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Abstract

Background: Breast cancer is the main cause of mortality among women. The disease presents high recurrence
mainly due to incomplete efficacy of primary treatment in killing all cancer cells. Photodynamic therapy (PDT), an
approach that causes tissue destruction by visible light in the presence of a photosensitizer (Ps) and oxygen,
appears as a promising alternative therapy that could be used adjunct to chemotherapy and surgery for curing
cancer. However, the efficacy of PDT to treat breast tumours as well as the molecular mechanisms that lead to cell
death remain unclear.

Methods: In this study, we assessed the cell-killing potential of PDT using methylene blue (MB-PDT) in three breast
epithelial cell lines that represent non-malignant conditions and different molecular subtypes of breast tumours.
Cells were incubated in the absence or presence of MB and irradiated or not at 640 nm with 4.5 J/cm2. We used a
combination of imaging and biochemistry approaches to assess the involvement of classical autophagic and
apoptotic pathways in mediating the cell-deletion induced by MB-PDT. The role of these pathways was investigated
using specific inhibitors, activators and gene silencing.

Results: We observed that MB-PDT differentially induces massive cell death of tumour cells. Non-malignant cells
were significantly more resistant to the therapy compared to malignant cells. Morphological and biochemical
analysis of dying cells pointed to alternative mechanisms rather than classical apoptosis. MB-PDT-induced
autophagy modulated cell viability depending on the cell model used. However, impairment of one of these
pathways did not prevent the fatal destination of MB-PDT treated cells. Additionally, when using a physiological 3D
culture model that recapitulates relevant features of normal and tumorous breast tissue morphology, we found that
MB-PDT differential action in killing tumour cells was even higher than what was detected in 2D cultures.

Conclusions: Finally, our observations underscore the potential of MB-PDT as a highly efficient strategy which
could use as a powerful adjunct therapy to surgery of breast tumours, and possibly other types of tumours, to
safely increase the eradication rate of microscopic residual disease and thus minimizing the chance of both local
and metastatic recurrence.
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Background
Breast cancer is a worldwide health problem for women,
it is the first in incidence and the second in mortality
among all cancer types, even with all recent techno-
logical advancements [1]. Early intervention is impactful,
but a large number of patients still relapse even after
years of apparent cure. The challenges in combating the
disease relies on the intrinsic tumour resistance proper-
ties, molecular heterogeneity, and metastasis [1–3]. The
molecular subtypes of breast cancers are defined based
on the presence of oestrogen receptors (ER), progester-
one receptors (PR), and human epidermal growth factor
receptor-2 (HER2). About 20% of breast cancers are
negative for ER, PR and HER2 expression (Triple-Nega-
tive Breast Cancer; TNBC) displaying aggressive patho-
logical features and high rates of metastasis and
recurrence [4–6]. For TNBC patients, the only current
option is a non-targeted chemo and/or radiotherapy in
order to extend the survival of patients, but does not re-
liably prevent a secondary disease [7].
Photodynamic therapy (PDT) is a promising alterna-

tive treatment for controlling malignant diseases [8–10].
PDT is based on the photooxidation of biological matter;
the treatment involves the uptake of a photosensitizer
(Ps) followed by illumination with light of an appropriate
wavelength that is able to excite the Ps and trigger
photochemical reactions that generate reactive oxygen
species, such as singlet oxygen (1O2), and radicals that
lead to cell death [11]. The advantages of PDT compared
with surgery, chemotherapy, or radiotherapy are the re-
duced long-term morbidity and the fact that PDT does
not compromise other treatment options [11]. This ther-
apy has been used as an experimental treatment modal-
ity in many countries for a number of cancers [12, 13].
In particular for non-superficial tumours, PDT appears
promising in the treatment of high recurrence types of
cancer. Indeed, it has been recently shown that PDT in
combination with surgery in orthotopically implanted
human pancreatic cancer in a nude mouse model was
highly effective in eliminating microscopic disease in the
post-surgical tumour bed as well as in preventing local
and metastatic recurrence [14, 15].
For a variety of reasons, which include lack of studies

on its efficacy and safety, as well as detailed mechanistic
information, PDT is not a common type of treatment
[12, 16, 17]. To overcome this scenario, many studies
using PDT focus on the enhancement of Ps efficiency or
in developing target-based PDT [18, 19]. However, be-
cause of the complexity of biological systems and un-
known possible biological targets, details of how PDT
operates are still elusive [13, 20]. Several approaches
have also been developed using phenothiazinium deriva-
tives, such as methylene blue (MB), as a new treatment
strategy, leading to a PDT protocol which is efficient

and also inexpensive [21–25]. In addition to the low cost
and commercial availability, the use of MB is also inter-
esting because it has been safely used for decades in
other clinical applications [21, 22, 26, 27].
In this study, we set out to explore the effectiveness of

PDT using MB as Ps (MB-PDT) in different human
breast cell lines, as well as the molecular mechanisms
related to cell death. We demonstrated that MB-PDT is
selective in inducing massive cell destruction of malig-
nant cells, especially TNBC cells. We also observed that
apoptosis is not the predominant route of cell death in-
duced by MB-PDT. Finally, by using a tridimensional
(3D) cell culture model, we confirmed the effectiveness
of MB-PDT in selectively eliminating tumour cells while
not affecting normal-like cells.

