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Tomographic reconstruction 
from planar thermal imaging using 
convolutional neural network
Daniel Ledwon*, Agata Sage, Jan Juszczyk, Marcin Rudzki & Pawel Badura

In this study, we investigate perspectives for thermal tomography based on planar infrared thermal 
images. Volumetric reconstruction of temperature distribution inside an object is hardly applicable in 
a way similar to ionizing-radiation-based modalities due to its non-penetrating character. Here, we 
aim at employing the autoencoder deep neural network to collect knowledge on the single-source 
heat transfer model. For that purpose, we prepare a series of synthetic 3D models of a cylindrical 
phantom with assumed thermal properties with various heat source locations, captured at different 
times. A set of planar thermal images taken around the model is subjected to initial backprojection 
reconstruction, then passed to the deep model. This paper reports the training and testing results in 
terms of five metrics assessing spatial similarity between volumetric models, signal-to-noise ratio, 
or heat source location accuracy. We also evaluate the assumptions of the synthetic model with an 
experiment involving thermal imaging of a real object (pork) and a single heat source. For validation, 
we investigate objects with multiple heat sources of a random location and temperature. Our results 
show the capability of a deep model to reconstruct the temperature distribution inside the object.

The local imbalances in body temperature frequently indicate various medical disorders. Changes observed in 
skin surface temperature may signal physiological mechanisms leading to deviations from homeostasis, including 
tumors, injuries, inflammations in underlying tissues, or abnormalities in blood  circulation1. Infrared thermal 
(IR) images can reflect abnormal heat distribution related to pathologies. So far, the most popular form of medi-
cal thermal imaging is the two-dimensional  approach2. The images reflect the temperature distribution on a 
surface, hence only rough localization of the heat source is possible. The effects observable in thermal imaging 
result from complex metabolic processes associated with heat generation, so the 2D approach brings only limited 
information. Extending the conventional thermal imaging with the information related to internal and spatial 
heat distribution can support the medical diagnosis. That leads us to the concept of 3D thermal tomography for 
the development of non-invasive imaging.

Heat transfer within living tissues constitutes a complex process. The intricacy comes from considering vari-
ous biological aspects (blood perfusion, metabolism, etc.) required to describe the issue accurately. Researchers 
proposed several bioheat transfer  models3,4. The Pennes bioheat equation is one of the best known and most 
common approaches to present the temperature distribution of a tissue as a function of metabolic and blood 
perfusion  rate4–6. It considers multiple parameters, e.g., the mass density, thermal conductivity of the tissue, blood 
density, specific heat, or perfusion rate. Various types of testing phantoms have been employed by heat distribu-
tion research. Depending on the scientific purposes, they differ in materials, dimensions, and shapes. Researchers 
willingly use cylindrical models, especially for preliminary studies, due to their noncomplex  structure7–9. Sadeghi 
et al.7 reported the use of a cylindrical container filled with temperature-controllable gel placed on a heating plate. 
However, the authors presented only practical experiments, while they ignored mathematical modeling. Lim 
et al.8 also employed the cylinder-shaped model, and the mathematical calculations involved the Pennes equa-
tion. They used temperature distribution to demonstrate thermal treatment effects of electromagnetic focusing 
gained with a phase compensation technique for microwave hyperthermia systems. The cylindrical phantom 
and Pennes bioheat equation were also used by Kim et al.9. The authors proposed a dual-purpose patch antenna 
for MRI imaging and RF heating hyperthermia and evaluated the temperature distribution during their setup.

3D thermal imaging techniques described in the literature generally embrace three categories: (1) combina-
tion of 2D IR imaging and depth  data10–14, (2) reconstruction based on sensors attached to the object  surface15, 
and (3) reconstruction from a series of 2D IR images (thermal tomography)16,17. The first group returns the 
spatial shape and surface temperature distribution, while the other two address the temperature distribution 
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within the object. Landmann et al.10 reported a method that combined 2D IR data and depth data in the form of 
a high-speed acquisition tool constructed of the light sensor and long-wave IR camera. The system returns a 3D 
model with temperature data on its surface. A similar approach, merging thermal and depth data, was described 
by Chromy and  Zalud11. The proposed RoScan consisted of an IR camera, a color camera, and a laser scanner. 
Schollemann et al.12 involved a similar idea, yet 3D computed tomography volume constituted the depth data. 
Chen et al.13 proposed a 3D IR imaging approach for power systems evaluation using a series of 2D IR images 
acquired around the enclosed heat source. The technique employed the intersection method to reconstruct 
volumetric temperature data of an object.

