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Background: Although many pathological mechanisms and etiological

hypotheses of acute unilateral vestibulopathy (AUVP) have been reported, but

the actual etiology remains to be elucidated.

Objective: This study was based on comprehensive bioinformatics to identify

the critical genes of AUVP and explore its pathological mechanism.

Methods: Gene expression profiles of AUVP and normal samples were

collected from GSE146230 datasets of the Gene Expression Omnibus (GEO)

database. Weighted gene co-expression network analysis (WGCNA) was

constructed, and the WGCNA R-package extracted significant modules. The

limma R-package was applied to identify di�erentially expressed genes (DEGs).

The common genes of practical modules and DEGs were screened for GO and

KEGG pathways analysis. The protein–protein interaction (PPI) layout and hub

genes validation was created by Cytoscape software using the link from the

STRING database. The functions of hub genes were predicted through the CTD

(comparative genetics database).

Results: A total of 332 common genes were screened from practical modules

and DEGs. Functional enrichment analysis revealed that these genes were

predominantly associated with inflammation and infection. After construction

of PPI, expressions of hub genes, and drawing ROC curves, LILRB2, FPR1,

AQP9, and LILRA1 are highly expressed in AUVP (p < 0.05) and have a certain

diagnostic e�cacy for AUVP (AUC > 0.7), so they were selected as hub genes.

The functions of hub genes suggested that the occurrence of AUVP may be

related to inflammation, necrosis, hepatomegaly, and other conditions in CTD.

Conclusion: LILRB2, FPR1, AQP9, and LILRA1 may play essential roles in

developing AUVP, providing new ideas for diagnosing and treating AUVP.
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Introduction

Acute unilateral vestibulopathy (AUVP), also known as

vestibular neuritis, is an acute peripheral vestibular syndrome

characterized by acute unilateral loss of peripheral vestibular

function without sensitive central nervous system or acute

audiological symptoms or signs (1). It is the third most common

peripheral vestibular disease after benign paroxysmal positional

vertigo (BPPV) and Meniere’s disease (2). There were no unified

diagnostic criteria for AUVP, so there is no compelling new

epidemiological study (3). The onset age of AUVP is usually

30–60 years old (1, 4, 5), and the distribution peak is 40–50

years old (1, 4). It is reported that the annual incidence rate

of AUVP is 3.5–15.5 per 100,000 people (1, 4), the recurrence

rate is 1.9% (6)−10.7% (7), and approximately 4–9.8% of adult

patients and 3.3% of children are treated for acute unilateral

vestibular loss (8). Although it is thought to be caused by viral

inflammation or potential viral reactivation in vestibular nerve

ganglia, the exact cause of vestibular neuritis is unclear (2).

Therefore, the treatment methods for AUVP are various, such

as corticosteroids, antiviral drugs, and vestibular rehabilitation

training (2), but the treatment effects were not satisfactory.

The Committee for the Classification of Vestibular

Disorders of the Bárány Society divides the diagnostic criteria of

AUVP into four categories: 1. “Acute Unilateral Vestibulopathy,”

2. “Acute Unilateral Vestibulopathy in Evolution,” 3. “Probable

Acute Unilateral Vestibulopathy” and 4. “History of Acute

Unilateral Vestibulopathy” (1). The diagnosis of AUVP is based

on the patient’s medical history, bedside examination, and

laboratory evaluation. It is worth noting that since there is

no precise detection method for AUVP, its diagnosis needs to

exclude central lesions and various other peripheral vestibular

disorders. In addition, a pathological examination is a gold

standard for diagnosis, but it is not easy to implement clinically.

Thus, there is still a lack of ideal indicators in clinical practice.

