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ABSTRACT

PoSSuM (http://possum.cbrc.jp/PoSSuM/) is a
database for detecting similar small-molecule
binding sites on proteins. Since its initial release
in 2011, PoSSuM has grown to provide informa-
tion related to 49 million pairs of similar binding
sites discovered among 5.5 million known and
putative binding sites. This enlargement of the
database is expected to enhance opportunities
for biological and pharmaceutical applications,
such as predictions of new functions and drug
discovery. In this release, we have provided a new
service named PoSSuM drug search (PoSSuMds)
at http://possum.cbrc.jp/PoSSuM/drug search/, in
which we selected 194 approved drug compounds
retrieved from ChEMBL, and detected their known
binding pockets and pockets that are similar to
them. Users can access and download all of the
search results via a new web interface, which is
useful for finding ligand analogs as well as potential
target proteins. Furthermore, PoSSuMds enables
users to explore the binding pocket universe within
PoSSuM. Additionally, we have improved the web
interface with new functions, including sortable
tables and a viewer for visualizing and downloading
superimposed pockets.

INTRODUCTION

The number of released protein entries in the Protein Data
Bank (PDB) (1) has reached 100 000. To elucidate protein

functions from the abundant structural data, an efficient ap-
proach must be used to examine ligand-binding sites specif-
ically because proteins exhibit their functions through inter-
action with other molecules. Of particular interest are small-
molecule binding pockets, which are crucial in structure-
based drug discovery. To retrieve similar binding pockets
of biological relevance, many methods have been proposed
in the last few decades (2–9). However, those methods are
applicable only to a limited subset of protein binding pock-
ets mainly because of the time complexity. We developed
an extremely fast and efficient method for finding similari-
ties between vast numbers of ligand-binding pockets in our
previous study (10,11) and then applied it to all-against-
all similarity searches against 1.8 million known and puta-
tive small molecule-binding pockets throughout the PDB.
Eventually, we discovered 14 million pairs of similar bind-
ing sites. All enumerated similar pairs, along with biologi-
cal annotations, were compiled into the PoSSuM database
(http://possum.cbrc.jp/PoSSuM/) (12).

Since its initial release (2011), PoSSuM has grown to
include more than 49 million pairs of similar binding
sites identified among about 5.5 million binding sites. This
database expansion is expected to enhance opportunities for
biological and pharmaceutical applications such as the pre-
diction of new protein functions. The binding pockets were
assigned with UniProt (13) identifiers, Enzyme Commission
(EC) numbers (14), Gene Ontology (15) terms, and domain
annotations from CATH (16), SCOP (17) and SCOPe (18),
and compiled into a relational database.

A PoSSuM similarity search starts by choosing a known
ligand-binding pocket (SearchK) or a whole protein struc-
ture (SearchP) as a query. However, it is also useful to search
for similar binding pockets that bind a specific type of lig-
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and, such as a small-molecule drug. The orally available
small-molecule drugs are regarded as pharmaceutically im-
portant chemicals because of their safety and simple ap-
plicability. Therefore, finding an unexpected similarity be-
tween a known drug target and an unknown one might
provide a hint for consideration of an ‘off-target effect’ of
the corresponding drug. Another important consideration
is that these small-molecule drugs have a wealth of drug dis-
covery data: bioactivity data, medicinal chemistry data and
target information. Therefore, it is possible to verify the sim-
ilarity between proteins that have similar binding pockets
even in the absence of protein-ligand complex data. In this
study, we performed a survey, in which we focused on 194
bioactive small-molecule drugs with ligand-protein com-
plex structures available in the PDB, and compared their
binding pockets against the entire PDB by using a PoSSuM
similarity search. The results were compiled into a new web
interface, PoSSuMds, which is expected to be useful for in-
vestigating analogs of drugs and also for fishing for poten-
tial targets.

In addition to this update and new developments de-
scribed above, we have introduced new features including
redundancy removal on the result page, sortable tables and
the improved molecular viewer, as well as a downloading
function of the coordinates of superimposed pockets.