A significant advantage of the third group of studies can be found in employing only the data generated 
by IR cameras. This paper falls into this category, in which only individual studies have been reported so far. 
Koutsantonis et al.16 presented a tomographic image reconstruction method in IR tomography, called RISE 
(Reconstructed Image from Simulations Ensemble), combining statistical physics concepts and Monte Carlo 
methods. The goal was to extract the physical parameters of an object and simulate a pack of image configura-
tions corresponding to a tomographic problem solution. The process was evaluated using a simulated dataset and 
experimental data obtained from a thermal phantom. The method showed increased quality than two reference 
reconstruction methods: algebraic reconstruction technique (ART)18 and maximum-likelihood expectation-
maximization (MLEM)19. However, the phantom medium employed in this study differs from the human body 
tissue in terms of absorbance. Sage et al.17 reported preliminary results on 3D thermal reconstruction from a 
series of 2D IR images for medical purposes. The reconstruction involved a backprojection method over an aga-
rose phantom. The initial effects indicated the ability to distinguish areas of abnormal temperature distribution 
that correspond to the actual location of the heat source.

This study is a development of our research from Sage et al.17. For thermal tomography purposes, we employed 
deep learning. The capability of deep learning applied to different kinds of medical image processing and analysis 
has been a major issue in the last decade in terms of, e.g., image classification, object detection, semantic seg-
mentation, or  registration20. A review by Ben Yedder et al.21 lists several methods designed for medical image 
reconstruction using deep neural networks, yet none of them addresses IR imaging. The convolutional neural 
networks (CNN) application scope broadens rapidly, also in terms of the input image shape and size. The original 
works and models were designed for 2D images. Yet, with the consistent development of both hardware resources 
and implementation concepts also the analysis of 3D structures became applicable in a reasonable time. CNNs 
have increased attention in the field of medical image processing as the models constitute a fusion of deep learn-
ing and image processing  methods22. The presence of convolutional layers enables the extraction of features from 
the image. The spatial relations are crucial for complete image understanding, and the CNN preserves them. 
Additionally, pooling layers guarantee the elimination of irrelevant features, hence the number of trainable 
parameters and computation power requirements decrease. CNNs support the control of possible overfitting 
and secure invariance to local  translation22–24. For all those reasons, CNN appears as a suitable approach for 
infrared image  processing25. Several studies reported the employment of recurrent neural networks (RNN) for 
image operations, including segmentation and  classification26–28. However, their main application fields are text 
and audio processing. In contrast to CNN, the RNN primarily operates on sequential (time-domain) data. It is 
also considered sensitive to the exploding or vanishing gradient problems, and the extraction of image features is 
more robust in  CNNs26,28. Here, we design and train a deep model (CNN) analyzing an input volume containing 
initial tomographic reconstruction from planar thermal images.

This paper concisely presents the novel concept of CNN-based thermal tomography and the experimental 
setup in both synthetic and real data with single or multiple heat sources. The original contribution brought by 
the study can be found in: (1) the employment of deep learning into the field of thermal tomography, (2) inves-
tigating the ability to reconstruct the heat distribution from planar thermal images, and (3) supporting synthetic 
design and validation of the model with the experimental setup involving a real object (pork) heated from a single 
source. We also assess reconstruction performance using benchmark metrics. Our results prove the capability of 
a deep model to reflect the temperature distribution inside the object and set the starting point for further devel-
opment of the method. We expect the knowledge-based model designed and trained for thermal tomography to 
make an essential contribution to artificial intelligence-based computer-aided diagnosis and decision-making.

The materials and methods are described in “Materials and methods” section, including generation and 
validation of the synthetic data and specification of our deep model for thermal reconstruction. “Results” sec-
tion presents a series of experiments over both synthetic and real data. The results and perspectives for artificial 
intelligence-based thermal tomography are discussed in “Discussion” section. “Conclusion” section concludes 
the study.

