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Abstract. Gene tree reconstruction is an important problem in phy-
logenetics. However, gene sequences often lack sufficient information to
confidently distinguish between competing gene tree topologies. To over-
come this limitation, the best gene tree reconstruction methods use a
known species tree topology to guide the reconstruction of the gene tree.
While such species-tree-aware gene tree reconstruction methods have
been repeatedly shown to result in vastly more accurate gene trees, the
most accurate of these methods often have prohibitively high computa-
tional costs.

In this work, we introduce a highly computationally efficient and
robust species-tree-aware method, named TreeSolve, for microbial gene
tree reconstruction. TreeSolve works by collapsing weakly supported
edges of the input gene tree, resulting in a non-binary gene tree, and
then using new algorithms and techniques to optimally resolve the non-
binary gene trees with respect to the given species tree in an appropri-
ately and dynamically constrained search space. Using thousands of real
and simulated gene trees, we demonstrate that TreeSolve significantly
outperforms the best existing species-tree-aware methods for microbes
in terms of accuracy, speed, or both. Crucially, TreeSolve also implic-
itly keeps track of multiple optimal gene tree reconstructions and can
compute either a single best estimate of the gene tree or multiple dis-
tinct estimates. As we demonstrate, aggregating over multiple gene tree
candidates helps distinguish between correct and incorrect parts of an
error-corrected gene tree. Thus, TreeSolve not only enables rapid gene
tree error-correction for large gene trees without compromising on accu-
racy, but also enables accounting of inference uncertainty.

Keywords: Phylogenetics - Microbial evolution - Gene tree
reconstruction - Horizontal gene transfer

1 Introduction

One of the most fundamental tasks in studying gene family evolution is the con-
struction of a gene tree showing the evolutionary relationships among individual
genes from that gene family. However, it is well known that gene trees can be
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very hard to reconstruct accurately and there is often considerable uncertainty
in gene tree topologies reconstructed using gene sequences alone [2,8-10]. To
address the problem of gene tree error, many species-tree-aware methods have
been developed for reconstructing or error-correcting gene trees. These methods
make use of a known species tree and a phylogenetic reconciliation model that
makes it possible to extract topological information from the species tree and use
it to guide gene tree inference. In this work, we focus specifically on the recon-
struction of microbial gene trees, where the relevant phylogenetic reconciliation
model is the Duplication-Transfer-Loss (DTL) reconciliation which models the
evolution of gene trees within species trees through speciation, gene duplication,
gene loss, and horizontal gene transfer. Given its importance to understanding
microbial evolution, the DTL reconciliation problem has been widely studied,
e.g., [1,3,4,7,11-16], and all existing species-tree-aware methods for microbial
gene trees are based on DTL reconciliation or its variants. Existing species-
tree-aware methods for microbial gene trees include AnGST [3], MowgliNNI [9],
ALE [15], PrIME-DLTRS [12], TreeFix-DTL [2], TERA [11], and ecceTERA [5].
Amongst all these methods, TreeFix-DTL [2] and ecceTERA [5] have been shown
to be among the most accurate. Both TreeFix-DTL and ecceTERA are gene tree
error-correction methods that take as input a previously reconstructed sequence-
only gene tree and error-correct it based on a given species tree. Note that
ecceTERA also implements the amalgamation-based algorithm implemented in
TERA [11]; however, in this manuscript, ecceTERA refers only to the imple-
mentation of the gene tree resolution algorithm from [5].

