)
C1—C4—C3	113.39 (13)	N4	109.5
C1—C4—C6	122.76 (13)	N4	109.5
C3—C4—C6	123.85 (14)	H10A-C10-H10B	109.5
С3—С5—Н5А	109.5	N4—C10—H10C	109.5
С3—С5—Н5В	109.5	H10A-C10-H10C	109.5
H5A—C5—H5B	109.5	H10B-C10-H10C	109.5
С3—С5—Н5С	109.5	N4—C11—H11A	109.5
H5A—C5—H5C	109.5	N4—C11—H11B	109.5
H5B—C5—H5C	109.5	H11A—C11—H11B	109.5
С4—С6—Н6А	109.5	N4—C11—H11C	109.5
C4—C6—H6B	109.5	H11A—C11—H11C	109.5
H6A—C6—H6B	109.5	H11B—C11—H11C	109.5
C2—N1—C1—C4	0.0 (2)	N1—C1—C4—C3	-1.1 (2)
C2—N1—C1—O1	-177.02 (11)	O1—C1—C4—C3	175.74 (11)
C9—O1—C1—N1	-95.73 (15)	N1-C1-C4-C6	178.91 (14)
C9—O1—C1—C4	87.02 (16)	O1—C1—C4—C6	-4.2 (2)
C3—N2—C2—N1	-1.6 (2)	N2-C3-C4-C1	1.0 (2)
C3—N2—C2—N3	176.89 (13)	C5—C3—C4—C1	-178.95 (13)
C1—N1—C2—N2	1.5 (2)	N2-C3-C4-C6	-179.06 (14)
C1—N1—C2—N3	-177.02 (13)	C5—C3—C4—C6	1.0 (2)
C8—N3—C2—N2	173.88 (15)	C10—N4—C9—O2	176.80 (15)
C7—N3—C2—N2	4.0 (2)	C11—N4—C9—O2	2.7 (2)
C8—N3—C2—N1	-7.5 (2)	C10—N4—C9—O1	-3.9 (2)
C7—N3—C2—N1	-177.33 (13)	C11—N4—C9—O1	-178.05 (14)
C2—N2—C3—C4	0.3 (2)	C1—O1—C9—O2	-4.7 (2)
C2—N2—C3—C5	-179.80 (13)	C1—O1—C9—N4	175.97 (12)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D\!\!-\!\!\mathrm{H}^{\ldots}\!\!\cdot\!\!\cdot$	
C5—H5C···O2 ⁱ	0.98	2.60	3.549 (2)	163.	
C10—H10C···O2 ⁱⁱ	0.98	2.51	3.431 (2)	157.	
Symmetry codes: (i) $-x+1$, $-y+1$, $-z+1$; (ii) x , $-y+3/2$, $z+1/2$.					

Fig. 2