Materials and methods
Synthetic dataset. The synthetic dataset was prepared using a computer simulation using MATLAB Par-
tial Differential Equation Toolbox with the general formula:

where T is the temperature, k—the thermal conductivity, ρ—the mass density, Cp denotes the specific heat, and f 
is the heat generated inside the object ( f = 0 in our case). We created a 3D cylindrical phantom with a diameter 
of 10 cm and a height of 5 cm using  Blender29 software (V2.93 Blender Foundation, https:// www. blend er. org/) 
and exported it to the .stl file (Fig. 1a). The heat source was a 0.5 cm diameter sphere with a variable location 
inside the phantom. The distance d of the heat source center from the phantom axis toward the side wall varied 

(1)ρCp
dT

dt
−∇ · (k∇T) = f ,

https://www.blender.org/
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from 0.5 to 4.5 cm with a step of 0.5 cm. The same range was used to change the height h at which the heat source 
was placed. This allowed for 81 unique combinations of object locations within the phantom.

Prepared models of the phantom and source geometry were used in heat transfer  analysis30. For the phantom 
interior, we set the thermal properties comparable to muscle  tissue31. The exact values are given in Table 1. Instead 
of providing the heat source explicitly, we used the Dirichlet boundary condition with a constant temperature 
of 50◦ C on the source surface during the transient analysis. In each case, the initial temperature of the phantom 
was 20◦ C. The same value of ambient temperature and the radiation emissivity coefficient of 0.95 served as the 
boundary conditions for the phantom surface. Minkina and  Dudzik32 have shown that two main quantities can 
significantly influence temperature measurement errors: object emissivity and ambient temperature, while other 
parameters under consideration: relative humidity, camera-to-object distance, and atmospheric temperature, do 
not contribute to the error. We treated the initial temperature as a reference and modeled the heat distribution 
in a differential manner ( �T in relation to 20◦C). For high thermal contrast, the source temperature during the 
simulation was 50◦ C ( �T = 30◦C). We prepared several states of the model that resemble the heat distribu-
tion. The states were captured in 5-minute intervals from the 15th to the 60th minute from the beginning of the 
simulation (Fig. 1b, c). Hence, the synthetic database contained a total of 810 unique thermal models.

For the mesh independence study, we verified a sequence of maximum mesh edge lengths from 5 cm down to 
4 mm (descending order). The assumed model geometry produced meshes consisting of ca. 500 to 75,000 nodes. 
To assess the mesh, we measured the maximum temperature Tmax in the object surface nodes in the 60th minute. 
Figure 2 presents the results of two experiments with various heat source locations (d = 0.5 and 2.5 cm; h = 2.5 
cm in both cases). Since the 0.1% change is considered a reliable indicator of the mesh  independence33,34, we set 
the maximum mesh edge length to 0.5 cm in our study, obtaining ca. 40,000 nodes. That gave us sufficient reso-
lution to produce projections of acceptable quality, comparable to the actual measurements with an IR camera. 
Denser mesh significantly increased the time consumption with a negligible impact on the quality of the model.

We also validated the simulation for conformity with the theoretical heat transfer. We used the general heat 
conduction equation (1) for transient problems in a 3D space to calculate the analytical solution. Like in our 

Figure 1.  Illustration of the synthetic dataset generation from a cylindrical phantom.

Table 1.  Thermal properties of muscle tissue used in phantom heat transfer simulation.

Parameter Symbol Value Unit

Thermal conductivity k 0.49 W/(m ◦C)

Mass density ̺ 1103 kg/m3

Specific heat Cp 3322 J/(kg ◦C)
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simulation, we assumed a homogeneous and isotropic object with a constant thermal conductivity k. Considering 
our phantom geometry, we used the heat conduction equation in a 3D cylindrical coordinate  system35:

where r, z, φ are cylindrical coordinates (Fig. 3a), and α =
k

ρCp
 is the thermal diffusivity. For simplicity, we placed 

our spherical heat source in the middle of the cylinder ( d = 0 , h = 2.5 cm), so the temperature distribution does 
not depend on the φ angle. Moreover, f = 0 , as we model the heat source surface by the Dirichlet boundary 
condition. Therefore, Eq. (2) takes the form:

