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ABSTRACT: Basic principles of statistical mechanics require that
proteins sample an ensemble of conformations at any nonzero
temperature. However, it is still common to treat the crystallo-
graphic structure of a protein as the structure of its native state,
largely because high-resolution structural characterization of protein
flexibility remains a profound challenge. To assess the typical degree
of conformational heterogeneity within folded proteins, we
construct Markov state models describing the thermodynamics and kinetics of proteins ranging from 72 to 263 residues in
length. Each of these models is built from hundreds of microseconds of atomically detailed molecular dynamics simulations.
Examination of the side-chain degrees of freedom reveals that almost every residue visits at least two rotameric states over this
time frame, with rotamer transition rates spanning a wide range of time scales (from nanoseconds to tens of microseconds). We
also report substantial backbone dynamics on time scales longer than are typically addressed by experimental measures of protein
flexibility, such as NMR order parameters. Finally, we demonstrate that these extensive rearrangements are consistent with NMR
and crystallographic data, which supports the validity of our models. Altogether, these results depict the interior of proteins not as
well-ordered solids, as is often imagined, but instead as dense fluids, which undergo substantial structural fluctuations despite
their high packing fraction.

■ INTRODUCTION

It is well established that proteins sample a variety of unfolded
and partially folded structures, but there is still substantial
uncertainty about the exact nature of the structural fluctuations
within folded proteins under native conditions. Attempts to
probe this conformational heterogeneity have led to a range of
conclusions, including (i) proteins are surface-molten solids,1

(ii) protein side chains undergo substantial fluctuations in the
context of a more rigid backbone,2−9 (iii) protein backbone
motions reorient structural elements and create pockets,10−13

and (iv) proteins undergo local folding/unfolding transi-
tions.14−16 Rather than being mutually exclusive, it is likely
that all of these forms of heterogeneity are present, albeit on
different time scales and to different extents. Quantitatively
establishing the magnitude and dynamics of these fluctuations
is an important goal for advancing our understanding of protein
stability and function.
Here, we combine extensive sampling of detailed molecular

models with the theory of Markov processes to quantitatively
describe proteins’ conformational heterogeneity on time scales
across 8 orders of magnitude. Specifically, we use molecular
dynamics simulations to generate hundreds of microseconds of
time evolution for each of a series of proteins: ubiquitin (72
residues), RNase H (155 residues), and β-lactamase (263
residues, Figure 1). Results of these simulations serve as input
for building Markov models, indicating the boundaries between
adjacent free energy basins and the rates of hopping between
them (see the Methods section for details).13,17,18 These
Markov models provide access to dynamics on tens of
microsecond time scales for the largest systems examined and
millisecond time scales for the smallest. These time scales are

orders of magnitude longer than those accessible by any
individual simulation. In addition, our models provide kinetic
information that is inaccessible to other enhanced sampling
schemes, which typically sacrifice kinetic accuracy by altering
simulation parameterssuch as the potential energy surface or
temperatureto achieve broader conformational sampling.
Therefore, we can capture processes beyond the reach of
previous works1,3,8,19,20 and make comparisons with experi-
ments that appropriately account for the time scales a given
experimental technique can probe. Our atomically detailed
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Figure 1. Structures of ubiquitin, RNase H, and β-lactamase in ribbon
(top) and surface (bottom) representations. Surface residues are blue,
and core residues are yellow.
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simulations also provide information that is not accessible
experimentally, such as structural information that is not easily
extracted from NMR order parameters and low population
states that are beyond the detection limits of crystallography.
This unprecedented access to long-time relaxation within

folded proteins allows us to carefully address questions about
the extent and facility of structural rearrangements: How
variable are proteins’ side-chain degrees of freedom? On what
time scales do transitions between alternative conformations
occur? Are simulated long-time dynamics consistent with
existing experimental data? And, how do fluctuations within the
backbone and side chains compare?

■ RESULTS AND DISCUSSION
Liquid-Like Behavior of Side Chains within Protein

Cores. If protein cores were essentially crystalline, we would
not expect them to exhibit significant rearrangements on the
sub-millisecond time scales that can be accessed with our
models and methods. However, an analysis of the distribution
of side-chain structures readily reveals substantial variability
throughout the proteins examined in this work. For example,
the first dihedral angle of every side chain (called the χ1 angle)
in ubiquitin visits at least one alternative rotameric state besides
the dominant state seen in the crystallographic structure. We
see similar behavior in RNase H and β-lactamase (where 100
and 98% of residues visit alternative χ1 rotameric states,
respectively). We find even more variability in the rotameric
states of other side-chain dihedral angles, consistent with
chemical intuition that the χ1 rotamer should be more difficult
to sample due to steric constraints from the backbone and the
need to displace a larger proportion of the side chain.
Furthermore, we do not observe unfolding within the time
scales captured by our models, so these transitions are
occurring in the context of a compact structure.
To quantify the degree of structural heterogeneity within

each protein, we estimate the interbasin entropy of each side
chain. Specifically, we assign each dihedral angle to the gauche
(+), gauche (−), or trans rotameric states. We then calculate
the Shannon entropy (S) of a residue as