The viral hypothesis of AUVP that Bell’s palsy and some types

of acute hearing loss are likely to be related to viral infection,

has not been confirmed so far (9–12). It has been reported that

an autopsy of patients with AUVP showed neuroinflammatory

vestibular degeneration (13). It is speculated that HSV-1, as a

concurrent factor damaging the immune system, replicates and

induces inflammation and edema, resulting in secondary cell

damage to vestibular ganglion cells and axons in bone canals,

which may also explain the therapeutic effect of steroids in the

acute phase of AUVP (1). However, these findings have not

confirmed the relationship between inflammation and virus

hypothesis and AUVP. Therefore, improving understanding

of the molecular mechanisms of AUVP is necessary to

predict prognosis and develop therapeutic strategies targeting

target genes.

With the rapid development and application of the gene

chip and sequencing technology, NCBI (National Center

for Biotechnology Information) established the GEO (Gene

Expression Omnibus, https://www.ncbi.nlm.nih.gov/geo/)

database in 2000 and maintained it. The GEO database collates

high-throughput genomic data uploaded by researchers around

the world. It is an international repository that archives and

freely distributes high-throughput gene expression data (14).

Through this database, researchers can easily download all

kinds of sequencing data to study tumors, cerebrovascular

diseases, neurodegenerative diseases, basic molecular biology,

cardiovascular diseases, neuro-otology, and other fields (15–17).

At present, research on AUVP has been reported and the

original sequencing data have been uploaded (18). Therefore,

using an online platform to integrate and analyze the existing

high-throughput data can help to mine new biological targets,

and provide big data support for follow-up experimental

research. WGCNA is a commonly used high-throughput data

analysis method to mine module information by analyzing the

similarity of gene expression (19). Compared with previous

clustering methods, WGCNA clustering has more biological

significance. It not only focuses on differentially expressed

genes (DEGs) but also makes full use of data information

to transform thousands of genes and traits into several gene

modules associated with clinical traits, thus eliminating the

problem of multiple hypothesis test correction, and the results

are more reliable.

This study aims to screen for critical biological processes and

essential genes related to the development of AUVP based on

a comprehensive bioinformatics analysis. We downloaded the

gene expression profiles of AUVP and normal blood samples.

After determining the common genes of significant modules

and differentially expressed genes (DEGs) between diseased

samples and healthy subjects, a cluster analysis and a functional

enrichment analysis of common genes were carried out to

explore the biological pathways in the processes of AUVP.

In addition, the protein-protein interaction (PPI) network of

common genes was constructed to find the potentially critical

genes in developing AUVP. The hub genes were identified by

drawing ROC curves. Finally, the functions of hub genes were

predicted through the Comparative Toxicogenomics Database

(CTD). The identified hub genes may play an essential role

in developing AUVP. These findings provide a reference for

exploring the pathological mechanism of AUVP.

Materials and methods

Data collection and data preprocessing

The keywords “Acute Unilateral Vestibulopathy,” “vertigo,”

and “Vestibulopathy” were searched through the GEO database.

Finally, the data set related to AUVP was selected as GSE146230

(18), including 10 control group samples and 10 AUVP patient
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samples. Before analyzing the dataset, we need to screen the

gene probe in the dataset. First, if the gene probe does not

have a corresponding gene, the expression of this gene probe

will be excluded; if one gene probe corresponds to multiple

genes, the face of this gene probe will be banned. If one gene

has two or more gene probes, the average expression of all

the probes corresponding to the gene in each sample will be

retained (20). As a result, 18,782 genes were included and will

be further analyzed.

Gene co-expression network
construction and identification of key
modules

When constructing the weighted gene co-expression

network, the “SD” function in R software was used to calculate

the standard deviation of each gene and arrange it in descending

order. Genes with the top 5,000 highest standard deviations

were obtained for further analysis. Pearson’s correlation

coefficient among 5,000 genes was calculated to measure the

degree of co-expression among genes. The network topology

was analyzed through the “picksoftthreshold” function in the

WGCNA package of R software. A hierarchical clustering

tree of network modules was performed, and the number of

modules was determined using the “cutreeDynamic” function

with a minimum size module of 30 genes. Finally, we used

the Dynamic Tree Cut approach to merge highly correlated

modules using a height cut of 0.25 (21). Co-expression modules

are represented by module colors, noted in the first row of

the horizontal color bar. The correlation coefficients cor and

P-values of gene modules and groups were calculated according

to Pearson’s correlation and visualized in the form of heatmap

through the “labeledheatmap” function. The smaller the p-value

and the larger the cor, the stronger correlation between AUVP

and the gene module is, and the gene module was selected as the

key module.