In this work, we introduce a new species-tree-aware method, TreeSolve (port-
manteau of Tree and Resolve), for error-correction of microbial gene trees that
significantly outperforms the best existing methods in terms of accuracy, speed,
or both. TreeSolve builds upon two key ideas already used for microbial gene
tree error-correction and combines and extends them in novel ways. The first
of these two keys ideas is to handle gene tree uncertainty by collapsing all
weakly supported edges in the input sequence-based gene tree, resulting in a
non-binary gene tree, and then optimally resolving this non-binary gene trees
by reconciling to the given species tree, e.g., [5,7,17]. The second key idea is the
consideration of gene tree bootstraps or other replicates to constrain the search
space for the final gene tree to only a biologically meaningful subset of the full
search space [3,11,15]. While both of these ideas have been separately used
before, TreeSolve combines and extends them to achieve improved speed and
accuracy. Specifically, TreeSolve collapses weakly supported edges of the input
gene tree, resulting in a non-binary gene tree, and then uses new algorithms and
techniques to optimally resolve the non-binary gene trees with respect to the
given species tree in a constrained search space defined by a collection of boot-
strap/replicate gene tree. An important novel aspect of our algorithm is that it
is self-adaptive in that it can automatically increase or decrease the search space
by considering only those clades that appear in at least a certain fraction of the
bootstrap/replicate gene trees (by default, the considered clades should appear
in at least one of the bootstrap/replicate gene trees). This self-adaptability is
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required because, even with the constraints imposed by the gene tree boot-
straps/replicates, the number of optimal resolutions can grow exponentially in
the degree and number of non-binary nodes in the given non-binary gene tree.
By dynamically increasing or decreasing the minimum support value required
for the clades considered, the algorithm is guaranteed to be very efficient even on
very large and highly non-binary gene trees while still maintaining its accuracy.
Another key strength of TreeSolve is that it implicitly keeps track of multiple,
equally optimal, gene tree resolutions; it can either output a single best estimate
of the gene tree or it can output multiple distinct gene tree candidates ordered
by their average bootstrap/replicate support values.

We compared the accuracy and runtime of TreeSolve against the two most
accurate gene tree error-correction methods for microbial gene trees, TreeFix-
DTL [2] and ecceTERA [5], using an extensive experimental study with thou-
sands of real and simulated gene trees. TreeFix-DTL has been previously
demonstrated to have greater accuracy than AnGST and MowgliNNI [2], and
ecceTERA demonstrated to have either greater or comparable accuracy to
ALE, TERA, and PrIME-DLTRS [5,11]). Furthermore, ecceTERA is among the
fastest species-tree-aware methods currently available for microbial gene trees,
and it is also the method conceptually most similar to TreeSolve. Our results
demonstrate that (i) TreeSolve is orders of magnitude faster and far more scal-
able than TreeFix-DTL, while matching or exceeding it in accuracy on larger
gene trees, (ii) TreeSolve is significantly more accurate than ecceTERA and
has comparable running times, (iii) the self-adaptive algorithm implemented
in TreeSolve is highly scalable and efficient and can be easily applied to large
genome-scale datasets and gene trees having many hundreds of leaves, and (iv)
aggregating over multiple gene tree candidates output by TreeSolve helps dis-
tinguish between correct and incorrect branches of an error-corrected gene tree.
An implementation of TreeSolve is available from https://compbio.engr.uconn.
edu/software/TreeSolve/ .

2 Definitions and Preliminaries

We follow basic definitions and notation from [1] and [7]. Given a tree T, we
denote its node, edge, and leaf sets by V(T'), E(T'), and Le(T) respectively.

If T is rooted, the root node of T is denoted by rt(T), the parent of a node
v € V(T) by par(v), its set of children by Chr(v), and the (maximal) subtree of
T rooted at v by T'(v). The set of internal nodes of T', denoted I(T'), is defined
to be V(T)\ Le(T). For a rooted tree T, we define <t to be the partial order on
V(T) where x <t y if y is a node on the path between r#(T') and z. The partial
order > is defined analogously, i.e., x >7 y if = is a node on the path between
rt(T) and y. We say that y is an ancestor of x, or that x is a descendant of y, if
z <7 y (note that, under this definition, every node is a descendant as well as
ancestor of itself). We say that = and y are incomparable if neither < y nor
y <t x. Given a non-empty subset L C Le(T), we denote by lcar(L) the last
common ancestor (LCA) of all the leaves in L in tree 7.
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A rooted tree is binary if all of its internal nodes have exactly two children,
and mon-binary otherwise. An internal edge is an edge whose end points are
both internal nodes in the tree. An internal edge (x, pap(z)) in tree T can be
contracted by removing (z, pap(x)) and creating new edges joining pap(x) with
Chr(x), thereby yielding a new tree distinct from T. We say that a tree T”
is a binary resolution of T if T' is binary and T can be obtained from T” by
contracting some (zero or more) internal edges. We denote by BR(T) the set of
all binary resolutions of a rooted non-binary tree 7. Given any node = from T,
we define the out-degree of x to be the number of children of x.