∑= −
=

S p plog
i

N
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1

where N is the total number of possible conformations (i.e., the
product of the number of alternative rotameric states for each
dihedral angle) and Pi is the probability of conformation i. This
entropy will range from zero for side chains that do not visit
any alternative rotameric states to 4.4 for a long side chain that
spends equal time in every possible combination of rotameric
states.
Calculating entropies for each residue reveals extensive

variability throughout each of the proteins examined, including
substantial heterogeneity within their cores (Figure 2). We
classified residues as part of the core if their solvent accessible
surface area is less than 0.1 nm2 and as part of the surface
otherwise (Figure 1). As expected, surface residues have a
broad distribution of entropies. The substantial heterogeneity
of core residues is more surprising and leads us to conclude that
proteins are more liquid-like than crystalline, even within their
cores. As in liquids, this variability is made possible in a dense
environment by correlated motions spanning large distances.13

Similar trends have been observed in previous computations
and experiments but only for small proteins with low stabilities,
such as ubiquitin.6 The instability of these proteins raises the
question of how general such observations are, since more
stable proteins could easily have substantially less dynamics.
Therefore, our ability to examine larger, more stable proteins
and observe similar levels of heterogeneity is an important
contribution that complements recent work on this subject
from a crystallographic perspective.9

In addition to revealing alternative conformations, our
computational models complement experiments by providing
insight into the time scales for transitioning between different
rotameric states. Such kinetic information is currently
inaccessible crystallographically and may be challenging to
obtain from NMR, since different techniques are often required
to capture different time scales, as discussed later. Our
computational analysis shows that transitions within the
proteins’ cores are often slower than those on the surface
(Figure 2). Furthermore, some dihedral angles exhibit quite
slow transitions (on the 10 μs time scale) even on the proteins’
surfaces. By contrast, it is common to assume side-chain
dynamics typically occur on ns time scales or not at all. The fact
that some of these transition times are approaching the total

Figure 2. Histograms of the entropies of side-chain rotameric states (left) and the time scales for transitioning between rotamers (right) for surface
residues (top, blue) and core residues (bottom, yellow). β-lact is β-lactamase.
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simulation time also suggests that yet more variability may be
present on longer time scales.
Consistency between Simulation and Experiment. An

important question at this point is whether the apparent
disorder suggested by our computer simulations is in fact real.
Or is the structural heterogeneity in our models the result of
errors in the force field used to parametrize the interatomic
interactions?
To address this question, we make a quantitative comparison

with one of the most direct measures of protein flexibility,
namely, NMR order parameters. NMR order parameters are
derived from measurements of the autocorrelation function of a
unit vector along a particular bond (relative to the molecule’s

reference frame). Specifically, the order parameter ( 2) is

μ μ= ⟨ ⟩
→∞

P tlim ( [0] [ ])
t

2
2

where P2 is the second order Legendre polynomial, μ[t] is a
unit vector along a particular bond at time t, and ⟨...⟩ denotes
an equilibrium ensemble average.21 Therefore, one will obtain
an NMR order parameter of 1 for a perfectly rigid bond and an
order parameter of 0 for a freely rotating bond that loses
memory of its past orientation. Backbone order parameters
(along the N−H bond) have been measured for many proteins,
and order parameters for side-chain methyl groups have been
measured for a few proteins.
One important consideration in comparing to experiment is

the different time scales that different NMR protocols address.
For example, the molecular tumbling time sets an upper limit
on the time scales accessible to standard relaxation methods.

Figure 3. (top) NMR order parameters for ubiquitin’s side-chain methyl groups measured from experiment (filled circles)40,41 and calculated from
our models (open diamonds). This perspective highlights that the calculated values are within the range of the experimental values and that the
RDC-based measurements are generally lower than the relaxation-based measurements. (bottom) Calculated versus experimentally measured order
parameters. Filled circles are for core residues, and open circles are for surface residues. This perspective better captures the degree of agreement
between the two sets of values.