Methods
Cell cultures
Non-tumorigenic human MCF-10A (ATCC CRL-10317™)
breast cell line was maintained in phenol red-free Dulbec-
co’s Modified Eagle’s Medium/Nutrient F-12 Ham
(DMEM-F12; Sigma-Aldrich, St. Louis, MO, USA) supple-
mented with 5% heat-inactivated horse serum (Vitrocell
Embriolife, Campinas, Sao Paulo, Brazil), insulin (10 μg/
ml; Sigma-Aldrich), cortisol (500 ng/ml; Sigma-Aldrich),
cholera enterotoxin (100 ng/ml; Sigma-Aldrich), and epi-
dermal growth factor (20 ng/ml; Sigma-Aldrich). Human
breast adenocarcinoma cell line MCF-7 (ATCC HTB-22™)
was maintained in phenol red-free Dulbecco’s Modi-
fied Eagle’s Medium/Nutrient F-12 Ham (DMEM-F12;
Sigma-Aldrich) supplemented with 10% heat-
inactivated foetal bovine serum (FBS) (Vitrocell
Embriolife). Human breast adenocarcinoma cell line
MDA-MB-231 (ATCC HTB-26™) was cultured in phe-
nol red-free Roswell Park Memorial Institute Medium
Modified (RPMI 1640; Sigma-Aldrich) supplemented
with 10% FBS (Vitrocell Embriolife). All cultures were
maintained at 37 °C under water-saturated atmosphere
containing 5% CO2. For the 3D culture assays, (2x104/cm2)
cells were seeded on top of lamin-rich extracellular matrix
gels (lrECM);commercially available as Matrigel (BD Biosci-
ences, San Jose, CA, USA)- in phenol red-free medium
supplemented with 2.5% serum and 5% lrECM and
maintained for four days after treatments [28]. All 2D as-
says were also performed in 2.5% serum-supplemented
medium.

Photodynamic treatment
Phenotiazonium salt, MB (Labsynth Products, São Paulo,
Brazil) was used as Ps to perform the PDT treatment.
Cells were incubated for 2 h with 0.2, 2 or 20 μM MB,
in phenol red-free medium supplemented with 2.5% FBS
and maintained in these conditions during both irradi-
ation as well as post-treatment times (1, 3 and 24 h).
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The whole microplate was irradiated with a light emit-
ting diode (LED) array, with maximum emission wave-
length at 640 nm, corresponding to total light doses of
4.5 J/cm2. Control experiments such as cells neither ex-
posed to the Ps nor to light (control); cells not exposed
to the Ps but washed and exposed to light (phototoxic-
ity); and cells exposed to the Ps alone without irradiation
(dark toxicity) were performed in all experiments.

Cell viability assay and morphological studies
4 × 104 cells/cm2 were plated and maintained in control
conditions or exposed to MB-PDT and then stained with
the DNA-binding dyes Propidium iodide (PI, Sigma-
Aldrich) and Hoechst 33342 (HO, Sigma-Aldrich) for
10 min. Following incubation, the percentage of viable
and dead cells was determined using an inverted fluores-
cence microscope (Nikon Eclipse Ti, Kyoto, Japan) with
20x of magnification. Tri-dimensional cell cultures were
transferred to a glass slide and visualized using a con-
focal microscope (Axiovert 200 LSM 510 Laser and
Confocor Modules, Carl Zeiss, Göttingen, Germany)
equipped with water immersion objective (40X). Fluores-
cence of labelled cells was detected using laser 461 nm
and 545 nm for excitation of HO and PI respectively.
The cultures were evaluated according to: the total num-
ber of cells, determined by counting the nuclei stained
with HO; and the number of dead cells determined by
the number of nuclei stained with PI or by brightly HO
(condensed chromatin) [29]. A minimum of 500 cells
was counted in each experimental condition. Results
were expressed as percentage of dead cells.

Intracellular methylene blue quantification
1 × 105 cells/cm2 were plated and incubated with 5 mL
of medium containing MB (20 μM) and maintained for
1, 2, 4, 6 and 8 hours. At each time point, the super-
natant was discarded and the cells were washed twice
with PBS and then 1 mL of 50 mM SDS was added to
promote lysis of the cell membrane. The supernatant
was collected and absorbance was measured at the wave-
length of maximum absorption of the MB solution used
(655 nm). The incorporation of MB was determined by
correcting the absorbance of MB by the number of cells
remaining in each well after the incubation period.

Intracellular singlet oxygen generation
Singlet oxygen measurements were performed in a spe-
cially designed Edinburgh F900 instrument (Edinburgh,
UK) consisted of a Rainbow OPO (Quantel Laser-France)
10Hz, 2 mJ/pulse, which was pumped by a Brilliant Nd-
YAG laser (Quantel Laser-France) and equipped with a
cuvette holder, a silicon filter, monochoromator, a liquid-
nitrogen-cooled NIR PMT (R5509) (Hamamatsu Co.,
Bridgewater, NJ, USA) and a fast multiscaler analyser card

with 5 ns/channel (MSA-300; Becker & Hickl, Berlin,
Germany). The cells were seeded in six-well plates (4x105

cells/well) and after 24 h were incubated with MB for 2 h.
The cells were washed in PBS, removed from the plates
using trypsin solution, centrifuged and suspended in D2O
saline solution and were directly excited at 664 nm inside
a fluorescence quartz cuvette. We obtained 1O2 emission
spectra by measuring emission intensities from 1200 to
1348 nm with 1 to 5 nm steps. The intensities of the near
infrared (NIR) emission peak (centred at 1275 nm) are
correlated with the amount of 1O2 generated.