Identification of DEGs

First, we used the principal component analysis (PCA)

to verify the reliable data and eliminate the system error for

further analysis (22). The DEGs between patients with AUVP

and control samples were screened by the R language “Limma”

package. The selection criteria of DEGs was: | log2FC | > 0.3,

and p (T-test, Empirical Bayes methods) < 0.05 (23, 24). Fold

Change (FC) represents the considerable differences between

DEGs. The “ggplot2” package of R language was used to visualize

the DEGs.

Screening of candidate genes in AUVP

An intersection of genes in the essential module and DEGs

would be obtained by the “ggplot2” package, and the acquired

genes were the crucial genes of AUVP.

Functional enrichment analysis

A functional enrichment analysis can divide hundreds of

genes into different pathways and reduce the complexity of the

analysis. The KEGG pathway analysis and the GO enrichment

analysis of upregulated genes and downregulated genes in

DEGs, modules, and common genes were carried out by

using “cluster Profiler” of the R language, respectively (23).

The GO enrichment analysis covered three aspects of biology

namely Biological Process (BP), Cellular Component (CC), and

Molecular Function (MF). In this study, p < 0.05 was selected

as the screening condition, and the top pathways were chosen

to explore the biological signal pathways and bodily functions

of genes.

Construction of PPI

The STRING (25) (STRING, http://string.embl.de/)

database aims to collect, score, and integrate all publicly

available sources of protein-protein interaction information,

and complement these with computational predictions. PPI is

an essential component of the biological network, which plays

a vital role in cell fate determination, signal transduction, and

other life processes. It is also a vital link to the occurrence and

development of disease. A total of 332 DEGs were introduced

into the STRING database to construct the PPI network of key

genes in AUVP. The PPI network was analyzed and visualized

by Cytoscape software (http://www.cytoscape.org/), and the

CytoHubba plug-in analyzed the genes in the PPI network.

Screening of hub genes

According to the four scoring algorithms, including the

maximum neighborhood component (MNC), the density of

maximum neighborhood component (DMNC), the maximal

clique centrality (MCC), and the Degree of the CytoHubba plug-

in, each gene in the PPI network is scored. The genes were

ranked according to the level of each score (23). The top 20 genes

were selected in each algorithm, and the shared genes of the four

scoring algorithms were identified as hub genes.
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FIGURE 1

A flowchart presenting a multistep integrated bioinformatics analysis of this study.
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FIGURE 2

Identification of modules associated with the clinical subtypes of AUVP. (A) Analysis of the scale-free fit index for di�erent soft-thresholding

power. (B) Analysis of the mean connectivity for di�erent soft-thresholding power. (C) Dendrogram of all di�erentially expressed genes

clustered. (D) Heatmap of the correlation between gene modules and clinical information of AUVP.

Gene expression values of the hub genes
in AUVP

To evaluate the clinical value of four hub genes, we used

one independent GEO cohort as a validation dataset. The T-test

analyzed the differences in expression patterns of four hub genes

between patients with AUVP and normal samples, and the violin

plot using the ggplot2 (V3.3.1) package in the R (V4.0.0) was

used for visualization.

Receiver operating characteristic curve
analysis of hub genes

The “pROC” and “ggplot2” packages of R language were

used to analyze and visualize the hub gene’s ROC curve and

compare the hub gene’s diagnostic efficiency in patients with

AUVP (26). The area value (AUC) under the ROC curve is 0.5–1.