For a rooted tree T each node v € V(T'), the clade Cr(v) is defined to be the
set of all leaf nodes in T'(v); i.e. Cr(v) = Le(T(v)). We denote the set of all clades
of a rooted tree T by Clade(T). This concept can be extended to unrooted trees
as follows. Suppose T' is an unrooted tree. Each edge (u,v) € E(T) defines a
partition of the leaf set of T into two disjoint subsets Le(T,,) and Le(T,), where
T, is the subtree containing node u and T, is the subtree containing node v,
obtained when edge (u,v) is removed from T. We call Le(T,) and Le(T,) the
clusters of T induced by edge (u,v), and denote the set of all clusters in an
unrooted tree T' by Cluster(T).

In this work, we will consider both rooted and unrooted trees. However,
unless otherwise specified, the term tree refers to a rooted tree.

A species tree is a tree that depicts the evolutionary relationships of a set
of species. Given a gene family from a set of species, a gene tree is a tree that
depicts the evolutionary relationships among the sequences encoding only that
gene family in the given set of species. Gene trees may be either binary or non-
binary while the species tree is always assumed to be binary. Throughout this
work, we denote the gene tree and species tree under consideration by G and
S, respectively. If G is restricted to be binary we refer to it as G® and as GV
if it is restricted to be non-binary. We assume that each leaf of the gene tree is
labeled with the species from which that gene was sampled. This labeling defines
a leaf-mapping La s: Le(G) — Le(S) that maps a leaf node g € Le(G) to that
unique leaf node s € Le(S) that has the same label as g. Note that gene trees
may have more than one gene sampled from the same species.

Reconciliation and DTL-scenarios. A binary gene tree can be reconciled
with a species tree by mapping the gene tree into the species tree. A Duplication-
Transfer-Loss scenario (DTL-scenario) [1,16] for G® and S characterizes the
mappings of G¥ into S that constitute a biologically valid reconciliation. Essen-
tially, DTL-scenarios map each gene tree node to a unique species tree node and
designate each gene tree node as representing either a speciation, duplication, or
transfer event. A formal definition of DTL-scenario appears in [1]. DTL-scenarios
correspond naturally to reconciliations and it is straightforward to infer the rec-
onciliation of GP and S implied by any DTL-scenario. Given a DTL-scenario,
one can directly count the number of duplications, transfers, and losses invoked
by the corresponding reconciliation [1].

Let Pa, Po, and Pj,ss denote the non-negative costs associated with dupli-
cation, transfer, and loss events, respectively. The reconciliation cost of a DTL-
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scenario is defined to be the total cost of all duplication, transfer, and loss events
invoked by that DTL-scenario. A most parsimonious reconciliation is one that
has minimum reconciliation cost.

Definition 1 (MPR). Given GP and S, along with Pa, Po, and Piyss, a
most parsimonious reconciliation (MPR) for GP and S is a DTL-scenario with
minimum reconciliation cost.

Optimal Gene Tree Resolution. TreeSolve works by first converting the
given binary gene tree into a non-binary gene tree by collapsing weakly sup-
ported edges (based on a user-provided threshold), and then optimally resolving
this non-binary gene tree based on the species tree under appropriate topologi-
cal constraints. A closely related problem formulation that has been previously
studied is that of optimal gene tree resolution (OGTR) under DTL reconcilia-
tion [6,7]. In the OGTR. problem, given non-binary gene tree GV and a species
tree, one must find a binary resolution G? of GV such that an MPR of G? with
S has smallest reconciliation cost. Moreover, since there may be more than one
optimal binary resolution of G¥, the desired formulation of the problem is to
find all optimal resolutions of GV. This leads to the following computational
problem [7].

Problem 1 (OGTR-AIll). Given GYN and S, along with Pa, Po, and Pjyss,
the All Optimal Gene Tree Resolutions (OGTR~All) problem is to compute the
set OR(GN) of all optimal binary resolutions of GV such that, for any GP €
OR(G™N), an MPR of G® and S has the smallest reconciliation cost among all
gene trees in BR(G™).

The OGTR-All problem is known to be NP-hard [6] (even for comput-
ing a single optimal resolution), and existing algorithms are limited to solving
instances in which the maximum out-degree in G is small [7].