Glutathione quantification
Reduced glutathione (GSH) was quantified as previously
described by Kand’ár et al [30] with minor modifications.
Cells were seeded in Petri dishes (100 mm) at an initial
density of 2.6 × 106 cells/Petri dish. After 48 h the cells
were washed in PBS, removed from the plates using
0.1% trypsin, centrifuged and suspended in deionized
water. An aliquot was separated for cell count before
lysis with 0.15% polidocanol (Sigma-Aldrich). For pro-
tein precipitation, samples were incubated with cold 10%
metaphosphoric acid (10 min, 4 °C), centrifuged (22,000
x g, 15 min, 4 °C) and supernatants were collected. The
supernatant was diluted 20 folds in 100 mM phosphate
buffer pH 8.9 containing 0.1 mM diethylene triamine
pentaacetic acid (DTPA, Sigma-Aldrich). Twenty micro-
liters of this sample were diluted to 320 μL in a 100 mM
phosphate buffer pH 8.0 containing 0.1 mM DTPA. De-
rivatization was performed by adding 20 μL of 148 mM
orthophthaldehyde (OPA, Sigma-Aldrich) to this solu-
tion. The reaction was incubated at 25 °C for 15 min in
dark. The samples were then filtered through a 0.22 μm
polyvinyl difluoride (PVDF) filter and injected onto high
performance liquid chromatography (HPLC). The GS-
OPA product was separated in a VP-ODS/C8/Phenyl
column (250 mm × 4.6 mm × 4.6 μm, Shimadzu, Kyoto,
Japan). The HPLC was equipped with two LC-20AT
solvent delivery systems, SIL-20 AC HT autosampler,
CTO-20HC column oven, RF-20A fluorescent detector
and CBM-20A system controller (Shimadzu, Kyoto,
Japan). The separation was achieved using an isocratic
elution of 15% methanol in 85% 25 mM Na2HPO4

(Merck, Darmstadt, German) pH 6. The flow rate was
constant at 0.5 mL/min 37 °C. Fluorescent GS-OPA was
monitored with a ex 350 nm and em 420 nm. The
peak area was plotted against an external GS-OPA
standard curve previously derivatized with pure GSH
(Sigma-Aldrich). Results were presented as pmol/cell.

Intracellular MB localization
We used confocal microscopy to characterize the subcel-
lular localization of MB. To this end, we compared the
fluorescence arising from cell cultures simultaneously
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incubated in the presence of MB and standard fluores-
cent markers of organelles. MitoTracker Green (Invitro-
gen, Paisley, UK) was used as a mitochondrial marker,
LysoTracker Green (Invitrogen) as a lysosome marker
and HO as a marker for the cell nucleus. Confocal im-
ages were taking using a laser scan microscope (LSM) -
510 from Zeiss using 1.2 N.A. 40x water immersion or
1.4 N.A. 63x oil immersion objective lenses. The laser
and filter settings were: laser lines for MB = 633, Lyso =
488 and Hoechst 33342 = 364; beam splitter = HFT UV/
488/543/633; emission filters for MB: 651-704, Lyso =
501-554 and Hoechst 33342 = 435-485. The imaging set-
tings were: zoom = 1, dimensions = 512x512 pixels,
image depth = 16 bit, averaging signal = 2 and optical
section thickness = 2 μm. Images had their brightness
and contrast adjusted for the figures and were analysed
with ImageJ Software (National Institutes of Health).

Detection of acidic vesicles in live cells using acridine
orange
Acridine orange (AO) is a weak base that can accumu-
late in acidic spaces and emits bright red fluorescence.
The intensity of the red fluorescence is proportional to
the pH of the cellular acidic compartments [31]. In
order to detect and quantify acidic vesicle formation
during the process of autophagy, 4x104 cells/cm2 were
plated and then subjected or not to MB-PDT. Cells were
then washed with PBS and stained with AO (Sigma Al-
drich) at a final concentration of 5 μg/ml for 10 min at
37 °C in the dark. After a washing step, live cells were vi-
sualized using an inverted microscope for transmitted
light and epifluorescence (Axiovert 200, Carl Zeiss)
equipped with a C-APOCHROMAT 40×/1.20 M27 ob-
jective (Zeiss™). Fluorescence of AO-stained vesicles was
detected by using a filter set 09 (Zeiss™) that provides an
excitation band pass (BP) of 450-490 nm with emission
long pass (LP) of 515 nm.

Inhibition of signaling pathways
4.0 × 104 cells/cm2 were plated and incubated with each
inhibitor in the presence or in the absence of MB for
2 h, in a 5% CO2 humidified atmosphere at 37 °C. Cells
were then subjected or not to light irradiation as de-
scribed above. Apoptosis was inhibited by using a spe-
cific caspase-3 inhibitor (100 nM Caspase-3 Inhibitor VI;
Calbiochem, La Jolla, CA, USA), a pan-caspase inhibitor
(20 μM Z-VAD-FMK; Calbiochem) or a BAX inhibitor
(10 μM; Tocris, Ellisville, MO, USA). Autophagy was ac-
tivated using mTOR inhibitor rapamycin (20 nM; Cell
Signaling Technology, Danvers, MA, USA) or inhibited by
using either PI3-kinase inhibitor LY294002 (50 μM;
Tocris), class III PI3K inhibitor 3-MA (5 mM; Calbio-
chem), chloroquine (5 μM; Sigma-Aldrich) or bafilomycin
A1 (50 nM; Calbiochem). We analysed the dose-response

and toxicity of each inhibitor and we used the highest
concentration that presented no cytotoxicity in the control
conditions for each cell line.

Transient oligonucleotide transfection
The siRNA used in this study was a Silencer pre-designed
siRNA (Invitrogen) of sequence 5’GCUCUGCCUUG-
GAACAUCAtt 3’. “AllStars negative control siRNA” (Qia-
gen, Venlo, Netherlands) was used as a negative siRNA
control of scrambled sequence (siCTR). Transfection of
siRNA was done using the lipid carrier Lipofectamine
RNAiMAX (Invitrogen). Lipid-RNA complexes were
formed in Opti-MEM (Invitrogen) in a proportion of
0.6 μl of Lipofectamine to 0.45 μl of 20 μM siRNA, at
room temperature for 20 min and were further added to
cells in antibiotic-free medium to reach a final volume of
300 μl for overnight transfection. Cells were maintained in
culture for a 24-h recovery period before experiments
were carried out. The efficiency of transfection/silencing
was validated by Western blot, with at least 60% of
inhibition.