The outer boundary condition on the cylinder surface is defined in the radiation terms:

where ε denotes the radiation emissivity coefficient, σ—the Stefan–Boltzmann constant, −→n  is a vector normal to 
the surface, and T∞ is the ambient temperature. We solved Eq. (3) using a forward-time central-space (FTCS) 
 scheme36 with appropriate space and time resolution to secure stability. Then, we compared the result with the 
corresponding simulation obtained from the finite element method using Matlab PDE  Toolbox37,38. Figure 3b 
presents the temperature distribution on the cylinder radius on the heat source height ( z = h = 2.5 cm, red pro-
file in Fig. 3a). The results are compliant, and the temperature differences decrease when nearing the surface. We 
also measured the maximum temperature on the cylinder surface after 1 hour of heating, obtaining the 0.07◦ C 
difference between the simulation and theoretical calculations.
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Figure 2.  Maximum temperature of the model surface Tmax vs. the number of nodes in the mesh independence 
study. (a) shows the absolute relative changes of Tmax from (b) in subsequent mesh sizes. The dashed line shows 
the 0.1% level in (a).

Figure 3.  Validation of the model: illustration of the setup in the cylindrical coordinate system (a) and 
temperature distribution on the cylinder radius originating in the heat source center (red profile in (b), 
z = h = 2.5 cm) (b).
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Planar thermal images and initial tomographic reconstruction. The initial reconstruction process 
employed a series of 2D thermal images composed of synthetically generated data (Fig. 1c). The camera rotat-
ing around the object allows for observing temperature distribution on the surface at various angles (360 views 
with a 1 ◦ resolution). To obtain individual reconstructions of 2D sections, we employed the backprojection 
 algorithm39. In the backprojection reconstruction, each pixel placed at the orientation of a given projection takes 
a measured projection value. The process repeats for the entire set of angles, and values of corresponding pixels 
are summed. Finally, the result is divided by the total number of projections. A stack of properly arranged 2D 
slices finally constructs a 3D volume.

Due to the specifics of infrared radiation, 3D thermal volumes generated using the considered method require 
further processing to achieve final reconstruction. Areas of increased temperature are located close to the edges 
of the phantom, so volumetric temperature data is not reliable. Hence, the next stage employs deep learning to 
improve the accuracy of heat distribution reconstruction within a given medium.

Convolutional neural network for thermal model reconstruction. To reconstruct the temperature 
distribution, we designed a deep convolutional network of an autoencoder architecture (Fig. 4). The input layer 
accepts a 100×100× 50 volume, padded with zeros to fit the 128×128× 50 size. The encoder path consists of four 
processing blocks. Each involves a 2D convolutional layer (32, 64, 128, 256 filters, 3 × 3 kernel) followed by batch 
normalization, leaky rectified linear unit (ReLU), and max pooling (2× 2 stride). The decoder path involves four 
segments, each performing transposed convolutions (256, 128, 64, and 32 filters, respectively, 3 × 3 kernel, 2 × 2 
stride), batch normalization, and leaky ReLU activation. The reconstruction produces a 100×100× 50 volume of 
thermal tomography data.

The network was trained using the adaptive moment estimation (Adam) optimizer. We randomly partitioned 
the database of 810 original volumes into the training, validation, and test subsets with an 80%:10%:10% ratio. 
To extend the database and increase generalization capabilities, we applied data augmentation in each training 
epoch by rotating every 3D volume by ten random angles in the axial plane. Hence, a single training sample 
yielded ten rotated images per epoch. The batch size was set to 32, and the maximum number of epochs to 500. 
We set both parameters experimentally to gain the highest efficiency and maintain low computational time.

Evaluation metrics. To assess our framework, we employed several well established metrics. Three were 
taken from Koutsantonis et al.16: normalized mean square error (NMSE), correlation coefficient (CC), being a 
spatial similarity measure between two images, and peak signal-to-noise ratio (PSNR). From Wang et al.40, we 
adopted the structural similarity index (SSIM).

Finally, we propose a measure for heat source location error (HSLE). It is defined as a distance in millimeters 
between the reference and the reconstructed heat source midpoint.

Figure 4.  General scheme of the CNN model for thermal model reconstruction.
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Results
Tests over a synthetic dataset. The original test set coming from a partition described in “Materials 
and methods” section consisted of 81 unique cases. To extend the testing experiment, we rotated each volume 
nine times around the main axis with a 36◦ increment (the α angle). This yielded a set of 810 unique test cases. 
Full testing results are given in Table 2. Figure 5 presents selected visualizations, including the worst-case and 
best-case reconstructions in terms of NMSE. For best-case recostruction visualization see also Supplementary 
Video S1.