DATA GROWTH TO OVER 4.7 MILLION BINDING
SITES

As of September 2014, the PoSSuM data source contains
49 million pairs of similar binding sites detected between
4.7 million binding pockets (Table 1). Since its initial release
in November 2011, the number of binding pockets has in-
creased by approximately three times. This data expansion
is attributable not only to our annual updates on the release
of new PDB entries, but also to the results from the removal
of the use of a representative subset. Previously, putative
binding pockets were detected from non-redundant protein
structures (defined with a cutoff of 95% sequence identity)
by using Ghecom, a novel pocket prediction method (19).
In the new release, all PDB protein structures, except for
structures with a resolution of less than 4.0 Å or contain-
ing more than 3000 residues, are used to generate putative
pockets. This extension not only increases the opportunity
to obtain hits, but also provides a more convenient service
in ‘SearchP’, in which a PDB ID is specified as a query.

Given a query of a binding pocket, PoSSuM enumerates
all similar pockets irrespective of the sequence redundancy.
However, users can filter out the redundancy by setting a
UniProt/UniRef50 filter. If multiple similar pockets with
the same UniProt ID and HET code are identified, then the
pairs with the longest aligned length can be displayed in the
case of a UniProt filter. In the case of a UniRef50 filter, the
UniProt ID was substituted with the UniRef50 ID. In this
event, the longest matched pairs were displayed.

POSSUM DRUG SEARCH (POSSUMDS)

For any given drug compound, a challenging task in struc-
tural bioinformatics is to find related (and biologically rel-
evant) compounds and target proteins. Our approach is to

Figure 1. Schematic view of the PoSSuMds approach for screening ligand
analogs and their receptor proteins. Ligands, binding pockets and recep-
tors are shown in red, green and cyan, respectively.

collect a set of binding sites similar to the pockets to which
the query ligand is known to bind. This type of approach is
useful for retrieving various ligand analogs, such as natural
ligands, inhibitors and metabolites, and also for obtaining
potential target proteins (Figure 1).

Small-molecule drug data set and results of a similarity
search

Small-molecule drug compounds and their chemical prop-
erties were retrieved from the ChEMBL database (20).
From ChEMBL release 19, we selected all of the drug com-
pounds that fulfilled the following criteria:

- Approved drug (molecule dictionary.max phase = 4)
- Used as a therapeutic (molecule dictionary. therapeu-

tic flag > 0)
- Oral drug (molecule dictionary. oral > 0)
- Non-prodrug (molecule dictionary.prodrug = 0)

Of these, 211 unique drug compounds were identified as
having at least one protein-ligand complex structure in the
PDB by matching the standard InChIKey against the Lig-
and Expo database (21). The PoSSuM source data included
194 such drug ligands (HET codes), which have at least
one binding pocket showing similarities to different pock-
ets. In all, 2595 binding pockets for the 194 ligands were
used as queries in this study (Table 2). Query pockets were
then searched against all of the non-self pockets by using
PoSSuM. Subsequently, 530 898 similarities were detected
between 26 509 unique pockets, which were occupied by
5312 unique ligands (HET codes) and derived from 12 220
unique protein structures (PDB IDs). Finally, all of the re-
sults were compiled into individual web pages based on the
name of the query drug (HET codes 1–194).

Diversity of identified ligands and receptors

To describe the diversity of the retrieved ligands, we com-
pared the ligand structures by using two types of molecular
fingerprints: MACCS (166 bits) and Babel FP2 (1024 bits),
in which ligand compounds were encoded into fingerprints
by OpenBabel (http://openbabel.sourceforge.net/). Similar-
ities between them were then measured by using the Jaccard
Index (JI) metric. To represent relationships between lig-
ands graphically, two ligands were connected with an edge

http://openbabel.sourceforge.net/
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Table 1. Data growth of PoSSuM since the initial release