Western blots
Total protein extracts were prepared from each culture
subjected to the treatments described above. Equal
amounts (100 μg) of protein from each extract were sol-
ubilized in sample buffer (60 mM Tris-HCl [pH 6.8], 2%
SDS, 10% glycerol, 0.01% bromophenol blue) and sub-
jected to SDS-PAGE (16%). Proteins were transferred to
PVDF membranes, incubated with Blocking Buffer solu-
tion (Thermo Fisher Scientific) and 5%BSA 1:1, and then
incubated with the following antibodies: rabbit poly-
clonal anti-BAX (2772), rabbit polyclonal anti-BCL2
(2876) (all from Cell Signaling Technology), rabbit poly-
clonal anti-LC3 (L8918) and mouse monoclonal anti-
alpha-tubulin clone B-5-1-2 antibody (T5168) (all from
Sigma-Aldrich) as a loading control. Membranes were
then incubated with horseradish peroxidase-
conjugated secondary antibody (Vector Laboratories,
Burlingame, CA, USA). Enhanced chemiluminescence
was performed according to the manufacturer’s in-
structions (Amersham Biosciences, Little Chalfont,
UK). Quantitative densitometry was carried out using
the ImageJ software (National Institute of Health
[NIH]). The volume density of the chemiluminescent
bands was calculated as integrated optical density ×
mm2 after background correction.

Caspase-3, caspase-7, caspase-8 and caspase-9 activity
assays
4 × 106 cells were collected and caspase activity was
measured using a specific fluorimetric assay (BioVision
Research Products, Mountain View, CA, USA). The re-
actions were started at 37 °C by incubating 50 μg of total
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protein extracts with a specific caspase substrate (50 μM
DEVD-AFC, 50 μM IETD-AFC or 50 μM LEHD-AFC
for caspase-3 and -7; -8 and -9, respectively; BioVision),
following the manufacturer’s instructions. Protease ac-
tivity was evaluated at an excitation wavelength of
400 nm and an emission wavelength of 505 nm using
a 96-well plate spectrofluorometer (Spectra MAX M2;
Molecular Devices, Sunnyvale, CA, USA). Total pro-
tein extracts from Min6 cells exposed to either ve-
hicle or a combination of pro-inflammatory cytokines
which induced a significant and well documented de-
gree of apoptosis [32–35], were always included as a
positive control for caspase-3, -7, -8 and -9 activity
assays, in each experiment performed. Caspase-3, -7,
-8 and -9 activities were expressed as arbitrary fluor-
escence units per 50 μg of total protein (At least 3
independent experiments were performed in triplicate
for each condition).

Statistical analysis
All results were analysed for Gaussian distribution and
passed the normality test. The statistical differences be-
tween group means were tested by One-way ANOVA
followed by Tukey post-test for multiple comparisons.
A value of p < 0.05 was considered as statistically
significant.

Results
MB-PDT selectively induces cell death in breast cancer
cells, whereas not significantly affecting non-malignant
cells
Taking into account the heterogeneity of the most com-
mon breast cancer types and also to test the possible cyto-
toxic effects of MB-PDT in normal-like cells, we used the
following human breast epithelial cell lines: MCF-7, an
ER, PR and HER-2-positive, luminal A cell line; MDA-
MB-231, a TNBC cell line; and MCF-10A, a normal-like
cell line. Figure 1 (a and b) shows time curves of cell death
after MB-PDT with 2 or 20 μM MB followed by irradi-
ation with 4.5 J/cm2. The treatment consistently had a
higher impact in the malignant cell lines and presented a
maximal effect 24 h after irradiation in the presence of
20 μM MB. The TNBC cells showed the highest rate of
cell death (24 h: 98.6% ± 0.5%), followed by MCF-7 cells
(93.0 ± 5.2%) and then by the normal-like MCF-10A cells
(52.2% ± 3.8%). Additionally, unlike the exponential in-
crease in cell death over time presented by the other cell
lines, in the presence of the highest MB concentration,
MDA-MB-231 cells reached the maximal percentage of
photodynamic destruction at earlier time points (1 h).
Using the lower concentration of MB, we detected that

the normal-like cells were even less sensitive to MB-
PDT (24 h: 18.0% ± 7.2%). It is important to note that
this dose still induced massive death in the malignant

Fig. 1 MB-PDT induces massive death in tumorigenic cells and weakly affects normal-like cells. Viability time curves after MB-PDT of cell cultures
with 2 (a) or 20 μM of MB (b) followed by 4.5 J/cm2 irradiation obtained at 1 h, 3 h and 24 h post-irradiation (n = 3 independent experiments) *
p < 0.05 versus MCF-10A; # p < 0.05 versus MDA-MB-231. (c) Curves of MB incorporation in MDA-MB-231, MCF-7 and MCF-10A after 1, 2, 4, 6, and
8 h of incubation (n = 4 independent experiments). (d) Emission spectrum from MB-free MCF-10A, MCF-7 and MDA-MB-231 (white circles); and
emission spectra from cells exposed to 20 μM MB for 2 h (gray squares). (e) Cellular GSH levels in MDA-MB-231, MCF-7 and MCF-10A cells * p < 0.05
versus MCF-10A. Results are shown as mean ± s.e.m
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cell lines at the same time point (MDA-MB-231: 97.3%
± 0.7% and MCF-7: 78.3% ± 7.1%). These data allowed us
to establish a window of time for our mechanistic stud-
ies. It is important to note that cells submitted to irradi-
ation alone (without MB) or MB alone up to 24 h of
incubation (to test dark toxicity) showed no significant
differences in cell death in comparison to untreated
cells. Moreover, survival of all cell lines exposed to dif-
ferent MB concentrations or light alone was similar to
the values obtained for the negative control conditions
(see Additional file 1: Figure S1).
To analyse whether the distinct susceptibility to MB-

PDT was due to differences in MB uptake, we measured
the intracellular levels of MB and observed no statistical
differences in the Ps content among all cell lines (Fig. 1c).
We also assessed 1O2 generation capability and detected
similar levels of this oxidant molecule between all cell
lines (Fig. 1d). These results led us to conclude that the
lower effect of MB-PDT was neither due to intracellular
concentrations of the Ps nor to the amount of intracellu-
lar singlet oxygen. To evaluate if there was any differen-
tial stress-adaptive response to MB-PDT, we measured
intracellular glutathione and found lower reduced gluta-
thione (GSH) levels in MDA-MB-231 cells (Fig. 1e). This

indicates that glutathione-dependent stress-control
mechanism might be important to determine the sensi-
tivity to the prooxidant milieu generated by MB-PDT.