We also estimated the reconstruction time. Most of the time was consumed by the backprojection (113 s per 
case). The thermal reconstruction using a trained deep model took 0.015 s per case. The tests were performed on 

Table 2.  Summary of testing the method over a synthetic dataset.

Metrics Mean ± std. dev. Median (25–75 percentile)

NMSE 0.036 ± 0.049 0.021 (0.013–0.035)

CC 0.981 ± 0.026 0.989 (0.981–0.993)

PSNR 43.135 ± 3.386 43.239 (40.856–45.556)

SSIM 0.748 ± 0.114 0.790 (0.697–0.826)

HSLE 1.398 ± 1.146 0.967 (0.689–1.592)

Figure 5.  Visualization of the reconstruction results. Top to bottom in each subplot with projections: 
backprojection slices, final tomographic reconstruction slices, ground-truth slices, the difference between the 
reconstruction and ground truth (reconstruction error). In each case, the central column contains the heat 
source center. The location (height) of each slice is given above the column. Volumetric visualization of the 
reconstruction outcome is given in (a) (see Supplementary Video S1).
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a workstation running a 64-bit Windows 10 operating system with an Intel Core i7-8750H CPU, 16 GB DDR4 
RAM, and GeForce GTX 1060 GPU with 1280 CUDA cores and 6 GB GDDR5 RAM.

Experimental validation of the model. We numerically evaluated the assumptions for our model in two 
experiments involving pork meat of approximately known thermal properties (Table 1). The meat used in the 
experiments was in no way related to the animal experiments and did not require the approval of the bioethics 
committee.

In the first experiment, we used a ca. 0.6 kg pork loin with a resistive heater placed inside (Fig. 6a) at about 3 
cm distance from the front (flat side). The measurement stand was surrounded by foam to limit the influence of 
the surroundings. The heater (a cement 39 � , 10 W resistor with external package dimensions of 10× 12× 32 
mm) was supplied using a regulated power source. A thermocouple-based digital thermometer controlled its 
temperature to be 50◦ C. During heating, we acquired multiple static thermal images of the front of the loin. 
Figure 6b presents the thermal map obtained at the front after 55 min of the experiment. The corresponding heat 
map from our numerical model is shown in Fig. 6d. Figure 6c compares the simulated (red) and actual (blue) 
maximum temperature on the front of the loin.

The second experiment involved pork cut in a cylinder with a ca. 10 cm diameter and 5 cm height (Fig. 7a). 
The meat was placed on a rotary table with markings every 10◦ . The same resistive heater was controlled by an 
Arduino-based temperature controller, battery-powered, and placed under the model to enable a free rotation of 
the stand. The heater temperature was first stabilized at 50◦ C and then inserted from the bottom into the meat 
cylinder about d = 15 mm from the central axis. Then, after 15, 25, 35, 45, and 55 minwe rotated the table and 
captured a full set of 2D thermal images every 10◦ . Figure 7b and c present the example reconstruction in the 

Figure 6.  Model evaluation (experiment #1) using a pork loin (a), the obtained heat map (b), and heat map 
from the numerical model (d) on the front of the loin. The chart (c) shows the actual an simulated maximum 
temperature (front of the loin).

Figure 7.  Model evaluation (experiment #2): the cylindrical pork object (a), backprojection (b) and 
reconstruction results (c).
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55th minute through backprojection and by our trained model, respectively. In the simulation, the maximum 
temperature T = 48.31◦ C ( �T = 30.31◦ C) was detected d = 5 mm from the axis, at h = 5 mm.

Experiments with low-temperature heat sources. After verifying our original assumptions over a 
synthetic dataset and a real object, we prepared additional experiments to check the method’s capability to 
handle lower temperature differences. The experiments refer to the original setup described in “Materials and 
methods” section and “Tests over a synthetic dataset” section in terms of both materials and methods. All modi-
fications are depicted in the following sections.