The closer the AUC is to 1, the better the diagnostic effect. AUC

has lower accuracy when 0.5–0.7, AUC has certain accuracy

when 0.7–0.9, and AUC has higher accuracy when it is above 0.9.

Exploring the common functions of hub
genes in the comparative
toxicogenomics database

CTD, a robust and publicly available database, was used

to find relevant disease associations. To explore the biological

function of hub genes, the role of hub genes was predicted

by using the CTD from two aspects of chemicals and diseases

related to hub genes (27).
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FIGURE 3

Identification of di�erentially expressed genes (DEGs) and Key genes of AUVP. (A) The principal component analysis biplot of the gene expression

profiler between patients with AUVP and control samples. (B) Volcano plot of DEGs in AUVP samples. Red: upregulated; Blue: downregulated;

Gray: normal. (C) The Venn plot of 332 common genes in the MEdarkturquoise module and DEGs. (D) The Top 50 DEGs of AUVP.
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FIGURE 4

KEGG pathway enrichment analysis. (A) Top 10 KEGG pathway enrichment results of upregulated genes in the modules. (B) Top 10 KEGG

pathway enrichment results of upregulated DEGs. (C) Top 10 KEGG pathway enrichment results of upregulated common genes. (D) Top 10

KEGG pathway enrichment results of downregulated genes in the modules. (E) Top 10 KEGG pathway enrichment results of downregulated

DEGs. (F) KEGG pathway enrichment results in downregulated common genes. KEGG, Kyoto encyclopedia of genes and genomes; DEGs,

di�erentially expressed gene.

Statistical analyses

WGCNA (version 1.69) and limma (version 1.9.6) was

running in R (version 4.0.2) with the default statistics parameter

and cut-off values specified in each section. p < 0.05 was defined

as statistically significant.

Results

Figure 1 presents a multistep integrated bioinformatics

analysis of this study.

Weighted co-expression network
construction and key module
identification

The β (β = 20, R2 = 0.89) value was selected to ensure the

constructed scale-free co-expression network (Figures 2A,B).

After successfully constructing the scale-free co-expression

network, using the algorithm recognition module of the

dynamic cut tree, the gene expression value in the module is very

similar. After the highly similar modules were merged, a total of

11 co-expressionmodules were identified, while the graymodule

retained the genes that were not co-expressed (Figure 2C). After

the module was cut, the grouping was combined with each

module, and the heat map of the correlation between the module

and the group was calculated using the “labeled heatmaps”

function of the WGCNA package. The results showed that the

correlation between the MEdarkturquoise module and patients

with AUVP was the greatest, and the p-value was the smallest, so

there was a significant correlation between theMEdarkturquoise

module and patients with AUVP (Figure 2D). The 861 genes in

the MEdarkturquoise module will be analyzed.

Identification of DEGs

In this study, the quality control (QC) of data was assessed

by the principal component analysis (PCA) (Figure 3A). The

DEGs between patients with AUVP and control samples were

screened by the R language “limma” package. The selection

criteria of DEGs are: | log2FC | > 0.3, p < 0.05. As shown

in Figure 3B, 776 differential genes were obtained, including
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615 upregulated and 161 downregulated genes, red indicates

upregulated genes, blue indicates downregulated genes, and gray

indicates non-differential genes.

The “ggplot2” package of R software was used to intersect the

genes in the key modules and DEGs, and 332 key genes of AUVP

TABLE 1 KEGG analysis of upregulated common genes in AUVP.