Constrained Optimal Gene Tree Resolution. In addition to its very high
computational time complexity, which greatly limits its applicability, the OGTR-
All problem ignores sequence information and is therefore prone to over-fitting
the gene tree to the species tree. TreeSolve addresses both these limitations
by constraining the set of binary resolutions of GV that can be considered.
Specifically, TreeSolve allows all binary resolutions that are supported by the
sequence data and disallows those that are unsupported. To achieve this goal
TreeSolve solves a constrained version of the OGTR-AIl problem in which, in
addition to GV and S, we take as input a set of unrooted gene trees that define
constraints on the set of binary resolutions of G*V. The set of unrooted gene trees
used should represent a sample of gene tree topologies supported by the sequence
data and can be easily obtained by either computing bootstrap replicates or
sampling from the posterior distribution in a Bayesian analysis.

More formally, let B = {B;, Bs, ..., By} denote a sample of b unrooted gene
trees. Then, we define the cluster set of B to be: Cluster(B) = Ul;:1 Cluster(B;).
This set of clusters is used to define the constrained set of binary resolutions as
follows.
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Fig. 1. Constrained binary resolutions. Given the (rooted) non-binary gene tree on
the top left and the three (unrooted) bootstrap replicate gene trees on the right, the
figure shows a possible constrained binary resolution of the non-binary gene tree. Note
that each new clade in the binary resolution appears as a cluster in at least one of the
three bootstrap replicate trees. These clusters are highlighted using the yellow boxes.
Each internal edge in the gene trees is labeled by its branch support (number in red),
i.e., the number of bootstrap replicates that support that branch. In this example, the
constrained binary resolution happens to be a constrained optimal binary resolution
since no other constrained binary resolution has higher average branch support. (Color
figure online)

Definition 2 (Constrained binary resolution). Given B and a non-binary
tree T, we say that T' is a constrained binary resolution of T (with respect to
B), if T" € BR(T) and Clade(T") C Cluster(B). We denote by CBR(T) the set
of all constrained binary resolutions of a rooted non-binary tree T'.

The idea of a constrained binary resolution is illustrated in Fig.1. We can
now state the constrained optimal gene tree resolution problem.

Problem 2 (C-OGTR). Given GV, S, and B, along with Pa, Pe, and Pjyss,
the All Constrained Optimal Gene Tree Resolutions (C-OGTR) problem is to
compute the set COR(GN) of all optimal constrained binary resolutions of G
such that, for any GB € COR(GYN), an MPR of G and S has the smallest
reconciliation cost among all gene trees in CBR(G™Y).

Note: To ensure that a solution always exists to the C-OGTR problem, Tree-
Solve includes the original binary gene tree from which GV is obtained in the
set B. This ensures, that a constrained binary resolution of GV always exists.

We also define a variant of the problem above that only seeks to find a single
optimal reconciliation with highest average clade support.
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Problem 3 (C-OGTR-Best). Given GV, S, and B, along with Pa, Pe, and
Pyyss, the Best Constrained Optimal Gene Tree Resolutions (C-OGTR-Best)
problem is to compute a tree GP € CBR(GYN) such that the total number of
occurrences in B of all clades in GP is the largest among all trees in CBR(GY).

Note that TreeSolve does not directly solve the C-OGTR and C-OGTR-Best
problems. Rather, for improved efficiency and accuracy, TreeSolve solves variants
of these problems where Cluster(IB) is further restricted to only contain those
clusters that are present in at least a certain number, minSup, of the samples
in B, where minSup is updated dynamically during the search. Furthermore,
TreeSolve maintains ordered lists of binary resolutions at each step sorted by
average support value (i.e., by the total number of occurrences in B of all clades
in that binary resolution).

3 Algorithmic Overview

Our algorithms for the C-OGTR and C-OGTR-Best problems leverage the
dynamic programming algorithm for the OGTR-All problem described in [7].
The primary difference is that the new algorithms limit the possible binary res-
olutions considered at each non-binary node to those that can be constructed
from the clusters available in Cluster(B). Further technical details are omitted
for brevity. Here, we describe how solutions for C-OGTR/C-OGTR-Best are
used within TreeSolve as part of the larger self-adaptive approach and optimal
resolution ordering.