Relevance of apoptosis in MB-PDT-induced cell death
We analysed the typical morphological changes related
to cell death in the nuclei after treatment. MB-PDT did
not induce neither the pyknotic and fragmented nuclei
or condensation of chromatin into small, irregular and
circumscribed patches, typical patterns of apoptotic cells
in any time point or MB concentration tested (Fig. 2a,
and see Additional file 1: Figure S2). As a control for
typical apoptotic nuclei morphology, MDA-MB-231 cells
were treated with the known apoptotic inducer stauros-
porine [36, 37]. The differences between typical morph-
ology of nuclei undergoing apoptosis displayed by
staurosporine-treated cells and the one displayed in
MD-PDT-treated cells, led us to hypothesize that MB-
PDT induced death through a non-apoptotic route.
However, according to the current classification of cell

death subroutes, only the presence of specific mor-
phological features is not sufficient to establish which
mechanism is mediating cell deletion [38, 39]. Thus, we
also evaluated biochemical hallmarks of apoptosis. We

Fig. 2 Apoptosis pathway is not the main mechanism involved in MB-PDT cell death. (a) Representative image of human mammary cells nuclei
treated with MB-PDT or staurosporine (MDA-MB231 cells) stained with propidium iodide. Scale bar: 20 μm (b) Cell viability time curves obtained
upon 1 h, 3 h and 24 h post MB-PDT performed in the presence or in the absence of a pan-caspase inhibitor (zVAD) or a caspase-3 specific
inhibitor (n = 3 independent experiments) * p < 0.05 versus MB-PDT. Results are shown as mean ± s.e.m
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analysed viability curves upon MB-PDT in the pres-
ence of either Z-VAD-FMK, a pan-caspase inhibitor,
or of a specific caspase-3 inhibitor (Fig. 2b). Strik-
ingly, our results demonstrated that both inhibitors
exerted a cytoprotective effect at initial times after
MB-PDT, but failed to completely prevent cell death
in malignant cells. We also assessed the activity of
initiator caspases-8 and -9, as well as executioner
caspase-3 and -7 (Fig. 3). Corroborating the inhibition
assays, no caspase-3 involvement was detected in
MB-PDT-induced cell death in either MCF-10A or
MCF-7 cells. However, a significant transient peak of
caspase-8 activity was observed at initial times after

MB-PDT in MDA-MB-231 cells and in MCF-10A
cells at 24 h after treatment.
These results led us to propose that a caspase-

independent apoptotic pathway could mediate MB-PDT-
induced cell deletion. Therefore, to further determine
the relevance of the apoptosis pathway after MB-PDT,
we evaluated the balance between anti- and pro-
apoptotic proteins of the B-Cell CLL/lymphoma 2
(BCL2) family. As shown in Fig. 4a, none of the experi-
mental conditions tested induced a decrease in BCL2
and BCL2-associated X protein (BAX) protein ratio. We
also tested the effect of a BAX specific inhibitor on MB-
PDT efficiency (Fig. 4b). Cell viability revealed that the

Fig. 3 MB-PDT-induced cell death is independent of caspase activity. MDA-MB-231, MCF-7 and MCF-10A cells were untreated (control), only irradiated
(λ), only incubated with MB (MB) or treated (MB-PDT). After 1 h, 3 h or 24 h of irradiation, cells were collected and lysed in an appropriate buffer. (a)
Caspase-8, (b) caspase-3 and -7 and (c) caspase-9 activities were measured by a fluorimetric assay using a specific substrate utilizing 50 μg of total protein
lysates. (n= 3 independent experiments). * p< 0.05 versus respective negative control. Results are shown as mean ± s.e.m
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inhibition of BAX pore formation is harmful for all cell
lines, which can then become more susceptible to MB-
PDT. Altogether these data presented evidence that the
caspase-independent apoptotic pathway had no rele-
vance in MB-PDT-induced cell damage.

MB fluorescence concentrates at the lysosomes of breast
cancer cells
To determine the subcellular localization of MB in or-
ganelles involved in cell death mechanisms, we incu-
bated the cells with MB in combination with a nuclear
marker and either a lysosomal (LysoTG) or a mitochon-
drial marker (MitoTG). All cell lines showed some level
of colocalization of LysoTG and MB fluorescence sig-
nals. However, in the MDA-MB-231 cells, MB was
highly concentrated at the lysosomes showing a near
perfect overlap with LysoTG staining (Fig. 5 and see
Additional file 1: Figure S3a). In sharp contrast, this pat-
tern of colocalization was not observed for MB and
MitoTG (see Additional file 1: Figure S3b). This finding
represents a preferential lysosomal localization of MB,
which makes this subcellular compartment prone to

photochemistry damage induced by MB-PDT instead of
the mitochondrion or the nucleus.