ID Description Count p-value

hsa04330 Notch signaling pathway 8 0.0000191

hsa05135 Yersinia infection 11 0.0000825

hsa04610 Complement and

coagulation cascades

8 0.000267237

hsa05134 Legionellosis 6 0.000877613

hsa05417 Lipid and atherosclerosis 12 0.001148697

hsa05169 Epstein-Barr virus infection 11 0.002235012

hsa04722 Neurotrophin signaling pathway 8 0.002467031

hsa05120 Epithelial cell signaling in

Helicobacter pylori infection

6 0.002566374

hsa04520 Adherens junction 6 0.002758126

hsa05131 Shigellosis 12 0.003666819

were obtained (Figure 3C). The “ComplexHeatmap” package of

R language was used to visualize the expression level of the Top

50 DEGs (Figure 3D).

Functional enrichment analysis

The KEGG pathway was analyzed to explore the biological

function of upregulated genes and downregulated genes in

DEGs, modules, and common genes. As shown in Figures 4A–

C, the up regulated genes in DEGs, modules, and common

genes were mainly enriched in Yersinia infection, Neutrophil

extracellular trap formation, Epstein-Barr virus infection,

complement and coagulation cascades, neurotrophin signaling

pathway, legionellosis, and epithelial cell signaling in the

Helicobacter pylori infection (Table 1). The downregulated

genes in DEGs, modules, and common genes were mainly

enriched in systemic lupus erythematosus, alcoholism,

neutrophil extracellular trap formation, and viral carcinogenesis

(Figures 4D–F; Supplementary Table S1). In addition, after the

GO analysis of upregulated genes and downregulated genes in

DEGs, modules, and common genes, it was found that these

genes were mainly enriched in biological functions related to

FIGURE 5

GO enrichment analysis. (A) GO enrichment of upregulated genes in the modules. (B) GO enrichment of upregulated DEGs. (C) GO enrichment

of upregulated common genes. (D) GO enrichment of downregulated genes in Modules. (E) GO enrichment of downregulated DEGs. (F) GO

enrichment of downregulated common genes. DEGs, di�erentially expressed genes; GO, gene ontology.
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TABLE 2 GO analysis of upregulated common genes in AUVP.

ID Ontology Description Count p-value

GO:0002274 BP Myeloid leukocyte activation 17 2.07E-07

GO:0042060 BP Wound healing 23 4.47E-07

GO:1903131 BP Mononuclear cell differentiation 23 5.25E-07

GO:0002366 BP Leukocyte activation involved in immune response 18 8.16E-07

GO:0030098 BP Lymphocyte differentiation 21 9.60E-07

GO:0030667 CC Secretory granule membrane 32 7.12E-17

GO:0070820 CC Tertiary granule 22 2.29E-14

GO:0101002 CC Ficolin-1-rich granule 23 3.08E-14

GO:0101003 CC Ficolin-1-rich granule membrane 14 6.59E-13

GO:0042581 CC Specific granule 18 1.10E-10

GO:0004875 MF Complement receptor activity 4 3.29E-05

GO:0017124 MF SH3 domain binding 10 4.45E-05

GO:0004674 MF Protein serine/threonine kinase activity 19 0.000108993

GO:0004712 MF Protein serine/threonine/tyrosine kinase activity 19 0.000174533

GO:0019003 MF GDP binding 7 0.000204491

inflammation and regulation of immune response. The GO

analysis of upregulated genes in DEGs, modules, and common

genes was primarily enriched in myeloid leukocyte activation,

leukocyte activation involved in immune response, lymphocyte

differentiation, secretory granule membrane, tertiary granule,

complement receptor activity, and immune receptor activity

(Figures 5A–C; Table 2). The GO analysis of downregulated

genes in DEGs, modules, and common genes was mainly

concentrated in the cell growth process metabolic pathway and

so on (Figures 5D–F; Supplementary Table S2).

Construction of PPI and screening hub
genes identification

In this study, 332 key genes of AUVP were introduced

into the online STRING database to construct the interaction

between differential gene proteins. The PPI network between

332 genes had 156 nodes and 232 edges (Figure 6A). The

CytoHubba plug-in of Cytoscape software was used to screen

the hub genes among the 332 key genes of AUVP. According to

the four scoring algorithms of MNC, DMNC, MCC and Degree

of the CytoHubba plug-in, each gene in the PPI network was

scored, and the genes were sorted according to the score of

each algorithm. The first 20 genes are selected in each algorithm

(Figures 6B–E), and the genes obtained by intersection are

determined to be the hub genes of AUVP. Finally, four hub genes

were obtained (Figure 6F). Pearson’s correlation coefficient and

correlation significance p-value among four hub genes are

shown in Figure 6G.