TreeSolve’s Self-adaptive Algorithm. Note that, despite the restriction on
permitted resolutions imposed by IB, the total number of constrained optimal
binary resolutions can be exponential in the number of non-binary nodes of
GV as well as its maximum out-degree. To address this limitation, TreeSolve
employs a novel self-adaptive approach to limit the number of binary resolutions
considered at each non-binary node. To describe the self-adaptive approach, we
need some additional definitions and notation. We first define an upper bound,
denoted U, on the total number of binary resolutions considered by TreeSolve
during any step in its execution. For example, for all the experimental results
presented in the next section, we assigned U = 25000. We also define the follow-
ing:

Cluster(B, minSup) = {x € Cluster(B) | x appears in at least minSup trees from B}.

Finally, define N(g, minSup) to be the number of distinct binary resolutions
of the non-binary node g € G permitted by the cluster set Cluster(IB, minSup).
For each non-binary node ¢ € GV independently, TreeSolve computes a value
for minSup for which N (g, minSup) < U but N(g, minSup —1) > U. This can be
accomplished efficiently through a binary-search in the range [1,|B|]. Thus, at
each non-binary node of the gene tree, we limit the total number of resolutions
considered to at most U of the most highly supported ones.
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Ordering of Binary Resolutions by Average Clade Support. In addition
to its use for limiting the number of possible resolutions at each non-binary
node, TreeSolve also uses the upper bound U to bound the total number of
resolutions considered at the subtree rooted at each node of the gene tree. In
other words, TreeSolve executes a variant of the algorithm for C-OGTR that
always limits the total number of resolutions of the subtree G (g) stored at any
node g of the gene tree to U. In particular, at each node g € GV the algorithm
only stores up to the U best (in terms of average clade support) resolutions for
the subtree GV (g) encountered during the search, ordered by their average clade
support. We denote this ordered list of the U best resolutions for the subtree
GN(g) by ORV(g) (for optimal resolution vector). Note that each resolution
stored in ORV(g) also has an associated average clade support value stored
along with it. Next, we describe how each ORV(:) is computed as part of the
bottom-up dynamic programming traversal of GV. We first need some additional
notation. Given any binary or non-binary node g € G”, define the set of nearest
non-binary descendants of g, denoted A(g), to be {h € V(GN(g))\ {g} | h is
non-binary and no other non-binary nodes exist on the path from g to h}. Note
that N (g) may be empty.

Consider any binary or non-binary node g € GV. If all nodes in the subtree
GN(g) are binary then there is only one possible resolution (i.e., the current
resolution). If A'(g) = 0 but g itself is non-binary then we apply the self-adaptive
approach described above and compute up to U binary resolutions of G (g).
These resolutions are then sorted according to decreasing average clade support
(based on the trees in B) and stored as ORV(g). If N'(g) # 0 and g is binary, then
ORV(g) can be computed by suitably combining the vectors ORV(h), for each
h € N(g), already computed in previous steps of the algorithm. Observe that
each combination of resolutions from the ORV(h)’s, across all h € N (g), yields
a permitted resolution for the subtree G™(g). Since each ORV(h) is in sorted
order and each resolution is associated with its average clade support value,
computing the U best resolutions for GV (g), i.e., computing ORV(g), can be
accomplished by performing a merge-like procedure (from merge sort) on the
ORV(h)’s to identify just the U best resolutions for G (g). The remaining case,
where N (g) # () and g is non-binary can be handled similarly by considering the
sorted list of permitted resolutions for node g together with the ORV(h)’s.

Computing Only a Single Best Resolution. By default, TreeSolve computes
a sorted list of up to U (where U = 25000 in all our experiments) distinct best
resolutions of the initial non-binary gene tree. However, in many applications,
only a single best estimate of the error-corrected gene tree may be required.
Indeed, most existing species-tree-aware methods for microbial gene tree error-
correction, including TreeFix-DTL and ecceTERA, only compute a single best
gene tree. It is easy to see that the first tree output by TreeSolve corresponds to
this best tree, i.e., with highest average clade support. However, if only the best
solution was required, TreeSolve could make use of the simpler C-OGTR-Best
problem formulation, instead of the C-OGTR problem as described above. Solv-
ing the C-OGTR-Best problem is simpler and more efficient than the C-OGTR
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problem (though still potentially exponential). Specifically, to only compute the
resolution with highest average clade support, we need not maintain ORV(-) vec-
tors and only need to save the best resolution corresponding to each subproblem

c(g, ).