MB-PDT-induced autophagy leads to an increase in
cytoprotection only in MDA-MB-231 and MCF-10A
A large number of different cell types initiate autophagy
following photoirradiation [40]. Our results showed an
increase in acidic structures already at early time points
after MB-PDT in MDA-MB-231 cells (Fig. 6a). More-
over, a significant increase in LC3-II/LC3-I ratio was ob-
served not only upon MB-PDT, but also after irradiation
or MB incubation controls alone (Fig. 6b). In MDA-MB-
231 cells, autophagosome formation was higher at initial
times after PDT with 2 μM MB. These data showed
autophagy was induced by the treatment, but it did not
appear to be related to cell death. To determine whether
the role of autophagy in MB-PDT is a mechanism of
death or an attempt to rescue damaged cells, we
assessed viability after MB-PDT by inhibiting or indu-
cing autophagy. MDA-MB-231 and MCF-10A cells dis-
played a significant cell death increase upon autophagy
inhibition with all inhibitors tested (Fig. 6c). In contrast,

Fig. 4 Caspase-independent pathway of apoptosis does not interfere with cell fate upon MB-PDT. (a) WB analysis of BCL2/BAX ratio in MDA-MB-
231, MCF-7 and MCF-10A cells subjected or not to MB-PDT upon 1 h, 3 h or 24 h post-irradiation. Immunoblots shown are representative results.
The corresponding bar graph results from densitometry analysis from all blots. Results are presented as mean ± s.e.m., (n = 3 independent experiments);
* p < 0.05 versus control. (b) Viability time curves obtained after 1 h, 3 h and 24 h post MB-PDT in the presence or absence of a specific pharmaco-
logical BAX inhibitor (n = 3 independent experiments) * p < 0.05 versus MB-PDT. Results are shown as mean ± s.e.m
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the autophagic flux induced by rapamycin decreased cell
death in MDA-MB-231 and MCF-10A cells exposed to
MB-PDT. This effect was not observed in MCF-7 cells,
where an autophagy induction even resulted in increased
cell susceptibility to MB-PDT. Consistent with these re-
sults, autophagy silencing by siRNA-mediated knock-
down of ATG5 confirmed that this pathway elicits a
cytoprotective role in MDA-MB-231 and MCF-10A but
not in MCF-7 cells (Fig. 6d). In conclusion, our results
indicated that autophagy might be related to an initial
pro-survival response of the cells to the oxidative dam-
age generated by MB-PDT in TNBC and normal-like
cells, but not in luminal A cells.

Spheroid culture enhances the differential sensitivity to
MB-PDT of malignant and normal-like cells
In order to validate our results in a model that recapitu-
lates the morphology of glandular epithelium, we com-
pared the different responses in cells cultured on plastic
surfaces (2D monolayers) or on top of a commercial
basement membrane (3D). When cultured in a 3D envir-
onment, breast epithelial cells form multicellular struc-
tures; the normal-like cells organize into polarized,
growth-arrested acini containing a lumen, whereas ma-
lignant cells form overgrown and disorganized tumour-

like masses [28] (Fig. 7a). Thus, this strategy provides a
more physiologically relevant assay to analyse the effect
of treatments against malignant cells.
The same MB-PDT photocytotoxicity protocol used

for cells grown on monolayers was performed in 3D cul-
tures. Dose response curves using 20 μM MB followed
by irradiation with 4.5 J/cm2 showed that there was no
obvious cell viability inhibition both at 1 and 3 h after
MB-PDT treatment. However, cell death was signifi-
cantly increased after 24 h of PDT for both breast cancer
cell lines (MDA-MB-231: 87.1% ± 1.8%; MCF-7: 74.4% ±
1.5%) (Fig. 7b). Importantly, MB-PDT effect in cancer
cells cultured in 3D after 24 h did not differ significantly
from the effect observed in 2D after MB-PDT, but
normal-like cells cultured in 3D displayed a significantly
lower sensitivity to the treatment than those cultured in
2D (Fig. 7c).

Discussion
In this study we have demonstrated that MB-PDT in-
duced massive cell death in two human breast cancer
cell lines displaying different invasive properties. The
highest sensitivity to MB-PDT was observed in MDA-
MB-231 cells, used as a model of TNBC, a tumour sub-
type for which there are no targeted treatments. This

Fig. 5 MB localizes in the lysosomes of MCF-10A, MCF-7 and MDA-MB-231 cells. Confocal microscopy images of cells simultaneously incubated
with LysoTracker green (LysoTG, green), MB (red) and Hoechst 33342, for nuclei staining (blue). Plot profiles quantify the intensity of red, green and
blue fluorescence from a straight line in the middle of the cell. [MB] = 20 μM; [LysoTG] = 300 nM; nucleus (HO 3334 = 300 nM). Scale Bar: 10 μm
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effect is very relevant because TNBC tumours are the
greatest challenge in breast cancer treatment nowadays
[7]. With MB-PDT, we obtained almost 100% of cell
death in these malignant cells. Our results are signifi-
cantly better than the ones obtained in other reports
using PDT for treating breast cancer cells [10, 41–43].
Other Ps used in previous studies, such as Mitoxantrone,
present dark toxicity, which is not desired for PDT prac-
tice [12, 16]. In our study using MB we observed no
dark toxicity, a feature which can increase local specifi-
city and safety of the treatment.
One of the advantages of PDT over other cancer treat-

ments is the possibility of generating less side effects to
patients [8–10]. Our results demonstrated the efficacy of
MB-PDT in selectively eliminating breast cancer cells.
Among the few reports found in literature, Shemesh and
collaborators have recently showed a small difference of
only 20% in cell death between MFC-10A and MDA-MB-
231 cells submitted to liposomal Indocyanine green-PDT
[44]. In the present work, we have reached a difference of
up to 80% of MB-PDT-induced cell death between malig-
nant and normal-like cells.
Since it has already been demonstrated that MB is a

classical 1O2 generator [45], we compared parameters
like oxidative potential and antioxidative capability be-
tween the cell lines. The photodynamic action of MB
leads to the production of similar levels of 1O2 in the

intracellular microenvironment, so that is not a limita-
tion for MB-PDT efficiency. As a prooxidant therapy,
PDT is able to cause the collapse of antioxidant systems,
leading to cell death [19]. Among the systems involved
in the homeostasis of the intracellular redox balance,
glutathione plays a major role [46]. It has been reported
that TNBC cells present lower GSH levels compared to
ER positive cells [47]; furthermore, cell lines containing
low GSH levels tend to be much more sensitive to can-
cer therapies [46]. In this study we confirmed that
TNBC cells present the lowest GSH intracellular levels
among the studied cell lines, and that this could be
related to the inability of these cells to cope with MB-
PDT-induced oxidative stress. This result pointed MB-
PDT as a potential strategy to effectively kill malignant
cells that lack specific therapeutic targets by impacting
metabolic properties that differ from those found in nor-
mal tissues.
There are few in vitro systematic studies on the mo-

lecular mechanisms induced by PDT that compare both
malignant and normal-like mammary cells. These re-
ports demonstrated that apoptosis is the main cell death
pathway activated by PDT [48–51]. Nevertheless, we
argue that in these studies classical characteristics of
apoptosis have not been observed after PDT. Therefore,
we hypothesize that apoptosis may not be the predomin-
ant process that mediates cell death induced by PDT,