Hub genes identification

The expression patterns of 4 hub genes between AUVP

patients and normal samples demonstrated that LILRB2, FPR1,

AQP9, and LILRA1 were increased in AUVP (p < 0.05)

(Figures 7A–D). ROC curve analysis was performed with the

“pROC” package to compare the diagnostic efficacy of four

hub genes in patients with AUVP. LILRB2, FPR1, AQP9,

and LILRA1 have sure accuracy in diagnosing AUVP (0.9

> AUC > 0.7, Figures 7E–H). More details of the four hub

genes are listed in Table 3. Therefore, LILRB2, FPR1, AQP9,

and LILRA1 can be used as hub genes in the pathogenesis

of AUVP.

Exploring the common functions of hub
genes in the comparative
toxicogenomics database

We can access this information by searching for target

genes and looking up the chemicals and disease linked

to the four hub genes in the CTD. The four hub genes

were related to chemicals Benzo(a)pyrene and antirheumatic

agents (Figure 7I). In addition, inflammation, necrosis, and

hepatomegaly have strong links with the four hub genes in

CTD (Figure 7J). This indicated that chemicals [benzo(a)pyrene

and antirheumatic agents] and diseases (inflammation, necrosis,

and hepatomegaly) play a significant role in the initiation and

progression of the AUVP.
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FIGURE 6

Hub genes identification. (A) Construction of PPI using 332 genes. (B) The Top 20 gene of MNC algorithm in PPI. (C) The Top 20 genes of DMNC

algorithm in PPI. (D) The Top 20 genes of MCC algorithm in PPI. (E) The Top 20 genes of Degree algorithm in PPI. (F) The Venn plot of the

intersection between four algorithms. (G) Pearson’s correlation coe�cient and correlation significance p-value among four hub genes of AUVP.

MNC, maximum neighborhood component; DMNC, density of maximum neighborhood component; MCC, maximal clique centrality.
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FIGURE 7

Exploring the functions of four hub genes. (A) Expression of LILRB2 mRNA among Normal and AUVP. (B) Expression of FPR1 mRNA among

Normal and AUVP. (C) Expression of AQP9 mRNA among Normal and AUVP. (D) Expression of LILRA1 mRNA among Normal and AUVP. (E) ROC

curve validated the sensitivity and specificity of LILRB2 as a predictive biomarker for AUVP prognosis. (F) ROC curve validated the sensitivity and

specificity of FPR1 as a predictive biomarker for AUVP prognosis. (G) ROC curve validated the sensitivity and specificity of AQP9 as a predictive

biomarker for AUVP prognosis. (H) ROC curve validated the sensitivity and specificity of LILRA1 as a predictive biomarker for AUVP prognosis. (I)

The Venn plot of the four hub genes related to chemicals in the CTD. (J) The Venn plot of the four hub genes related to diseases in the CTD (*p

< 0.05; **p < 0.01; ns, the di�erence is not statistically significant; CTD, Comparative Toxicogenomics Database).

Discussion

AUVP is the third inducing factor of secondary functional

dizziness, second only to BPPV and vestibular migraine (1).

Although many physiological and pathological mechanisms and

etiological hypotheses of AUVP have been reported, the true

etiology of AUVP is still unknown. Therefore, it is urgent

and necessary to improve the understanding of the molecular

mechanisms of AUVP and develop therapeutic strategies that

aim at the targeting gene. First, the dataset of AUVP samples

was analyzed by WGCNA R-package to obtain the relationship

between the twelve gene expression modules and the clinical

phenotype (group). It was found that the MEdarkturquoise

module had the most considerable significant difference among

all modules. Another method was used to perform the DEGs

on the samples by the “limma” package, and 776 DEGs

were screened. The common genes of the MEdarkturquoise

module and 776 DEGs would be further analyzed. KEGG

pathway analysis results suggest that the pathologies of AUVP

may probably be associated with bacterial and viral infection
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TABLE 3 The hub genes in Acute Unilateral Vestibulopathy.