Initial release Up-to-date
Nov. 2011 Sept. 2014

PDB version Jan. 2011 May 2014
No. of known ligand-binding sites 241 486 300 122
(No. of PDB entries) (47 562) (65 450)
No. of putative binding sites 1 588 329 5 213 569
(No. of PDB entries) (29 779) (88 290)
Pairs of similar binding sites 14 556 057 49 078 742

Table 2. Statistics of small-molecule drug search results

Query Target

Pocket similarities 530 898
Binding pockets 2595 26 509
Ligands (HET codes) 194 5312
PDB entries (PDB IDs) 1289 12 220
UniProt entries 452 2453
UniRef50 entries 384 1969
EC numbers 165 521
CATH homologous super families 108 384
CATH topologies 80 255
SCOPe super families 97 376
SCOPe folds 86 287

if their JI (MACCS) was ≥ 0.568 or JI (FP2) was ≥ 0.318,
where the statistical significance (P-value < 0.05) of each JI
threshold was estimated based on 1 million randomly gener-
ated pairs of ligands among all of the HET compounds used
for this study (Supplementary Figure S1). To investigate
the diversity of retrieved receptors, we compared functional
and structural classifications, which included EC numbers,
CATH homologous super families and SCOPe super fam-
ilies, between query proteins and target proteins identified
by pocket similarity searches.

To provide users with better and dynamic graphics, all
figures on the result page were generated with D3.js (https:
//github.com/mbostock/d3), a Java Script library.

WEB INTERFACE OF POSSUMDS

The PoSSuMds interface starts with a table containing
the 194 query drugs along with the drug descriptions
and chemical properties (http://possum.cbrc.jp/PoSSuM/
drug search/) as presented in Figure 2. The query drugs
have been categorized into five classes (A, B, C, D or E)
according to their size, flexibility and lipophilicity, and can
be sorted by the assigned class label. The drugs have also
been categorized into four classes (G, K, N or O) based on
their receptor types: GPCR (CATH: 1.20.1070.10), Protein
Kinase (CATH: 1.10.510.10, 3.30.200.20), Nuclear Recep-
tor (1.10.565.10) and ‘others’. Users can select a query drug
of interest and then proceed to view the result of similarity
searches.

Each result page is subdivided into four sections. The first
section summarizes drug descriptions based on the WHO
ATC classification and chemical properties of the query
drug, and is followed by a table of statistics related to the
results of the pocket similarity searches, including binding
pockets, binding ligands and receptor proteins.

The variety of the retrieved ligands is shown in the sec-
ond section. At the top of this section, the distribution of

the retrieved ligands is displayed in a bar plot (Figure 3A).
Chemical similarities among the ligands can be viewed as
heatmaps (Figure 3B), where darker colors represent higher
JI values. The relationships can also be visualized as a net-
work (Figure 3C), where a ligand is denoted by a node and
the chemical similarity is represented by an edge. This type
of visualization is expected to be useful for understanding
the distribution of ligand analogs that bind to structurally
similar pockets. In the case of imatinib (HET: STI), an ex-
ample of a typical kinase inhibitor, the chemical similarities
to natural ligands, metabolites (e.g. ATP, ADP and AMP)
and to other inhibitors such as dasatinib (HET: 1N1) and
sunitinib (HET: B49), are apparent in the network view.
Furthermore, up to 50 of the top ligands, in descending or-
der of the number of binding pockets, are shown in the table
at the end of this section. All the other ligands can also be
downloaded at the end of this table.

The third section presents a description of the diversity
of receptor proteins. The distributions of the target bind-
ing pockets in PDB entries and sequence groups (UniProt
IDs and UniRef50 IDs) are summarized in bar plots (Sup-
plementary Figure S2A), which are followed by pie charts
representing the distributions of functional and structural
groups (Supplementary Figure S2B). Unique groups such
as EC codes observed only on the target side are shown in
highlighted colors.