4 Experimental Evaluation

Stmulated and Real Datasets Used in the Analysis. To evaluate the performance
our new approach, we used the large simulated dataset of 2400 gene tree/species
tree pairs on 50 taxa used in [2] to evaluate the accuracy of TreeFix-DTL. These
2400 gene trees represent 24 categories (each with 100 gene trees) that capture a
wide range of evolutionary scenarios. Specifically, the datasets represent all com-
binations of (i) low, medium, and high rates of duplication, transfer, and loss
events, (ii) four different sequence mutation rates (rates 1, 3, 5 and 10), and (iii)
normal (333 amino acids) and short (173 amino acids) sequence lengths; further
details on the construction of datasets are available in [2]. For each of the 2400
gene tree/species tree pairs in this dataset, we have available the true (simu-
lated) gene tree and species tree, the reconstructed maximum likelihood gene
tree (constructed using RAxML on sequence data simulated down the true gene
tree), and 100 bootstrap replicates computed during the execution of RAXxML.
The 24 categories in this dataset span a wide range of gene tree sizes, event
rates, and error rates: specifically, the average leaf set size of the low, medium,
and high DTL gene trees are 52.3, 70.4, and 91.3, respectively; the average count
of evolutionary events (duplications, transfers, and losses) for the low, medium,
and high DTL gene trees are 5.5, 10.6, and, 18.8, respectively, with transfers
constituting roughly half of each count; and baseline RAXML error rates (in
terms of NRFD, as defined below) ranging from a low of less than 6% to a high
of almost 18%.

To further test the scalability and accuracy of TreeSolve on large datasets,
we used a dataset of 200 gene tree/species tree pairs on 200 taxa also used in [2].
These 200 gene trees represent 2 distinct categories corresponding to normal
sequence length (333 amino acids), a medium rate of DTL, and mutation rates
1 and 5.

In addition to the simulated dataset above, we also used a real biological
dataset of over 4700 gene trees from 100 predominantly prokaryotic species [3].
We use this dataset to demonstrate scalability and the impact of applying Tree-
Solve in practice.

Ezperimental Setup. We evaluated the accuracy and runtime of TreeSolve,
TreeFix-DTL, and ecceTERA on each dataset described above. TreeSolve and
ecceTERA both take as input a gene tree with support values on its edges, a
support cutoff threshold to collapse edges with weak support (thereby produc-
ing a non-binary gene tree), and a rooted species tree. In addition, TreeSolve
also takes as input the set B of bootstrap or other samples based on which
the gene tree edge support values were computed. TreeFix-DTL takes as input a
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maximum-likelihood (e.g., RAXML) gene tree, the corresponding sequence align-
ment, and a rooted species tree. We used default event cost values of 1, 2, and
3, for losses, duplications, and transfers, respectively, for TreeSolve, ecce TERA,
and TreeFix-DTL (all three programs use these same event costs by default).
The rooted gene trees given as input to TreeSolve and ecceTERA were obtained
by rooting each reconstructed RAxML gene tree at an edge that minimized
its DTL reconciliation cost. To create the non-binary gene trees for TreeSolve
and ecceTERA, we tried two different support cutoff thresholds: 50% and 90%.
Note that using higher bootstrap cutoff values results in more non-binary (i.e.,
more unresolved) gene trees as more edges are collapsed. We observed that both
ecceTERA and TreeSolve performed significantly better when the higher cutoff
threshold of 90% was used; specifically, the average error-rate in terms of NRFD
(defined below) across the 24 baseline simulated datasets decreased from 7.1%
to 5.7% for ecceTERA and from 7.7% to 4.85% for TreeSolve. Thus, we fixed
the cutoff threshold to 90% for all our experiments with ecceTERA and Tree-
Solve, including those with real biological data. For each simulated and real gene
tree, 100 bootstrap replicates obtained through RAXxML were used to define the
corresponding set B for TreeSolve.