(See figure on previous page.)
Fig. 6 MB-PDT-induced autophagy leads to cytoprotection (MDA-MB-231 and MCF-10A) or cell death (MCF-7). (a) Representative images of acidic
vesicle formation in cells subjected to MB-PDT after 1 h, 3 h or 24 h or not treated (control). Upper panels: MCF-10A; middle panels: MCF-7; and lower
panels: MDA-MB-231. Scale bar: 10 μm. (b) WB analysis of LC3-II/LC3-I ratio after MB-PDT treated cells with 2 or 20 μM MB, irradiated only after 1 h, 3 h
or 24 h, incubated with 2 or 20 μ MB in the dark or not treated (control). Immunoblots shown are representative results. The corresponding bar graph
results from densitometry analysis from all blots. Results are presented as mean ± s.e.m., (n = 3); * p < 0.05 versus control. (c) Viability time curves with
2 μM (MDA-MB-231) or 20 μM (MCF-7 and MCF-10A) of MB obtained upon 1 h, 3 h and 24 h post-irradiation in the presence or in the absence of
chloroquine (CQ), bafilomycin (Baf), LY294002 (LY), 3-MA or rapamycin (RAPA). (n = 3 independent experiments). * p < 0.05 versus MB-PDT. (d) Viability
time curves of cells subjected or not to ATG5 silencing and then MB-PDT were obtained upon 1 h, 3 h and 24 h (n = 3 independent experiments). * p
< 0.05 versus MB-PDT. Upper panels: WB analysis of ATG5 protein levels. Immunoblots shown are representative results. The corresponding bar graph
results from densitometry analysis from all blots. Results are presented as mean ± s.e.m, (n = 3 independent experiments); * p < 0.05 versus control

Fig. 7 A tridimensional environment enhances the differential sensitivity between tumorigenic and normal-like cells. (a) Morphology of epithelial
breast cells in different culture conditions. Upper panels: phase contrast micrographs of MDA-MB-231, MCF-7 and MCF-10A cells cultured in monolayer
(2D); lower panels: confocal microscopy of MDA-MB-231, MCF-7 and MCF-10A cells cultured as spheroids (3D); nuclei were stained with Hoechst 33342
(blue); Scale bar: 20 μm. (b) Viability time curves after MB-PDT of 3D cultures with 20 μM of MB followed by of 4.5 J/cm2 irradiation obtained at 1 h, 3 h
and 24 h post-irradiation (n = 3 independent experiments).* p < 0.05 versus MCF-10A. (c) Comparison of the MB-PDT cytotoxic effect between 2D and
3D cell cultures at 24 h post-irradiation. *p < 0.05 versus MCF-10A 3D; #p < 0.05 MCF-10A 2D versus MCF-10A 3D. (n = 3 independent experiments).
Results are shown as mean ± s.e.m
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but only a by-product of other activated mechanisms
[22]. Other authors also stated that the predominant
type of cell death depends on the protocol adopted, and
that there may be variations from apoptosis to necrosis
depending, for example, on the energy dose used [11]. In
our study we observed no presence of apoptotic traits
under any dose, treatment time, or irradiation intensity
used. Additionally, cell viability was not completely re-
stored with the use of caspase inhibitors. Furthermore,
MB-PDT action could not be exerted exclusively by
apoptosis because MCF-7 cells do not express caspase-3
[52]. Additionally, no increase in caspase-7, -8 or -9 ac-
tivities was detected in MCF-7 cells upon MB-PDT. In
this context, we also observed no decrease in the ratio of
anti- and pro-apoptotic proteins and that inhibition of
the mitochondrial pore formation increased the sensitiv-
ity of the cells to MB-PDT, pointing to a probable
mitochondrial-independent cell death pathway. Reinfor-
cing this hypothesis, we showed that MB is not localized
or, as already reported, it may be in a reduced state in
mitochondria [45], thus strongly suggesting that this or-
ganelle is indeed not the primary target for MB-PDT
oxidative damage.
Depending on a network of signals generated at specific

cellular sites, cells can respond differentially to stress [53].
Previous studies exploring the subcellular localization of
MB indicated that this Ps presents a tendency to accumu-
late in lysosomes of living cells [45]. We reported here for
the first time evidence of differential patterns of lysosomes
and MB colocalization in different epithelial cell lines of
the same tissue. In view of the organelle-specific initiation
of cell death, this data may contribute to explain the dif-
ferential cellular sensitivity to MB-PDT observed among
the three analysed cell lines.
The data on the lysosomal localization of MB, led us to

explore the involvement of autophagy in the context of
MB-PDT. The relationship between autophagy and cell
death in PDT is still extensively discussed in the literature.
Some studies pointed this pathway as responsible for the
cell damage generated by different Ps [54, 55]. Others have
shown that this type of cell death only occurs upon pre-
vention of classical apoptosis, such as a result of muta-
tions in essential apoptotic-related genes such as BCL2 or
caspase family members [40, 56]. Our data showed an in-
tensification of the autophagic pathway upon MB-PDT
which lead either to cytoprotection or cytotoxicity in a
cell-dependent manner. This is expected since MCF-7
cells are haploinsufficient for Beclin-1 [57], which could
be the reason for their increased sensitivity for MB-PDT.
The fact that cancer cells can die through different

mechanisms is a relevant clue in the choice and design
of anticancer therapies based on molecular targets [55].
We have found that, depending on the cell type, mul-
tiple cell death pathways might be activated upon MB-