Single heat source. First, we took synthetic phantoms with all 81 unique locations of the heat source (“Synthetic 
dataset” section) and set five different temperatures to produce �T = 1, 2, 3, 4, 5◦ C (405 cases). Those relative 
temperatures can be considered low compared to the original value of �T = 30◦ C. During training, we again 
additionally rotated the phantoms with a 36◦ increment to produce 4050 unique cases. This time, we generated 
a single thermal state per case in terms of heating time. Moreover, since the temperature difference was low, the 
heat distribution was prepared after 300 min of heating. The validation results are shown in Table 3 using the 
same metrics as before.

Multiple heat sources. Finally, we extended the low-teperature heat distribution investigation by involving mul-
tiple heat sources per phantom. For that purpose, we produced 1000 phantoms with random arrangements of 
1–5 heat sources, each of a random 1–5◦ C temperature. In each case, the minimum distance between the centers 
of any two sources was 10 mm (5 mm between their surfaces). Again, we captured a single heat distribution per 
phantom after 300 min. The validation results of our deep model are presented in the left part of Table 4. We did 
not determine the HSLE in this case, as it is a metrics designed for single-source setups.

We also verified the multi-source setup using the extended deep model. One processing block was added 
to both encoder and decoder in the rightmost part form Fig. 4. The five-block encoder produces the 4 ×4×512 
volume (Fig. 8). The results in the right part of Table 4 show the improvement brought by deepening the network. 
Figure 9 presents the visualization of the best-case reconstructions in terms of NMSE (see also Supplementary 
Video S2).

Discussion
The employment of deep learning to 3D tomographic reconstruction from planar thermal images has been the 
central concept of our study. The results we present support this idea. We started our research  in17 with the use 
of backprojection reconstruction over a heated phantom and 2D IR images of a relatively low resolution (36 
images with a 10◦ step). Since the IR radiation is not as penetrating as the ionizing one used in, e.g., computed 
tomography or SPECT, the backprojection has a limited utility. That brought the idea of training a deep model 
over a series of synthetic data of known properties and heat distributions. Evaluation of the trained model over 
a synthetic dataset produced at least satisfactory results with low error measures and high spatial similarity 
between the ground truth and the reconstructed heat distributions.

In all previous studies on thermal tomography, the shape of an object was simplified to a cylindrical  form13,15,16. 
We used the same approach here, but the proposed method itself does not have to be limited to one shape. We 
can prepare synthetic data from any model with specific thermal properties for the training process. Compared 
to Koutsantonis et al.16, our original idea involves a single heat source with a sphere geometry. Contrary to 
 RISE16, our results take into account distinct thermal contrast resulting from simulation with varying heating 

Table 3.  Summary of testing the method over a synthetic dataset with a single low-temperature heat source.

Metrics Mean ± std. dev. Median (25–75 percentile)

NMSE 0.019 ± 0.010 0.016 (0.012–0.023)

CC 0.978 ± 0.011 0.981 (0.971–0.987)

PSNR 37.354 ± 1.633 37.562 (36.408–38.521)

SSIM 0.952 ± 0.016 0.957 (0.948–0.963)

HSLE 3.597 ± 2.053 3.196 (2.064–4.722)

Table 4.  Summary of testing the method over a synthetic dataset with multiple low-temperature heat sources.

Original model (four-block CNN) Extended model (five-block CNN)

Metrics Mean ± std. dev. Median (25–75 percentile) Mean ± std. dev. Median (25–75 percentile)

NMSE 0.022 ± 0.017 0.016 (0.012–0.025) 0.014 ± 0.017 0.008 (0.007–0.012)

CC 0.971 ± 0.020 0.977 (0.968–0.981) 0.980 ± 0.021 0.987 (0.982–0.989)

PSNR 29.579 ± 2.005 29.314 (28.545–30.649) 32.082 ± 2.852 31.834 (30.487–33.661)

SSIM 0.841 ± 0.074 0.849 (0.786–0.900) 0.904 ± 0.040 0.910 (0.879–0.938)
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times. Moreover, Koutsantonis’s study addressed semi-transparent medium; we do not set such constraints. Our 
method allows for a better representation of the temperature distribution in the vicinity of the source compared 
to the most simplified cases  in16 (two identical heat sources). We obtained a higher SSIM index, reflecting the 
visual similarity of the reconstruction and the original image. Our reconstruction is less noisy with higher PSNR 
values: 43.135 on average than the best-case 33.25 in RISE. Both approaches reliably map the source temperature 
and location with comparable NMSE and CC levels. We also prove the location mapping correctness using the 
proposed HSLE metrics with the median below 1 mm.

