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Purpose: The current study aimed to develop a convenient and accurate prognostic dynamic nomogram model for the risk of all-
cause death in acute heart failure (AHF) patients that incorporates clinical characteristics including N-terminal pro-brain natriuretic
peptide (NT-pro BNP) and growth stimulation expresses gene 2 protein (ST2).
Patients and Methods: We prospectively studied 537 consecutive AHF patients and derived a clinical prediction model. The least
absolute shrinkage and selection operator regression model combined with clinical characteristics were used for dimensional reduction
and feature selection. Multivariate Cox proportional hazard analysis and “Dynnom” package were used to build the dynamic
nomogram for prediction of 1-,2-,and 5-year overall survival for AHF. With bootstrap validation, the time-dependent concordance
index (C-index) and calibration curves were used to assess predictive discrimination and accuracy. The contributions of NT-pro BNP
and ST2 to the nomogram were evaluated using integrated discrimination improvement (IDI) and net reclassification improvement
(NRI), while decision curve analysis (DCA) was used to assess clinical value.
Results: Patients were randomly divided into derivation (74.9%, n=402) and validation (25.1%, n=135) cohorts. Optimal independent
prognostic factors for 1-,2-, and 5-year all-cause mortality were BS-ACMR (B: NT-pro BNP; S: ST2; A: age; C: complete right bundle
branch block; M: mean arterial pressure; and R: red cell distribution width >14.5%); these were incorporated into the dynamic nomogram
(https://bs-acmr-nom.shinyapps.io/dynnomapp/) with bootstrap validation. The C-indexes in the derivation (0.793) and validation (0.782)
cohorts were consistent with comparable performance parameters. The calibration curve showed good agreement between the nomogram-
predicted and actual survival. Adding NT-pro BNP and ST2 provided a significant net benefit and improved performance over other less
adequate schemes in terms of DCA of survival probability compared to those neglecting either of these two factors.
Conclusion: The study constructed a dynamic BS-ACMR nomogram, which is a convenient, practical and effective clinical decision-
making tool for providing accurate prognosis in AHF patients.
Keywords: acute heart failure, all-cause mortality, dynamic nomogram, prediction model, internal validation

Introduction
Acute heart failure (AHF) results from any structural and/or functional cardiovascular disorder that causes hypoperfusion
and the failure of systemic circulation. AHF is a worldwide primary increasingly frequent cause of disability and death.1

Despite recent advances in treatment, the social and economic burden of AHF is expected to remain tremendously
increased through 2030.2,3 The increasing recognition of clinical predictive models can contribute to exploration of
patient-specific characteristics related to different outcome risks for a given disease.4 For better understand of indivi-
dualized management, clinical practice guidelines and experts have committed to applying clinical prognostic models of
AHF to support decision making.5
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Regarding heart failure, there are established risk models of Seattle Heart Failure Model (SHFM) and the Meta-
Analysis Global Group in Chronic Heart Failure (MAGGIC) (database of 39,372 HF patients) having a relatively large
cohort.6–8 However, these databases were mainly focused on Occidental and/or Caucasian generalized HF subjects, as
well as with limited data on circulating biomarkers and medical history. Applying predictive models to heterogeneous
subjects (such as Asian populations due to the different demographic characteristics) might reduce their accuracy.9–11

Furthermore, there are studies using a variety of inclusion criteria and/or outcome measure12,13 to estimate the risk of
death in Chinese HF patients, including specific population characteristics14 and etiologies,15,16 which result in hetero-
geneity of the models and limit the translation of the results to clinical applications. Furthermore, AHF as
a heterogeneous syndrome with complicated pathogenesis and pathophysiological features17 distinct from chronic
heart failure.18,19 Clinician should characterize acute and chronic settings of HF which can contribute to more precise
management of the AHF population. Hence, a practical prognostic web-based nomogram of Asian demographics AHF
would enable a more accurate risk assessment and optimal management for AHF patients.

Biomarkers are crucial for differentiating diagnosis and assessing prognosis in AHF. More recently, ACC/AHA
guidelines recommend updated diagnostic criteria in the assessment of AHF, which includes the level of N-terminal pro-
brain natriuretic peptide (NT-pro BNP) and growth stimulation expressed gene 2 protein (ST2).20 Studies have shown
that NT-pro BNP and ST2 levels in AHF patients at admission and follow-up provide better predictive value for all-cause
mortality and rehospitalization.21 However, the etiology and population characteristics might affect the truncation values
leading to inconsistency in clinical practice while using single marker. To further construct a nomogram of long-term
prognostic model for AHF patients, our study incorporates these biomarkers into the prognostic nomogram with follow-
up in AHF patients.22 Accordingly, to address the uncertainties mentioned above, our prospective study aimed to
investigate and validate clinical variables that coexist with NT-pro BNP and ST2 to explore the all-cause mortality
among Chinese patients with new-onset AHF and acute exacerbation of chronic HF.