In the fourth and last section, one can retrieve all of the
binding pockets on both the query and target sides (Fig-
ure 4A), as well as all of the similarity details between them
(Figure 4B and C). For several query ligands, such as ki-
nase inhibitors, the number of similar pocket pairs exceeds
10 000, which is difficult to display in a web page. There-
fore, we generated a subset of pocket pairs in the following
manner. Presuming that a query pocket is associated with
UniProt ID P1 and HET code H1, and that one similar
pocket was identified as associated with UniProt ID P2 and
HET code H2, if multiple similar pocket pairs were identi-
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Figure 2. Start page of PoSSuMds. 194 approved drug compounds used as queries in this study are categorized in pie charts (Top) and listed in a table
(Bottom).

Figure 3. Captured images related to ligand diversity when the query compound was set to imatinib (HET: STI). The top 50 ligands, which are ranked by
the number of binding pockets, are shown in the bar plot (A). Chemical similarities between the ligands are shown in Heatmaps (B) and in a Network view
(C).
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Figure 4. Table of binding pockets detected to be similar to the query pockets (A). Similar pocket pairs are displayed in two tables, depending on whether
the similar pocket is a known binding pocket (B) or a putative pocket (C).

fied between (P1, H1) and (P2, H2), then only the pair with
the longest aligned length is selected. For putative pockets,
the HET code H2 was ignored. If the interaction between
a query ligand and an identified target receptor has been
tested by any binding assay, then we assigned a flag ‘Yes’
to the similarity pair in the last column (Figure 4B and C).
ChEMBL assay information was retrieved via the Target-
Mine data warehouse (22). Users can download not only
the subset displayed in the tables, but also all pairs at the
end of the tables (Figure 4B and C).

We present an example here: similarity between the ima-
tinib (HET: STI)-binding pocket of the tyrosine protein
kinase ABL (PDB ID: 1IEP) (23) and a putative pocket
of phosphatidylinositol-4-phosphate 5 (P4P5)-kinase (PDB
ID: 2GK9). Despite adopting different folds (with CATH
codes ‘1.10.510.10, 3.30.200.20’ and ‘3.30.800.10’, respec-
tively) (Figure 5 and Supplementary Figure S3), 25 residues
of the two pockets are aligned with an Root-Mean-Square
Deviation (RMSD) of 2.77 Å, suggesting that imatinib
would bind to P4P5-kinase, which is consistent with its
known Kd value of 380 nM (24).

Because PoSSuMds is fully integrated into PoSSuM,
users can identify a target pocket similar to one of the bind-
ing pockets for the 194 compounds and proceed to addi-
tional searches and further investigation (Figure 4A).

SUPERIMPOSITION VIEWER

In addition to browsing the statistical results, users can vi-
sualize individual superimposed pocket pairs (Figures 4B,
C and 5). We have improved the superposition page, where
the user can display/undisplay the query, the target, and
can check corresponding amino acids based on the struc-
tural alignment, and can also download the 3D coordinates.
As a demonstration, Figure 5 shows superimposed binding
pockets for the example described in the section above. For
the 3D molecular viewer, we employed JSmol (25), which
was developed based on the HTML5 technology and which
requires no enabling of Java in the user’s web browser.

DISCUSSION AND FUTURE DIRECTIONS

In this update, we specifically examined approved small-
molecule drugs. We plan to expand the list of the query lig-
ands to oral drugs, drug candidates and metabolites in the
future. We currently use TM-align (26), which can align sim-
ilar binding sites only in a sequence-order-dependent man-
ner. However, fast and efficient pocket comparison methods
have been proposed recently (27,28). Such methods should
be used to compare poorly aligned pocket pairs by TM-
align. Adopting such methods is expected to enhance our
database. Another crucial factor is flexibility. Some drug
compounds can bind to their receptors in various confor-
mations, which in turn changes the shape and size of the
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Figure 5. Captured image from the superimposition viewer, which shows the superimposition of an STI-binding pocket of 1IEP to a putative pocket of
2GK9. The query ligand and its pocket are shown in red and pink, and the target pocket is shown in cyan.

binding pockets. To capture conformational changes, it is
necessary to employ a method that incorporates binding
pocket flexibility.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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