Figure 4. NMR order parameters for RNase H and β-lactamase’s side-chain methyl groups calculated from our models (open diamonds), again
showing that the RDC-based measurements are generally lower than the relaxation-based measurements. No experimental data was available for
comparison.
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For the systems studied here, the tumbling time is on the order
of 4−12 ns.22−24 Therefore, we take care to apply the same
time scale limitations when calculating relaxation-based order
parameters from our computational models, as described in the
Methods section. More recent residual dipolar coupling (RDC)
experiments capture nanosecond to microsecond time scale
events, so we use the entirety of our data for calculating RDC-
based order parameters from our models. RDC data, however,
is currently much less abundant and subject to greater statistical
uncertainty (Figure 3). Given these limitations, we focus on
capturing general trends revealed by RDC measurements, in
particular the observation that RDC-based order parameters are
generally lower than those determined from relaxation
experiments.
We obtain reasonable agreement between calculated and

experimental order parameters addressing both of these time
scale regimes (Figure 3). For example, the root-mean-square
deviation (RMSD) between calculated and measured relaxa-
tion-based order parameters for ubiquitin is 0.18 and the
RMSD between calculated and measured RDC-based order
parameters is 0.29 (Pearson’s R-values of 0.68 and 0.33,
respectively). We judge this level of consistency as reasonable
considering (i) the simplifying assumptions made in deriving
order parameters make exact agreement unlikely, (ii) our errors
are random rather than being systematically in one direction,
(iii) the large error in experimental RDC-based measurements
(as described above), and (iv) we capture the qualitative trend
that examining longer time scales reveals more structural
heterogeneity. For example, our calculated RDC-based order
parameters for ubiquitin are 0.29 less than the relaxation-based
order parameters, on average (compared to a difference of 0.30
in experiment). The agreement between computation and
experiment is generally greater for core residues, which are also

typically less mobile than surface residues. We also predict
similar differences between relaxation-based and RDC-based
order parameters for the side chains of RNase H and β-
lactamase (Figure 4), where the average RDC-based order
parameter drops by at least 0.10 and 0.06, respectively,
compared to relaxation-based order parameters.
Our results are also consistent with recent crystallographic

studies. For example, Fraser et al. examined 30 proteins with
room-temperature crystallography9 and found that 37.7% of
residues populate an alternative χ1 rotamer (i.e., not seen in
structures solved at cryogenic temperatures) with a population
greater than 20%. We find that 40.1% of residues satisfy this
criterion in our sample of three proteins, in reasonable
agreement with their findings. Importantly, we also capture
alternative rotameric states that are less populated and,
therefore, are invisible to existing crystallographic methods.

Prediction of More Extensive Backbone Dynamics on
Longer Time Scales. Just as for side chains, examining longer
time scales reveals significantly more structural heterogeneity in
the backbone than is detectable on shorter time scales (Figures
5 and 6). For example, the average order parameter for
ubiquitin drops from 0.90 for calculations mimicking relaxation-
based experiments to 0.70 for calculations mimicking RDC-
based experiments. We observe similar drops from 0.89 to at
most 0.77 for RNase H and from 0.93 to at most 0.86 for β-
lactamase. As was observed for side chains, the agreement
between computation and experiment for the backbone is
generally greater for core residues, which are also typically less
mobile than surface residues.
The validity of our assertions is supported by reasonable

agreement between calculated and experimental order param-
eters for each system (Figures 5 and 6). For example, the
RMSD between calculated and experimental backbone order

Figure 5. NMR order parameters for ubiquitin, RNase H, and β-lactamase’s backbone N−H bonds measured from experiment (filled circles) and
calculated from our models (open diamonds). Relaxation-based order parameters for ubiquitin are from Tjandra et al.,22 and RDC-based parameters
are from Lakomek et al.42 Relaxation-based order parameters for RNase H and β-lactamase are from Kroenke et al.25 and Savard et al.,24 respectively.
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parameters for ubiquitin is 0.08 for relaxation-based order
parameters and 0.20 for RDC-based order parameters
(Pearson’s R-values of 0.38 and 0.17, respectively). In addition
to the factors that limit the agreement between computation
and experiment that we described previously, the correlation
coefficients for the relaxation-based order parameters are low in
part because of the small spread in their valuesmaking the
low RMSD a more informative measure of our performance.
The experimental order parameters also drop from 0.89 to 0.69,
compared to the computational drop from 0.90 to 0.70,
showing that we again capture general trends in the data.
We also find reasonable agreement between calculated and

experimental relaxation-based order parameters for the back-
bones of RNase H and β-lactamase. The RMSD between
calculated and experimental values is 0.08 for RNase H and
0.10 for β-lactamase (Pearson’s R-values of 0.80 and 0.28,
respectively). Interestingly, there are two published sets of
relaxation-based order parameters for RNase H’s backbone
from 199523 and 199925 and the agreement between
computation and experiment is noticeably better for the
newer data set (RMSD decreases by 0.02 and Pearson’s R-
value increases by 0.08). Therefore, it is possible that the
agreement between computation and experiment would
increase for other proteins if the experimental measurements
were repeated with newer, more powerful NMR machines. To
our knowledge, RDC-based order parameters have not been
measured for RNase H or β-lactamase, but we predict that they
would be lower than the relaxation-based order parameters by
at least 0.1, as discussed above.