Materials and Methods
Study Population
This single-center prospective cohort study was approved by the Ethics Committee of the First Affiliated Hospital of
Nanjing Medical University and registered at http://www.chictr.org/cn (Registration Number: ChiCTR-ONC- 12001944).
The study methods have been previously published.23–25 Diagnosis of AHF was based on ESC acute heart failure
guidelines at the time of presentation, and all patients received standard clinical evaluation and treatment.26 Inclusion
criteria: (1) age ≥ 18 years old, gender was not limited; (2) new-onset AHF or worsening preexisting heart failure, usually
with symptoms of pulmonary congestion, systemic congestion or cardiac output reduction, NT-pro BNP level > 300 pg/
mL, and echocardiography indicating abnormalities in cardiac structure or function; (3) subjects participated in the study
voluntarily and signed the informed consent. Exclusion criteria: (1) Patients with malignant tumors, cognitive dysfunc-
tion or dementia, severe mental illness, or uncontrolled systemic disease; (2) Patients who were unwilling to sign the
informed consent forms or were unable to complete all follow-up.

For risk events with an incidence greater than twenty-five percent of AHF patients, assuming a true hazard ratio of 1.5
with the power of test of 0.8, using a two-sided alpha of 5% calculated sample size was 382 subjects used PASS software. In
addition, 10% percentage rate of lost to follow-up or truncated frequency also taken into account and the minimum sample
size was 420. The assumed HR of 1.5 is considered as clinically relevant and has taken into account the HF outcomes in the
ADHERE trial.27,28 All participants have given written informed consent and the study was conducted in accordance with the
Declaration of Helsinki. From March 2012 to June 2019, a total of 612 patients were assessed for eligibility. Among, 537
patients with the longest follow-up time of 80 months were enrolled for the further analysis (Figure S1).

Data Collection
Clinical characteristic, laboratory results, electrocardiography (ECG), transthoracic echocardiogram (TTE), Holter,
medication (including the current medication and medication usage after admission), medical history, device therapy
(including CRRT and ICD/CRT surgery) were collected.
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Mean arterial pressure (MAP) was calculated by dividing the subtracting the (average) diastolic from the (average)
systolic blood pressure value by 3 and adding this value to the diastolic blood pressure. Body mass index (BMI)
calculated weight (kg) divided by height squared (meter). All venous blood for complete blood count, biochemistry, and
biomarkers (NT-pro BNP and ST2) at baseline were analyzed in the central laboratory of the First Affiliated Hospital of
Nanjing Medical University. TTE was obtained with Vivid E9 ultrasound system (GE Medical System, USA). The
Simpson method was used to evaluate left ventricular function. Estimated glomerular filtration rate (GFR) was calculated
by the chronic kidney disease epidemiology collaboration (CKD-EPI) equation.29

Primary Endpoint and Follow-Up
The primary endpoint was defined as the all-cause mortality from the time of enrollment. According to the study
protocol, outpatient and/or telephone follow-up every 3 months were performed during follow-up. All enrolled AHF
patients received standard treatment and management. The endpoint events were confirmed by the patient’s family
members, hospital medical records and/or medical personnel. A detailed description of the study protocol, participants
and data collection has been previously published.23–25

Statistical Analysis
Continuous variables were expressed as mean ± standard deviation, and categorical variables were expressed as n (%).
Baseline characteristics were compared using the unpaired t-test (normal distribution) or Mann–Whitney U-test (non-
normal distribution) for continuous variables, and the Pearson’s chi-squared test for categorical variables. For missing
values, multiple imputation based on five replications and a chained equation approach in the R Mice procedure were
used.30

All subjects (n=537) were assigned random numbers and randomly divided into derivation (74.9%, n=402) and
validation (25.1%, n=135) cohorts on the basis of 3:1 ratio for development of a nomogram and internal validation. The
Kaplan–Meier (KM) survival curve was used to describe death in patients with heart failure in the two cohorts. Given the
number of events available, baseline variables that were considered clinically relevant or that showed a univariable
relationship were carefully chosen, as were inclusion variables, to ensure parsimony of the final model.31