To measure gene tree accuracy, we used the (unrooted) normalized Robinson-
Foulds distance (NRFD) against the true gene tree; for any reconstructed gene
tree, the NRFD shows the percentage of splits in that gene tree that do not
appear in the corresponding true gene tree. Finally, when evaluating the accuracy
of TreeSolve, unless otherwise stated, we use only the best (ie., first) resolution
computed.

Basic Statistics on Datasets. For the 24 baseline simulated datasets, the average
leaf set size of the low, medium, and high DTL gene trees was 52.33, 70.37, and
91.26, respectively. Upon collapsing weakly supported edges with the 90% cutoff
threshold, we found that the average number of non-binary nodes and average
of maximum out-degrees across all 24 baseline simulated datasets were 10.9 and
8.2, respectively, with the highest averages observed to be 15.9 (for sequence
length 173, rate-10, high DTL) and 20.58 (for sequence length 173, rate-1, high
DTL), respectively.

For the larger 200-taxon simulated datasets, the average number of non-
binary nodes was 39.5 and the average of maximum out-degrees was 6.7.

For the real dataset of 4736 gene trees, we found that 4419 became non-binary
at a 90% bootstrap cutoff threshold. For these 4419 non-binary gene trees, the
average leaf set size was 36.1, the largest leaf set size was 600, and the average
number of non-binary nodes and average of maximum out-degrees were 3.35 and
21.14, respectively.

4.1 Results

Simulated Datasets Results. We first compared the accuracies of TreeSolve,
ecceTERA, and TreeFix-DTL on the 24 baseline simulated datasets. These
results are shown in Fig.2. As the figure shows, TreeSolve results in signifi-
cantly more accurate gene tree resolutions than ecce TERA in 19 out of the 24
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datasets (and across all high DTL datasets), while TreeFix-DTL outperforms
both ecceTERA and TreeSolve on all 24 datasets. As we discuss later, this
improved accuracy of TreeFix-DTL comes at the expense of orders of magni-
tude greater running time. The average normalized Robinson-Foulds distances
(NRFD) for RAXML, ecceTERA, TreeSolve, and TreeFix-DTL are 7.4%, 3.9%,
3.1%, and 1.86%, respectively, across the 12 normal sequence-length datasets,
and 12.5%, 7.6%, 6.6%, and 3.8%, respectively, across the 12 short sequence
datasets. As expected, all three species-tree-aware methods were significantly
more accurate than the sequence-only method RAxML, and absolute error rates
for all four methods were higher for the short (173) sequence length datasets
than for the normal (333) length datasets. Interestingly, we observed that while
the accuracies of ecceTERA and TreeFix-DTL consistently worsen with increas-
ing DTL rates, the accuracy of TreeSolve is only slightly affected by DTL rates
(Fig. 2). As aresult, the accuracy of TreeSolve starts to approach that of TreeFix-
DTL on the high DTL datasets. Specifically, the average NRFDs across the
high-DTL datasets for TreeFix are 2.7% and 5.1% for the normal and short
sequence-length datasets, respectively, while for TreeSolve these numbers are
only slightly larger at 3.5% and 6.9%, respectively.

Impact of Gene Tree Size. To study the impact of tree size on the relative
accuracies of the three methods, we used the two simulated datasets of 100 gene
tree/species tree pairs each on 200 taxa. As expected, TreeSolve continues to
significantly outperform ecceTERA on these larger datasets, with an average
NRFD of 3.0% for ecceTERA and only 1.8% for TreeSolve. More significantly,
we find that TreeSolve slightly outperforms TreeFix-DTL on these larger trees,
with average NRFD of 1.8% to TreeFix-DTL’s 1.85%. This is not entirely sur-
prising, since TreeFix-DTL relies on an iterative local search approach that can
become less effective as tree size increases. Thus, TreeSolve can be expected to
outperform all other methods for larger gene trees.