Gene GeneCards identifier* Full name of the gene Gene-related diseases*

LILRB2 GC19M066340 Leukocyte Immunoglobulin Like Receptor B2 Hymenolepiasis

FPR1 GC19M051745 Formyl Peptide Receptor 1 Susceptibility To Localized Juvenile Periodontitis;

Periodontitis, Aggressive; Pulmonary Coin Lesion;

Diamond-Blackfan Anemia 2 (DBA2);

Aggressive Periodontitis.

AQP9 GC15P058138 Aquaporin 9 Hydrarthrosis; Polyhydramnios; Infective Endocarditis;

Bullous Keratopathy; Constipation.

LILRA1 GC19P054593 Leukocyte Immunoglobulin Like Receptor A1 Immune System

*From the GeneCards database (www.genecards.org).

pathways. The results of GO analysis indicated that AUVP

might be related to the inflammatory response and regulation

of immune response. Then constructed PPI network and four

hub genes were identified by the Cytoscape software using four

scoring algorithms of the CytoHubba plugin (MNC, DMNC,

MCC, and Degree). It is reported that biological networks are

heterogeneous, so it is reasonable to use more than one method

of CytoHubba to screen the hub genes, and it was also found

that the essential proteins filtered by the four algorithms of

MNC, DMNC, MCC, and Degree have a better performance on

the precision than the other methods (28). ROC curve analysis

suggests that four hub genes have certain accuracy in diagnosing

AUVP (0.9 > AUC > 0.7). Finally, the four hub genes of AUVP

identified by the two methods were LILRB2, FPR1, AQP9, and

LILRA1. Therefore, we believe that the four hub genes and

inflammation play a vital role in the pathogenesis of AUVP.

Next, the four hub genes will be used as the entry point to explore

the role of inflammation in the pathogenesis of AUVP.

As for the viral infection of vestibular neuronitis, some

researchers believe that viruses causing upper respiratory

tract infection, such as influenza virus, adenovirus, herpes

simplex virus (HSV), cytomegalovirus, Epstein Barr virus, and

parainfluenza virus, are related to vestibular neuronitis because

43 and 46% of patients with vestibular neuronitis have shown

previous or concurrent viral infection of the upper respiratory

tract (29). HSV-1 is the most common cause of vestibular

nerve and ganglion virus infection among them. The autopsy

showed that HSV-1 DNA, CD8+T lymphocytes, cytokines, and

chemokines were present in two-thirds of human vestibular

ganglia (30), and injection of HSV-1 into a mouse model

resulted in vestibular dysfunction of infected vestibular ganglion

cells, such as vestibular neuritis (9, 30). Vestibular neuro virus

infection or anterior vestibular artery ischemia is cause of

vestibular neuritis. In addition, recent studies on the immune-

mediated mechanism as the etiology of vestibular neuritis have

been reported (9, 29, 30); the immune imbalance between T-

helper cells and T- suppressor cells is associated with vestibular

neuritis, similar to that observed in multiple sclerosis (9, 29). In

addition, the functional enrichment analysis results of this study

suggest that bacterial and viral infections are associated with

AUVP development, including Epstein-Barr virus infection,

Yersinia infection, legionellosis, and epithelial cell signaling in

Helicobacter pylori infection. Inflammation and regulation of

immune response also have been involved in the initiation and

progression of AUVP. Therefore, the inflammation and immune

response caused by virus infection may play an essential role in

the pathogenesis of AUVP.