Depending on the randomization training set, the most prominent advantage of the LASSO regression was utilized for
re-selection of the optimal prognostic variables in high dimensional data and for ameliorating the accuracy and
interpretability of regression models through regularization.32–34 Variable selection criteria based on clinical knowledge,
and other variables reported in previous studies with clinical significance were candidates for LASSO regression analysis
to identify the independent risk factors for all-cause mortality. All 57 variable filters used in the LASSO regression
analysis (Table S1). Vertical lines were drawn at the optimal values given by the minimum criteria and 1-SE criteria to
identify the optimal prognostic variables.32 Multivariate models with substantiated 10-fold cross-validation and boot-
strapping (500 re-sampling) were constructed to prevent over-fitting and increase model robustness.31 For all categorical
variables, the proportionality of risk required by the Cox model was assessed using Schoenfeld residuals. Quantitative
variables were fitted as a single continuous measurement unless there was nonlinearity. Linearity of risk was evaluated by
restricted cubic spline (RCS) fitting for all continuous variables, which tested whether the nonlinear component was
statistically significant (R rms package).35 If nonlinearity was detected, we used segmented regression (R Segmented
package) to fit a piecewise-linear relationship between continuous variables and AHF risk and to calculate the threshold
inflection point using a recursive algorithm.36 For variables involved in Cox regression, appropriate transformations were
applied, modeling them on a continuous scale.36 A nomogram was constructed based on statistically significant factors
identified by multivariate survival analyses performed using Cox proportional hazard regression to predict 1-, 2-, and
5-year all-cause mortality; the R Regplot package was used to display the results. Discrimination and calibration analysis
was used to verify the effectiveness of both the derivation and validation cohort models by time-dependent C-index
analysis (R pec package). The C-index ranged from 0.5 to 1, with larger values indicating increased prediction
accuracy.37 Calibration of the nomogram was assessed by comparing the nomogram-predicted 1-, 2-, and 5-year all-
cause mortality rates to the observed probability. In an ideal calibrated curve, the predictions should fall on a diagonal
45° line in the calibration plot.

Journal of Inflammation Research 2022:15 https://doi.org/10.2147/JIR.S348139

DovePress
1955

Dovepress Yin et al

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com/get_supplementary_file.php?f=348139.doc
https://www.dovepress.com
https://www.dovepress.com


Moreover, net reclassification improvement (NRI) and integrated discrimination improvement (IDI) were calculated
in R survIDINRI to determine the overall improvement in the predictive accuracy of the nomogram provided by the
addition of NT-pro BNP and ST2 at 60 months. NRI refers to the difference in proportions of patients with events
correctly assigned a higher probability and patients without events correctly assigned a low probability by an updated
model compared with the initial model.38 IDI represents improvement in the average sensitivity (ie, true positive rate)
without reducing the average specificity (ie, true negative rate) of a new model compared with that of a baseline model.39

The clinical usefulness of the model was assessed by decision curve analysis (DCA).40 Finally, “Dynnom” package (cran.
r-project. Org/web/packages/rms) to generate dynamic nomogram model with an interactive interface for clinical
application.41 All tests were two-sided, and a P value < 0.05 was considered statistically significant. Statistical analyses
were performed in R Studio (Version 3.3.4).

Results
Baseline Characteristics in the Derivation and Validation Cohorts
A total of 537 hospitalized patients with AHF were included in the present analysis. The baseline characteristics are
shown in Table 1. The mean follow-up time was 34.21±21.28 months (median 34 months), the longest follow-up period
was 84 months. There were 174 (32.4%) patient deaths during follow-up. Males constituted 66.41% of the cohort, and
left ventricle eject fraction (LVEF) was 42.10±14.52% for all subjects.

The derivation and validation cohorts constituted 74.9% (n=402) and 24.1% (n=135) of the patient population,
respectively. The mean follow-up time for the derivation and validation cohorts were 34.56±20.85 and 33.40±22.28
months, respectively. There were no significant differences in the majority of baseline characteristics between two groups
(P>0.05), suggesting an equilibrium distribution for derivation and validation (Table 1).

After randomization grouping, KM survival curves showed no significant difference in all-cause mortality between
the derivation and validation cohorts (P= 0.14) (Figure 1), indicating the even distribution between two cohorts and
suitable for internal verification.

LASSO Method to Reselect Optimal Prognostic Variables
When lambda equaled 0.038 and log (λ) = −2.417, the residual sum of squares was shown to be 1−SE for all-cause
mortality. Six optimal prognostic variables were identified, including NT-pro BNP, ST2, age, complete right bundle
branch block (CRBBB), mean arterial pressure (MAP), and red blood cell distribution width (RDW) (Figure 2).

RCS Analysis of Nonlinear Associations Determined the Cutoff Values of Optimal
Variables
The shape of the relationship between optimal prognostic variables and all-cause mortality of AHF was explored using
the restricted cubic spline regression model and ANOVA to test for nonlinearity. Age (P nonlinearity = 0.823), MAP (P
nonlinearity = 0.421), and RDW (P nonlinearity = 0.132) were linearly associated with all-cause mortality for AHF,
whereas NT-pro BNP (P nonlinearity = 0.010) and ST2 (P nonlinearity < 0.001) exhibited a nonlinear association (Figure
S2). Regarding the strong U-shaped relationship between predicted NT-pro BNP and ST2 and all-cause mortality, the plot
showed a substantial reduction in risk within the lower range of the predicted NT-pro BNP and ST2, which indicated
a clearly increased risk around 5582 pg/mL and 86 ng/mL, respectively.