■ CONCLUSIONS

We have demonstrated that atomically detailed computational
models of proteins employing physically realistic force fields
generate dynamics whose scope is more consistent with liquid-
like behavior than the crystalline character often attributed to
folded proteins. Specifically, there is tremendous variability in
side-chain conformations, even within protein cores. NMR
order parameters calculated from these models are consistent
with experimental measurements, supporting the validity of our
models. Applying these same principles to investigate backbone
dynamics leads to the prediction that experiments addressing
longer time scales will reveal more extensive heterogeneity in
these degrees of freedom as well. We expect methodological
advances that further extend the range of accessible time scales
to reveal even larger fluctuations, and to enable quantification
of their thermodynamic and kinetic consequences. Accounting
for heterogeneity across these scales will be crucial for
deepening our understanding of how proteins function and
how we can manipulate protein activity.

■ METHODS

Software. Molecular dynamics simulations were run with
GROMACS 4.526,27 on the Folding@home distributed
computing platform.28 Markov state models (MSMs) were
built with MSMBuilder 2.0.29,30 Structures were drawn with
PyMOL 0.99.31

Molecular Dynamics Simulations. Simulations of ubiq-
uitin were performed as described previously.32 Simulations and
Markov models of RNase H and β-lactamase were also taken
from previous work.13 A brief review is given below.

Ubiquitin. A total of 1000 simulations were started from
PDB 1UBQ,33 for an aggregate of 2.3 ms of dynamics. Each
simulation was run at 300 K using the AMBER ff96 force field34

with the GBSA solvation model.35

RNase H. A total of 1000 simulations were started from
1F21,36 for an aggregate of 100 μs of dynamics. Each simulation
was run at 300 K using the Amber03 force field37 with explicit
TIP3P water and 9 chlorine ions to neutralize the charge. V-
sites were used to allow for a 5 fs time step.

β-Lactamase. A total of 1000 simulations were started from
PDB 1JWP,38 for an aggregate of 81 μs of dynamics. Each
simulation was run at 300 K using the Amber03 force field37

with explicit TIP3P water and 7 sodium ions to neutralize the
charge. V-sites were used to allow for a 5 fs time step.

Markov State Model Construction. Markov models for
RNase H and β-lactamase were taken from previous work.13 All
Markov models were constructed with MSMBuilder.29,30

Following a standard protocol,39 every 10th conformation
from the simulations for each protein were clustered with a k-
centers algorithm based on the RMSD between Cα and Cβ

atoms until every cluster had a radius, i.e., maximum distance
between any data point in the cluster and the cluster center
less than 1.2 Å. Then, 10 sweeps of a k-medoids update step
were used to center the clusters on the densest regions of
conformational space. The remaining 90% of the data was then
assigned to these clusters and states with only inbound or
outbound transitions discarded. On the basis of their implied
time scales, a lag time of 10 ns was used for ubiquitin, 20 ns for
RNase H, and 2 ns for β-lactamase.

NMR Order Parameters. NMR order parameters ( 2) are
the plateau value of

Figure 6. NMR order parameters for ubiquitin, RNase H, and β-
lactamase’s backbone N−H bonds from computation and experiment.
This is the same data as in Figure 5 but better highlights the degree of
agreement between the two sets of parameters. Filled circles are for
core residues, and open circles are for surface residues.
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μ μ⟨ ⟩→∞ P tlim ( [0] [ ])t 2 (1)

where P2 is the second order Legendre polynomial (P2(x) =
(3/2)x

2 − 1/2), μ[t] is a unit vector along a particular bond
vector at time t, and ⟨...⟩ denotes an ensemble average.
Relaxation-based (or short time scale) order parameters were
calculated by directly evaluating eq 1 at the molecular tumbling
time. RDC-based (or long time scale) order parameters were
calculated as the long-time limit of eq 1, as has been done
previously.20 Specifically,

μ μ μ μ μ μ μ

μ μ
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3
2
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2

where μx is the x component of the unit vector along the bond
of interest and the average is taken across all the conformations
sampled (by using one representative structure from each state
in the Markov model and weighting its contribution to the
ensemble average by its equilibrium population).
Backbone order parameters were measured from a unit

vector pointing along the N−H bond, and side-chain methyl
order parameters were measured from a unit vector pointing
from the carbon atom to the center of mass of the three
hydrogens. All measurements were taken relative to a common
molecular reference frame by aligning each conformation to the
protein’s crystallographic structure. Error bars from boot-
strapping of our computational models were typically on the
order of 0.001 and, therefore, are not shown for visual clarity.
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