The previous study of the GSE146230 dataset has shown

that the neutrophil-mediated immune pathway promotes

AUVP development by mediating thrombotic changes and

inflammation in vestibular organs with one bioinformatics

method (18). In the current study, bioinformatic analyses were

performed two times using two independent methods, and

four hub genes were identified and validated. Among them,

LILRA1 (CD86i, LIR6), a group I receptor that binds to HLA-

C free heavy chains, has a lower affinity than LILRB1 and

LILRB2 (31). The expression of LILRA1 is found on monocytes

and macrophages. Anti-LILRA1 monoclonal antibody (clone

m467) does not bind neutrophils (32). Additionally, LILRA1-

specific peptides were not detectable in most proteomics studies

of neutrophil-derived products. This indicates neutrophils

expressed no or very little LILRA1 (33). LILRB2 (LIR2,

CD85d, and ILT4), which contains four Ig-like domains, is a

receptor for classical and non-classical HLA-I molecules (34–

37). One study localized the expression of LILRB2 to particles.

It showed that neutrophils were stimulated with fMLP, PS,

or TNF α, resulting in upregulation of LILRB2 expression,

which was accompanied by exocytosis of granules (38). The

degranulation and phagocytosis of neutrophils were inhibited

by cross-linking LILRB2 and HLA-G (38). During mid-and late-

activation phases of the neutrophil lifecycle, LILRB2 modulates

immune responses (33). FPR1 and its variants FPR like 1

(FPRL1) plays a critical role in cell proliferation, angiogenesis,

and signaling pathways of neuroinflammation (39). In recent

years, many pharmacological studies have demonstrated that

FPR1 can effectively control neuroinflammation by inhibiting
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the production of various proinflammatory mediators, such

as TNF-α and IL-1β, otherwise inducing IL-10 and IL-1RA

expression (40). In the course of demyelination, FPR1 causes

and maintains glial cell activation. Therefore, FPR1 is an

essential component of innate immunity in chronic degenerative

diseases such as multiple sclerosis (41). AQP9 seems responsible

for neutrophil migration, as Aqp9-KO mice show reduced

neutrophil migration to fMLP (42, 43). Patients with systemic

inflammatory response syndrome (SIRS) show increased AQP9

expression in neutrophils compared to healthy controls (42,

44). It has been reported that AQP9 expression in astrocytes,

ependymocytes, tanycytes, endothelial cells of pial vessels, and

dopaminergic neurons of the midbrain in the CNS (45, 46).

Although there were few research reports on the role of four

hub genes in AUVP, as discussed above, we found that all four

hub genes are related to inflammation in the CTD database.

Therefore, the four hub genes are also related to neutrophils,

modulate immune responses, and express on immune cells.

They could be used as the entry point to explore the role

of inflammation, immune responses, and Immune cells in the

development of AUVP.

Furthermore, our research also has some limitations. The

four hub genes screened in this study have not been verified

by experiments, for the time being, we will use four hub genes

as a breakthrough point to design a new topic and study the

specific role of four hub genes in AUVP. Our analysis results

are based on a small sample size, which may not provide

sufficient evidence to support our hypothesis. More samples

need to be further studied to determine the accuracy of hub

genes in the diagnosis of AUVP and the relationship between

hub genes level and future treatment patterns, and to determine

the immune and inflammation-related pathological mechanisms

behind AUVP.

Conclusion

To sum up, the vestibular neurons are damaged following

bacterial and viral infection. Then inflammation and immune

responses are activated as well as immune proteins like

LILRB2, FPR1, AQP9, and LILRA1 are produced in patients

with AUVP to regulate their immune responses. However,

the related mechanism still needs to be further explored.

Although some reports suggest that viral infection is

more critical in AUVP, we believe that bacterial infection

may be equally important in the pathogenesis of AUVP.

Therefore, the inflammation and immune response play

a vital role in developing AUVP. Though it is still not

clear about the specific position and mechanism of four

hub genes in AUVP, the high expression levels suggest

that they would be an essential target for AUVP diagnosis

and treatment.
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