Multivariable Cox Hazard Regression for All-Cause Mortality
Multi-variable Cox analysis was carried out to further verify the hazard ratio and coefficient for each variable reselected
by the LASSO method. As a result, NT-pro BNP (>5582 pg/mL vs <5582 pg/mL; HR: 1.616; 95% CI: 1.092–2.393;
P=0.016), ST2 (>86 ng/mL vs <86 ng/mL; HR: 4.040; 95% CI: 2.734–5.968; P<0.001), age (per 10 year increase; HR:
1.338; 95% CI: 1.179–1.520; P<0.001), CRBBB (HR: 3.227; 95% C: 2.077–5.014; P<0.001), MAP (per 10 mm Hg
increase; HR: 0.765; 95% CI: 0.667–0.877; P<0.001), and RDW (per 5 unit increase; HR: 2.366; 95% CI: 1.522–3.677;
P<0.001) remained independent risk factors for 1-, 2-, and 5-year all-cause mortality (Figure 3).
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Table 1 Demographic Characteristics of the Enrolled Patients with AHF

Number (%)/Median ± Standard Deviation P-value

All Patients
(n = 537)

Derivation Cohort
(n = 402)

Validation Cohort
(n = 135)

Age, years (mean±SD) 61.07±15.98 61.19±16.35 60.71±14.89 0.761
Gender: male, n (%) 357 (66.48%) 270 (67.16%) 87 (64.44%) 0.564

BMI (kg/m2), mean±SD 23.77±5.87 94.77±16.13 93.57±13.74 0.437

Smoke, n (%) 208 (38.73%) 148 (36.81%) 60 (44.44%) 0.159
Heart rate (bpm), mean±SD 81.23 (18.46) 85.71 (21.00) 84.44 (20.64) 0.542

NYHA class, n (%)

2 91 (16.95%) 74 (18.40%) 17 (12.59%) 0.226
3 289 (53.81%) 215 (53.48%) 74 (54.81%)

4 158 (29.42%) 113 (28.11%) 45 (33.33%)

Sim LVEF (%), mean±SD 42.10±14.52 42.46±14.55 41.02±14.44 0.320
≥ 50%, n (%) 157 (29.23%) 111 (27.61%) 46 (34.07%)

40–49%, n (%) 96 (17.87%) 67 (16.67%) 29 (21.48%) 0.107

≤40%, n (%) 268 (49.90%) 184 (45.77%) 84 (62.22%)
SBP (mmHg), mean±SD 126.49±22.06 127.17±22.46 124.49±20.79 0.221

DBP (mmHg), mean±SD 78.46±14.99 78.57±15.67 78.11±12.84 0.756

MAP (mmHg), mean±SD 94.47±15.56 94.77±16.13 93.57±13.74 0.437
ST2 (ng/mL), Q4 39.42(22.67, 79.05) 38.49 (22.62, 74.83) 42.04 (23.35, 93.37) 0.138

NT pro-BNP (pg/mL), Q4 2410.00 (1270.75, 6124.25) 2387.50 (1262.75, 5834.50) 2670.50 (1452.75, 6563.00) 0.122

D-dimer (ng/mL), mean±SD 1.66±3.56 1.65±3.92 1.68±2.18 0.939
Potassium (mmol/L), mean±SD 4.00±0.51 4.00±0.49 3.98±0.55 0.643

Sodium(mmol/L), mean±SD 139.56±3.95 139.79±3.76 138.85±4.38 0.016

Calcium (mmol/L), mean±SD 2.25±0.15 2.25±0.15 2.24±0.14 0.589
ALB (g/L), mean±SD 36.74±4.89 36.91±4.81 36.22±5.10 0.152

Hemoglobin (g/L), mean±SD 132.14±21.73 132.65±21.31 130.65±22.93 0.354
RDW (%), mean±SD 14.67±1.78 14.68±1.79 14.64±1.74 0.783

Uric Acid (umol/L), Q4 472.50 (383.70, 584.02) 470.50 (386.95, 579.75) 482.40 (382.00, 613.25) 0.090

BUN (mmol/L), Q4 7.37 (5.88, 9.84) 7.20 (5.91, 9.71) 7.76 (5.83, 10.24) 0.179
Cys C (umol/L), mean±SD 1.52±0.74 1.53±0.75 1.49±0.70 0.601

eGFRcrsysc, (mL/min 1.73m2), Q4 73.61 (55.13, 92.10) 73.01 (55.12, 91.78) 73.80 (55.15, 93.38) 0.906

FT3 (pmol/L), mean±SD 3.89±1.15 3.97±1.17 3.66±1.04 0.007
FT4 (nmol/L), mean±SD 18.69±6.86 18.81±7.04 18.32±6.31 0.473

FSH (mlU/L), mean±SD 3.61±4.41 3.30±2.88 4.52±7.19 0.006

ALT (u/L), Q4 26.0 (16.50,45.10) 26.0 (17.30, 47.20) 25.80 (15.0,41.70) 0.076
AST(u/L), Q4 27.90 (21.70,42.30) 28.8 (22.15, 44.30) 26.50 (21.40,39.10) 0.142

LVDd (mm), mean±SD 61.66±12.22 61.15±11.75 63.15±13.44 0.099

LVDs (mm), mean±SD 49.06±13.84 48.48±13.38 50.78±15.05 0.094
PASP (mmHg), mean±SD 43.62±16.38 43.74±16.61 43.29±15.74 0.786