Impact of Enumerating Multiple Optimal Resolutions. Recall that a key
feature of TreeSolve is that it can compute and output multiple optimal reso-
lutions, ordered by their average support values. To explore the impact of con-
sidering multiple optimal resolutions instead of only using the “best” resolution
computed through TreeSolve, we computed the false positive and false negative
branch rates for the strict consensus of all multiple optimal resolutions computed
by TreeSolve. We found that the strict consensus of all optimal resolutions com-
puted by TreeSolve results in a significantly lower false positive rate compared
to just using the “best” TreeSolve gene trees across each of the 24 datasets, with
an overall average of 3.45% versus 5.85%, respectively. This suggests that the
optimal resolutions computed by TreeSolve can be used to distinguish between
correct and incorrect gene tree edges. Unsurprisingly, this improvement in the
false positive rate comes at the expense of an increased false negative rate, with
the average normalized false negative rate over all 24 datasets being 8.5 for the
strict consensus of all multiple optimal resolutions computed by TreeSolve. For
brevity, detailed results on individual datasets are omitted from this manuscript.
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Error-rates for normal sequence-length baseline datasets
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Fig. 2. Accuracy on baseline datasets. Error rates are shown for gene trees inferred
using RAxML, ecceTERA, TreeSolve, and TreeFix-DTL on the 12 normal sequence-
length (top) and 12 short sequence-length (bottom) simulated datasets.

Running Time and Scalability. Both ecceTERA and TreeSolve required only
a few seconds per simulated gene tree. Specifically, the average running time of
ecceTERA was 2.9s per tree across the 24 baseline simulated datasets, and for
TreeSolve the corresponding average running time was 10.2s. TreeFix-DTL was
far slower than ecceTERA and TreeSolve, requiring an average of over an hour
for each of the trees in these 24 baseline simulated datasets. On the larger 200-
taxon simulated datasets, ecce TERA and TreeSolve averaged 2.5s and 82s per
gene tree, respectively. In contrast, TreeFix-DTL required an average of over
10h per gene tree. Thus, TreeSolve is almost three orders of magnitude faster
than TreeFix-DTL on these larger gene trees while also showing better accuracy.
All timed runs were executed using a single core on a commodity Macbook Pro
laptop with 16 GB of RAM and a 2.3 GHz Intel i9 CPU.
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Results on Real Dataset. We studied the impact of applying ecceTERA,
TreeSolve and TreeFix-DTL on a real biological dataset of over 4736 gene trees
from 100 predominantly prokaryotic species [3]. We found that 4419 out of the
4736 gene trees became non-binary at the 90% bootstrap cutoff threshold, and
ecceTERA and TreeSolve were thus able to error-correct these 4419 trees. Over
all gene trees, ecce TERA had an average running time of 15.1 s and a maximum
running time of 317s. TreeSolve had a slightly larger average running time of
71.6s and a maximum of 1736s. Note that the largest gene tree in this dataset
has 600 leaves. This demonstrates how TreeSolve can be applied to very large
gene trees within minutes.

For the 4419 non-binary gene trees, we found that ecceTERA resulted in an
average decrease of 26.4% in the reconciliation cost of the error-corrected gene
trees. For TreeSolve, this decrease was a much larger 38.5%. The magnitude of
decrease in reconciliation cost is a highly imperfect proxy for gene tree accuracy;
still, these numbers suggest that TreeSolve is more effective at error-correcting
these real gene trees.

In contrast to ecceTERA and TreeSolve, which executed within minutes on
even the largest gene trees, TreeFix-DTL required more than a week of running
time on each of the larger gene trees in this dataset.

5 Conclusion

In this work, we introduced a new species-tree-aware method, TreeSolve, for
error-correcting microbial gene trees. TreeSolve combines new and existing tech-
niques and uses novel algorithms to strike a balance between speed and accuracy.
As our extensive experimental analysis demonstrates, TreeSolve significantly out-
performs the best existing species-tree-aware methods for microbes in terms of
accuracy, speed, or both. TreeSolve is especially effective for error-correction of
large gene trees, where it makes it possible to perform speedy error-correction
without any compromise on reconstruction accuracy. Furthermore, TreeSolve has
the extremely useful ability to compute not just a single best estimate of the
error-corrected gene tree but a ranked list of multiple distinct “roughly equally
good” candidates. As we show in our experimental study, the resulting ability to
aggregate over multiple gene tree candidates helps distinguish between correct
and incorrect relationships in an error-corrected gene tree. Overall, TreeSolve has
the potential to transform the reconstruction of large microbial gene trees and to
increase the robustness of downstream evolutionary inferences by enabling the
accounting of gene tree reconstruction uncertainty.

Funding. This work was supported in part by NSF awards MCB 1616514 and IES
1615573 to MSB.
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