PDT. Indeed, we showed that apoptosis and autophagy
are related, but not the main cell death inducing pathways.
Moreover, preliminary results from our group are pointing
some of the regulated necrosis pathways (i.e. necroptosis)
as more relevant mechanisms involved in MB-PDT-
induced cell death (data not shown). Since one important
aspect for an alternative therapy for cancer treatment is to
broaden the spectrum of cell death mechanisms to by-
pass the different resistance mechanisms displayed by
malignant cells, we are at the present time focusing our
resources to further dissect the alternative molecular path-
ways leading to MB-PDT photocytotoxicity.
From an oncological point of view it is of fundamental

importance if a therapy can achieve the ultimate goal of
eliminating tumour cells, despite the complexity of the
tumour microenvironment [58]. 3D cultures allows for
the reestablishment of biochemical and morphological
characteristics that resemble the conditions of the cells
in their in vivo environment [28]. Since 3D cultures
present the advantage of the formation of microenviron-
ments and differential exposure to distinct factors such
as nutrients and oxygen, this approach represents a
robust model for the study of incorporation and bio-
activity of drugs [59]. Moreover, it has been shown that
3D assays can be used successfully to effectively distin-
guish malignant and normal tissue responses to therapy
[28, 60]. We have demonstrated that MB is efficiently in-
corporated in the complex gelatinous matrix used for
the 3D cell cultures; it is able to enter the 3D structures
and to be photoactivated inducing cell death isotropic-
ally throughout the spheroids. Our results indicate that
in this model MB-PDT was also effective in inducing cell
destruction of cancer cells, with an even higher selectiv-
ity between tumours and normal-like cells. This en-
hancement in MB-PDT preferential response in tumour
cells might be due to the protective effect exerted by the
organized basement membrane and tissue polarity seen
in the acini formed by MCF-10A cells [61, 62].
In sum, MB-PDT holds promise as a useful adjunct to

surgery to eliminate microscopic residual malignant cells
in the post-surgical tumour bed and prevent local as well
as metastatic recurrence without affecting normal tissues.
In particular for breast cancer, PDT is not currently being
tested as a peri-opertive therapy like the one described for
pancreatic cancer (14-15); however, all results presented
in this work pointed us the importance to pursue further
studies in this direction in a near future. The strategy
could be of particular importance in TNBC because meta-
static recurrence after surgical tumour resection is a major
and frequent cause of patient mortality.

Conclusions
When compared to other studies of PDT on breast cancer,
we have reached a greater efficiency in selectively killing
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cancer cells with no MB dark cytotoxicity. Besides, we
demonstrated the differential effect of MB-PDT in more
than one cell line, overcoming an important caveat in
many PDT studies that use either only one tumour cell
line or cell lines from different tissues. To the best of our
knowledge, we have also shown for the first time that
normal-like cells of breast epithelium are much more re-
sistant to MB-PDT. These are fundamental features for
the safe usage of the therapy, reinforcing the fact that one
of the advantages of PDT over other therapeutic ap-
proaches is the possibility of generating fewer side effects
to the patients. Finally, we propose that MB-PDT could be
an effective and safe adjunct to surgery leading to lower
rates of local and distant recurrence.

Additional file

Additional file 1: Figure S1. MB-PDT induced massive cell death in
MDA-MB-231 without dark cytotoxicity. (a) Representative graph showing
the viability of MCF-10A, MCF-7 and MDA-MB-231 cells after MB-PDT with
20 μM of MB followed by 4.5 J/cm2 irradiation and the experimental
controls: irradiation alone (λ); dark toxicity of MB, that means incubation
without irradiation (MB); or not treated cells (control). These results were
obtained after 24 h (n = 3 independent experiments); *: p < 0.05 versus
control. (b) Viability of MDA-MB-231 cells after MB-PDT with MB (20 μM)
followed by 4.5 J/cm2 or 1.5 J/cm2 irradiation after 24 h. Results are
shown as mean ± s.e.m. (n = 3 independent experiments); *: p < 0.05
versus 4.5 J/cm2. Figure S2. MB is preferentially localized in the lyso-
somes. (a) Low magnification images of the data shown in Fig. 5 of the
cells simultaneously incubated with LysoTracker green (LysoTG) and MB.
Merged images of the following two images (yellow; left column). MB
Fluorescence (red; middle column) and fluorescence arising from Lyso-
Tracker (green; right column). (b) Confocal microscopy images of the cells
simultaneously incubated with MitoTracker green (MitoTG) and MB. Merged
images of the following two images (yellow; left column). MB Fluorescence
(red; middle column) and fluorescence arising from MitoTracker (green; right
column). Hoechst 33342, indicating nuclei. [MB] = 20 μM; [LysoTG] = 300 nM;
[MitoTG] = 300 nM; nucleus (HO 3334 = 300 nM). Size bar: 10μm. Figure S3.
No evidences of apoptotic nuclei after MB-PDT. (a) Representative nuclei of
human mammary cells treated for 1 h, 3 h and 24 h with MB-PDT with 0.2
μM of MB. Nucleus stained with Hoechst 33342 (blue) and propidium iodide
(red). Size bar: 20μm (b) Viability time curves after MB-PDT of cell cultures
with 2 (a) or 20 μM of MB (b) followed by of 4.5 J/cm2 irradiation obtained
after 1 h, 3 h and 24 h post-irradiation (n = 3 independent experiments) * p
< 0.05 versus MCF-10A. Results are shown as mean ± s.e.m. (DOCX 2074 kb)
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