CRBBB, n (%), mean±SD 57 (10.61%) 43 (10.70%) 14 (10.37%) 0.113

CLBBB, n (%), mean±SD 125(23.27%) 86(26.62%) 39(18.22%) 0.354
QRS (s), mean±SD 129.79±39.51 129.67±39.83 130.16±38.68 0.900

QTc (s), mean±SD 444.86±88.85 440.35±95.61 458.22±63.32 0.042

Longest PR (s), mean±SD 193.56±97.07 195.24±100.24 188.60±87.18 0.491
Medical history

Hypertension, n (%) 274 (50.02%) 202 (50.25%) 72 (52.33%) 0.657

AF, n (%) 182 (33.89%) 142 (35.32%) 40 (29.63%) 0.201
ACS, n (%) 57 (10.61%) 41 (10.20%) 16 (11.85%) 0.725

DM, n (%) 205 (38.18%) 155 (38.56%) 50 (37.04%) 0.782

IHD, n (%) 137 (25.51%) 96 (23.88%) 41 (30.37%) 0.182

(Continued)
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Construction of the Nomogram for 1-, 2-, and 5-Year All-Cause Mortality
Based on multivariate analysis, six variables were included in a nomogram for predicting 1-, 2-, and 5-year overall
survival (Figure 4). Positions in the nomogram are in order of importance as defined by standard deviation, top to bottom.
Each clinicopathological factor corresponds to a specific point by drawing a line straight up to the Points axis. The sum
of the points located on the total points axis represents the probability of 1-, 2-, and 5-year survival by drawing a line
straight down to the survival axis. The calculated ratio is used to determine the relative predictive value of these

Table 1 (Continued).

Number (%)/Median ± Standard Deviation P-value

All Patients
(n = 537)

Derivation Cohort
(n = 402)

Validation Cohort
(n = 135)

Device therapy

CRRT, n (%) 53(9.86%) 31 (9.59%) 22 (10.28%) 0.059

ICD/CRT Surgery, n (%) 26 (4.84%) 18 (4.48%) 8 (5.92%) 0.668
Medication at admission

Anticoagulants, n (%) 212 (39.48%) 161 (40.05%) 51 (37.78%) 0.671

ACEIs/ARBs, n (%) 417 (77.65%) 308 (76.62%) 109 (80.74%) 0.463
Beta-blockers, n (%) 428 (79.70%) 315 (78.36%) 113 (83.70%) 0.289

Antisterone, n (%) 479 (89.20%) 382 (95.02%) 132 (97.77%) 0.451

Diuretic, n (%) 510 (94.97%) 379 (94.28%) 131(97.04%) 0.481
Aspirin, n (%) 225 (41.90%) 163 (40.55%) 62 (45.93%) 0.353

Abbreviations: BMI, body mass index; NYHA, New York Heart Association Functional Class; LVEF, left ventricular ejection fraction; SBP, systolic blood pressure; DBP,
diastolic blood pressure; MAP, mean arterial pressure; ST2, growth stimulation expresses gene 2 protein; NT pro-BNP, N-terminal pro-B-type natriuretic peptide; RDW, red
cell distribution; TSH, thyroid stimulating hormone; BUN, blood urea nitrogen; Cys C, cystatin c; eGFR, estimated glomerular filtration rate; ICD, implantable cardioverter
defibrillators; CRT, cardiac resynchronization therapy; ACEIs, angiotensin-converting enzyme inhibitors; ARBs, angiotensin receptor blockers; AF, atrial fibrillation; ACS,
acute coronary syndromes; LVDd, left ventricular diastolic diameter; LVDs, left ventricular internal diameter at end-systole; PASP, pulmonary artery systolic pressure;
CRBBB, complete right bundle branch block; CLBBB, complete left bundle branch block; IHD, ischemic heart disease; ALT, alanine aminotransferase; AST, aspartate
transaminase; AF, atrial fibrillation; DM, diabetes mellitus; ACS, acute coronary syndrome; CRRT, continuous renal replacement therapy.

Figure 1 Kaplan–Meier survival curve of enrolled AHF patients, derivation cohort and validation cohort.
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variables. The projection to the total points scale at the bottom of the nomogram indicates the estimated probability of
all-cause mortality and estimate the risk of death.

Internal Validation of the Nomogram and Risk Reclassification
Time-dependent discrimination analysis was used to evaluate the predictive performance of our model for AHF patient
outcomes. In the derivation cohort, the time-independent C-indices of the nomogram for all-cause mortality were 0.838
(95% CI: 0.804–0.871) and 0.793 (95% CI: 0.752–0.833) in all models and the nomogram model, respectively
(Figure 5A). Meanwhile, the time-independent C-indices in the validation cohort were 0.716 (95% CI: 0.651–0.781)
and 0.782 (95% CI: 0.720–0.844) in all models and the nomogram model, respectively (Figure 5B). These results
indicate that the predictive power of the nomogram model was relatively stable over time, meaning that it could be used
to predict death over all time periods.