Figure 8.  Illustration of the extension of the CNN model from Fig. 4. Added blocks are highlighted with a gray 
background.

Figure 9.  Visualization of the best-case reconstruction ( NMSE = 0.004 ) in the multiple-heat-source 
experiment with a five-block CNN. Top to bottom: backprojection slices, final tomographic reconstruction 
slices, ground-truth slices, the difference between the reconstruction and ground truth (reconstruction error). 
The location (height) of each slice is given above the column. For volumetric visualization of the reconstruction 
outcome, see Supplementary Video S2.
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The most significant errors appeared when the source was d = 0.5 cm from the central axis of the object, h = 1 
cm from the bottom, after 15 min of heating. Two other cases from the test set with d = 0.5 cm and after 15 min 
were reconstructed well (with h = 2.5 and 3 cm), so the error does not come from the proximity of the source 
to the central axis. We find the other reasons in a short time to spread the heat towards the external surface and 
specific temperature distribution at the object edge.

Our thermographic reconstruction simulation was verified in some aspects based on the actual measurements 
of the physical model. We are fully aware of the limitations of this double experiment (“Experimental validation 
of the model” section): the location (depth) and dimensions of the object and the heat source (inside the resistor), 
which are difficult to reproduce in a simplified model accurately, tissue inhomogeneity, or non-insulated base. 
We are also aware of the limitations of the model: the simplified geometry, homogeneous internal structure, no 
base. Figures 6b and d show that tissue heterogeneity and shape imperfections contribute to the reconstruction 
inaccuracy. Moreover, we found some errors in the heat source height estimation. These may result from the 
influence of the bed on the heat dissipation process, not considered in the simulations. Additional disturbing 
factors were the ca. 3 min time needed to perform the complete IR acquisition cycle or possible extra heat from 
the electronic circuitry supplying the heater (under the object). However, taking into account the obtained results 
and their compliance with the model (Figs. 6c, 7c), despite all the limitations and simplifications, we believe that 
the method is promising for the appropriate reconstruction of real-object volumetric temperature distribution.

In this pilot study on CNN-based reconstruction, we mainly focused on simulating a single heat source of a 
basic shape (a spherical heat source). Except for the physical model experiment, we did not investigate models 
different from cylindrical. The natural further development direction is to investigate more complex forms and 
shapes through model training and validation. We believe that the deep model can follow such structures, per-
haps through some superposition of learned patterns. Diversification of the training and test sets by introducing 
rotations of the original data supported this assumption: the network performed equally well regardless of the 
rotation angle. In “Experiments with low-temperature heat sources” section, we aimed at verifying more complex 
tasks in terms of heater temperature and the number of heat sources. Lowering the relative source temperature 
�T from 30 to 5 ◦ C and less did not result in a decreased performance. Hence, the model can produce robust 
reconstruction regardless of �T with the applied assumptions. We also made another step forward by randomly 
placing up to five low-temperature heat sources in a single phantom. The obtained results are promising (Table 4, 
Fig. 8). The network trained with multi-source phantoms reconstructs the temperature distribution affected by 
the mutual influence of several sources. The exact temperature of particular sources themselves remains an issue. 
However, in single-source testing cases, both the heater temperature and location are estimated correctly, so the 
properties of the two previous models are retained. Extending the model with additional convolution blocks 
increased its capacity, thanks to which it was possible to obtain better results while increasing the complexity of 
the data set. The reconstructions are visually smoother, which is also reflected in improved PSNR values.

So far, our framework involves the backprojection algorithm as an intermediate step between IR image 
acquisition and thermal reconstruction. However, we consider avoiding it in our future research, also due to 
significant time consumption. That would enable reconstructing the heat distribution based directly on a series 
of planar IR images of the object. However, such an approach will require studies on the optimal arrangement 
of IR images in the deep model input in terms of spatial relationships.

Conclusion
Our study introduces the artificial intelligence concept into a relatively poorly explored field of thermal tomogra-
phy. Our results show the capability of a deep model to reconstruct the volumetric temperature distribution from 
a sequence of planar thermal images of an object containing variable number of heat sources. We find the idea 
promising and share it with the scientific community with some plans for developing the method and models.
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