The results of the NRI and IDI calculations are given in both the derivation and validation models, use of multiple
variables to construct a comprehensive nomogram significantly improved risk reclassification for prediction of 5-year
overall mortality by adding NT-pro BNP and ST2 to the model (Table 2). The calibration plots showed consistency
between the observed AHF mortality risks and those predicted by the nomogram at 1-, 2-, and 5- years (Figure 6).

Decision Curve Analysis of the Nomogram
Decision curve analysis (DCA) was performed to assess the net benefit of the clinical prediction model. Based on the
nomogram constructed in this study, the decision curve showed that the threshold probability of AHF patients was 23–
67%, 25–85%, and 35–80% at 1, 2, and 5 years, respectively. These results demonstrate that use of this nomogram to
predict all-cause mortality could increase accuracy compared with either neglecting these factors or using an inadequate
scheme (Figure 7).

Web-Based Dynamic Nomogram
A web-based calculator was built (https://bs-acmr-nom.shinyapps.io/dynnomapp/) to facilitate the use of the nomogram
for clinicians (Figure S3). The dynamic BS-ACMR nomogram can be easily obtained predicted probability of all-cause

Figure 2 Selection of variables for all-cause mortality was performed using the LASSO regression plot with COX regression model. (A) LASSO model coefficient trendlines
of the 57 variables (shown in Table S1) for all-cause mortality. (B) Tuning parameter (Lambda, λ) selection cross-validation error curve. Vertical lines were drawn at the
optimal values given by the minimum criteria and 1-SE criteria. The right line was identified by 1-SE criteria (λ = 0.038). The parameter λ = 0.038 was selected under the 1-SE
criteria. The vertical line was drawn at the value selected by 10-fold cross-validation, including optimized six non-zero coefficients proceed with further COX regression
analysis.
Abbreviations: LASSO, least absolute shrinkage and selection operator; SE, standard error.
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mortality of AHF patients after inputting the six independent variables and survival time (months) and reading output
results generated by the website.

Discussion
In the present study, a predictive tool incorporating selected biomarkers and clinical indicators was constructed. This BS-
ACMR (B: NT-pro BNP; S: ST2; A: Age; C: CRBBB; M: MAP; and R: RDW >14.5%) nomogram score system is
a prognostic model of all-cause mortality that provided accurate predictions of survival in AHF patients. For a median
follow-up of 34 months and maximum follow-up of 80 months, cross-validation was helpful for effective use of our
limited data. The accuracy (C-index) of the nomogram tool in predicting all-cause mortality risk for AHF patients at 1-,
2-, and 5-years was 0.793 in the derivation cohort and 0.782 in the validation cohort. By exact truncation of variables and
comprehensive model evaluation, the nomogram tool constructed here combined NT-pro BNP, ST2, and routine clinical
features (age, MAP, RDW, CRBBB) to establish an effective and accurate clinical prognostic model, and to enhance its
clinical applications. The range of values also suggested that further exploration of specific thresholds of these prognostic
significance variables could provide incremental value for assessing the prognosis of AHF patients.

Myocardial remodeling represents the key pathway of development from cardiac dysfunction to advanced heart
failure. Biomarkers reflects these pathological changes of hemodynamic overload, progressive myocardial fibrosis and
increased cardiomyocyte stiffness in AHF have been shown to have important applications to the management of
patients. ST2 reflects tissue fibrosis and may promote cardiac hypertrophy, fibrosis, and ventricular dysfunction.42

Also indicate cardiac remodeling and therefore represent valuable additive risk stratification of patients with acute and
chronic HF.43 Although ST2 predicts mortality in HFpEF individuals with acute dyspnea,21 the threshold of ST2 for poor
prognosis of HF are inconsistent. For instance, a value ≥ 35 ng/mL (median, 42.7 ng/mL) in HF patients,44 67.4 ng/mL in
non-survivors, and 35.8 ng/mL in survivors of acute decompensated heart failure at 1 year,45 and a median of 148 ng/mL

Figure 3 Forest plot with hazard ratio (HR) for the optimal prognostic variables of the final multivariable model in the derivation cohort. HRs above one indicates that
a variable is positively associated with the event probability and thus negatively with survival time. A horizontal line parallel to the X-axis has a logarithmic scale represents
a more precise confidence interval (95% CI).
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(interquartile range of 88 to 226 ng/mL) in more advanced HF patients.46 In the current study, ST2 was one of the most
significant predictive indicator shown nonlinear relationship for ST2 > 86 ng/mL, and all-cause mortality risk increased
4.04-fold over the range. While the ST2 threshold of our result could not generalize as the preliminary precaution signal
of myocardial fibrosis, the increase level of ST2 provides healthcare providers to recognize higher-risk AHF patients.

Concentrations of NT-pro BNP are related to left ventricle (LV) filling pressures and wall stress,44,48 especially in the
context of ventricular fibrosis. Accordingly, the utility of ST2 is additive with that of NT-pro BNP as a predictor of
mortality.47 The increased NT-pro BNP levels during left ventricular dysfunction and acute myocardial infarction, and
serve to counteract mechanisms of heart failure through diuresis, natriuresis, and antihypertensive effects.50,52 Threshold
levels of NT-pro BNP associated with diagnosis of heart failure ranged variate from 30 to 400 pg/mL in different studies,

Figure 4 The BS-ACMR heart prognostic nomogram obtained from the optimal Cox model to predict 1-, 2- and 5- year overall survival for acute heart failure in
derivation cohort. Each clinicopathological factor corresponds to a specific point by drawing a vertical line from that variable to the points axis. After sum of the scores
for each variable located on the Total Points axis. Finally, the sum represents the probability of 1-, 2- and 5- year survival by drawing straight down to the survival axis.
For example, a 24-year-old AHF patient with NT-pro BNP ≤ 5582 pg/mL, ST2 ≤ 86 ng/mL, MAP ≤ 109 mm Hg, RDW ≤ 2.82% and CRBBB, the total score will be given
by 29+56+56+46+53+85 = 325, corresponding to 1-, 2-, and 5-year risks of dying of 0.049, 0.077, and 0.12, respectively. The AHF patient will accordingly have
approximately 96.1%, 92.3%, and 88% survival probabilities at 1, 2, and 5 years, respectively. *P< 0.05; ***P<0.001.

Figure 5 Discrimination analyses between derivation cohort (A) and the validation cohort (B).
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with a large range of sensitivities (6–97%) and specificities (35–100%).49,50 Whereas, paucity of un-uniformity clinical
prognosis thresholds makes it difficult to translate the results to clinical application.51,52 Our NT-pro BNP level of >5582
pg/mL was strongly associated with increased all-cause mortality of AHF, which accounts certain efficiency to identify
critically ill patients and guide clinical decisions. To our knowledge, our study is the first clinical nomogram model
which incorporates NT-pro BNP, ST2, and clinicopathology to assess the long-term risk of all-cause mortality in AHF
patients. Additionally, BS-ACMR nomogram incorporating clinical features provides greater clinical utility than solely
ST2 or NT-pro BNP evaluation.

Beside the two biomarkers in the model, age was a proven independent prognostic indicator all-cause
mortality,36,43,44,49,50 which weighted second in our model superior to MAP, CRBBB, RDW, and NT-pro BNP.
Secondly, our study also found that CRBBB increases the risk for all-cause mortality about 3.227-fold (95% CI:
2.077–5.014). Previous epidemiological studies, CRBBB was found related to myocardial ischemia, an independent
predictor of decreased right ventricular ejection fraction.55 One possible pathophysiological mechanism that may
contribute to cardiovascular mortality, may be right ventricular dyssynchrony.53,54 CRBBB could consider a sign of
other underlying cardiovascular conditions, including but not limited to ischemic, inflammatory, infiltrative heart disease,
and pulmonary embolism, which associated to complete heart block, ventricular arrhythmias, HF, and death.53 Although
inconsistent results regarding the association between CRBBB and clinical outcomes such as all-cause and cardiovas-
cular mortality have been reported,55 there were large prospective cohort - Copenhagen City Heart Study with 18,441
participants56 and a recent Mayo Clinic study with 31,979 subjects53 both reported that CRBBB was predictive of all-
cause (Copenhagen and Mayo) and cardiovascular-related (Mayo) mortality, even in patients without CVD. Our findings
are consistent with those studies. Despite our study only enrolled limited patients with CRBBB, our result and these
previous studies support by incorporating CRBBB into the model can provide certain guidance for prognostic
assessment.

Table 2 Integrated Discrimination Improvement and Net Reclassification Improvement for All-Cause Mortality at 60 Months by
Adding NT-Pro BNP and ST2 to Model

Model Biomarker IDI (95% CI) P-value NRI (95% CI) P-value

Derivation

MAP, Age, CRBBB, RDW +NT-proBNP 0.043(0.004–0.101) 0.020 0.219(0.047–0.348) 0.028
+ST2 0.128(0.064–0.195) <0.001 0.349(0.207–0.454) <0.001

+ NT-proBNP and ST2 0.141(0.077–0.211) <0.001 0.354(0.180–0.482) <0.001

Validation

MAP, Age, CRBBB, RDW +NT-proBNP 0.009(−0.010–0.065) 0.479 0.136(−0.297–0.381) 0.443

+ST2 0.191(0.060–0.336) 0.004 0.327(0.036–0.621) 0.040
+ NT-proBNP and ST2 0.194(0.067–0.338) 0.004 0.346(0.049–0.653) 0.016

Abbreviations: NT-pro BNP, N-terminal pro-brain natriuretic peptide; ST2, growth stimulation expresses gene 2 protein; MAP, mean arterial pressure; CRBBB, complete
right bundle branch block; RDW, red cell distribution; CI, confidence interval.

Figure 6 Calibration plot of nomogram predicted probability of 1- (A), 2- (B) and 5- (C) year all-cause mortality. Shown that the prediction model was no statistical
departure with observed values.
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Additionally, every 5-unit increase of RDW was associated with a 2.366-fold (95% CI: 1.522–3.677) increase in
adverse outcomes of AHF. As a measure of variability in the size of circulating red blood cells, RDW was used as an
independent predictor of adverse outcomes in chronic57 and acute decompensated HF.58 Previous studies have demon-
strated that elevated RDW was associated with high left ventricular end-diastolic pressure,59 which is a strong predictor
of poor prognosis and sudden death regardless of LVEF.60 Both RDW and NT-pro BNP are included in our BS-ACMR
nomogram, which is supported by their well-established correlation with LV filling pressure and hemodynamics.
Similarly, MAP is a valuable factor as it reflects cardiac capacity, myocardial function, and peripheral artery resistance.
Prognosis of AHF patients needs to consider preservation of organ perfusion and capacity management. Atypical factors
reflecting hemodynamic states included in the BS-ACMP nomogram are sensitive prognostic factors of pathological
manifestations of heart failure, which provide clues to cardiac insufficiency.

Reviewing the previous prognostic AHF models, study showed model based on three easy parameters (age, serum
creatinine and lactate) was associated with regarding 28-day mortality in the acute decompensated HF complicated by
cardiogenic shock.61 Another study enrolled 1033 AHF patients in emergency setting exhibited elevated troponin and
renal function were significant predictors of adverse events.62 In addition, results via the AHEAD scoring system (A:
atrial fibrillation; H: hemoglobin; E: elderly; A: abnormal renal parameters; D: diabetes mellitus) also could be factor in
assessing prognosis.63 Furthermore, our study showed a similar result to the Massachusetts study64 which explored
1-year mortality for acute decompensated HF based on ejection fraction with higher proportion of reduced EF (49.9% VS
35%) and lower proportion of preserved EF (29.23% VS 52%). Compare with model in the study, different predictors
risk factors included chronic obstructive pulmonary disease history, SBP <150 mm Hg on admission, and hyponatremia.
Distinct to the previous study, our findings that integrate the clinical features and significant biomarkers (NT-pro BNP
and ST2) emphasized the changes in clinicopathological status, and the long-term follow-up may provide a reference risk
evaluation of AHF over different time periods.

Strengths and Limitations
In the present study, distinct to the previous nomogram that roughly calculate an approximation, our research by
conducting a dynamic network calculator and a visual BS-ACMR nomogram could provide a convenient method with
each significant explanatory variable. Also, result from our prospective study could provide additive clinical values for
recognizing the high risk AHF patients, which could guide an optimal medical management in selected condition.
Moreover, incorporating NT-pro BNP and ST2 which reflect hemodynamic states in to the models, redefined truncation
value of these markers helps early identification these particular patients closely related to all-cause death.

Our study has certain limitations. Only 537 AHF patients from a single center was prospectively collected. However,
the prognostic analysis with systematic data collection and long-term follow-up could minimize potential bias. Second,
although the models have not been externally validated, we developed a 10-fold cross-validation and bootstrap re-
sampling technique to maximize power and calibration of the predicted probabilities against mortality rates, which

Figure 7 Decision curve of the nomogram. The black dotted line represents the nomogram. The grey solid line represents net benefit without intervention. The decision
curve indicates that when the threshold probability of AHF patients of this nomogram strategies would add significant net benefit of the all-cause mortality of 1- (A), 2- (B)
and 5- (C) year.
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indicated a good outcome given the limitations of the study. Third, unlike previous studies,12–14 medication and ICD/
CRT device therapy was not incorporated with our nomogram which are potentially affected mortality rate of AHF.
Expanding the study population and kinetic measurement of indicators should be considered to improved popularization
meanings of the model in the future. Despite these limitations, our study provided a robustness and accurate prediction
model to assess the all-cause mortality risk of AHF. Additionally, the main advantages of our study were that all the
included prognosticators were feasible and accessible in routine clinical practice.

In the future, on the premise of sufficient sample size, further stratification analysis considering of various comorbid-
ities of AHF patients (like obesity, T2DM, hypertension and anemia etc.) will help to increase model precision.
Investigators are invited to share their data implement external validation regarding AHF clinical settings in order to
further improve the absolute risk estimates of the current model.

Conclusions
We developed and validated a web-based BS-ACMR nomogram risk calculator, which can address the relative long-term
time-dependent death risk of AHF patients via clinical data includes redefined truncation value of biomarkers (NT-pro
BNP and ST2) that help to identification patients closely related to all-cause death. The multivariable dynamic practical
nomogram demonstrated good calibration, discrimination, and clinical utility. These findings could help clinicians in
stratifying the risk of AHF patients, clinical decision-making, and early prevention.
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