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Abstract: Nanoparticles are uniquely suited for the study and development of potential therapies
against atherosclerosis by virtue of their size, fine-tunable properties, and ability to incorporate
therapies and/or imaging modalities. Furthermore, nanoparticles can be specifically targeted to the
atherosclerotic plaque, evading off-target effects and/or associated cytotoxicity. There has been a
wealth of knowledge available concerning the use of nanotechnologies in cardiovascular disease
and atherosclerosis, in particular in animal models, but with a major focus on imaging agents.
In fact, roughly 60% of articles from an initial search for this review included examples of imaging
applications of nanoparticles. Thus, this review focuses on experimental therapy interventions
applied to and observed in animal models. Particular emphasis is placed on how nanoparticle
materials and properties allow researchers to learn a great deal about atherosclerosis. The objective
of this review was to provide an update for nanoparticle use in imaging and drug delivery
studies and to illustrate how nanoparticles can be used for sensing and modelling, for studying
fundamental biological mechanisms, and for the delivery of biotherapeutics such as proteins, peptides,
nucleic acids, and even cells all with the goal of attenuating atherosclerosis. Furthermore, the various
atherosclerosis processes targeted mainly for imaging studies have been summarized in the hopes of
inspiring new and exciting targeted therapeutic and/or imaging strategies.
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1. Introduction

Cardiovascular disease is responsible for the deaths of more than 17 million people worldwide
and this rate is expected to grow to over 23 million by the year 2030 [1]. More strikingly, it is estimated
that there is a death every 40 s attributable to cardiovascular disease [2]. Atherosclerosis is the
root cause of the majority of cardiovascular clinical manifestations, which have been significantly
curbed due to breakthroughs in drug therapy. However, advanced tools, increasing interest in
nanotechnology, and further understanding of the pathology of atherosclerosis elucidated by various
animal studies have recently placed researchers in prime position to tackle the complex manifestations
of atherosclerosis on a more specific and molecular level.

Atherosclerosis has typically been viewed as a dietary and lipid accumulation disorder.
While lipids certainly play a role in lesion formation, they cannot account for all the concerns of
atherosclerosis. It is now known that atherosclerosis begins with endothelial damage that can arise as
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early as adolescence. Lipids such as apolipoprotein B have special affinity for the basal membrane
revealed in areas of damaged endothelium [3]. These regions are well conserved in humans and
various animal models and typically occur in curved or branched arteries, which experience disturbed
or oscillatory flow dynamics and low shear stress [4].

Endothelial damage permits the accumulation and retention of lipids within the subendothelial
space where they can be oxidized by oxidative stress-induced molecules and enzymatic products [5].
Oxidized lipids act as a danger signal to the endothelial cells lining the vessel and the cells
begin to increase expression of the inflammatory cell recruitment receptors vascular cell adhesion
molecule 1 (VCAM-1), intercellular adhesion molecule 1 (ICAM-1), P-selectin, and E-selectin through
inflammatory signaling pathways, such as nuclear factor-κB (NF-κB) [6,7]. These receptors are used
as binding moieties by circulating immune cells such as monocytes, which express conjugate ligands
such as very late antigen 4 (VLA-4) for VCAM-1 and lymphocyte function-associated antigen 1 (LFA-1)
for ICAM-1 [8,9]. The expression of these inflammatory cell recruitment receptors and the production
of chemoattractant chemokines lead to increased infiltration of circulating monocytes, which will also
express cytokines, thus perpetuating a positive feedback loop.

Upon entering the plaque, monocytes differentiate into macrophages and become activated under
the influences of macrophage colony stimulating factor (M-CSF) and tumor necrosis factor-α (TNF-α),
both of which are upregulated in plaque cells [10]. These activated macrophages ingest large amounts
of lipids via upregulation of scavenger receptors [11], eventually becoming foam cells [12]. These foam
cells are prone to apoptosis, releasing damaging cytokines and enzymes that exacerbate the immune
response, recruiting more inflammatory cells that amplify the process of plaque formation.

Defective efferocytosis of lipid-laden apoptotic cells also aggravates the situation. Eventually,
the formation of a necrotic core, often characterized by the accumulation of cholesterol crystals,
marks the transition to a vulnerable plaque that is prone to rupture. In addition to this molecular
based degradation, physical destabilization and degradation of the fibrous cap is a consequence of
pro-inflammatory signaling. The fibrous cap is composed mostly of collagen secreted by vascular
smooth muscle cells migrating into the plaque from the medial layer of the vessel [13]. The upregulation
of matrix metalloproteinases (MMP-3 and -9) leads to the degradation of the collagenous cap [10].
These cumulative events are all a result of chronic and non-resolving inflammation [14] that
can be countered by anti-inflammatory cytokines, such as interleukin-10 (IL-10) [15]. IL-10 and
other anti-inflammatory cytokines help to influence the ratio of activated pro-inflammatory “M1”
macrophages to pro-healing “M2” macrophages via the janus kinase/signal transducers and activators
of transcription (JAK-STAT) signaling pathway [16]. In the event that the thinned fibrous cap ruptures,
damaging lipids, enzymes, cytokines, calcium, and dead cell fragments are released into the blood,
stimulating the formation of a thrombus that can quickly occlude the artery, leading to acute clinical
events [17,18].

Interest in the potential to apply nanotechnology to cardiovascular disease has been high for
some years [19], allowing for developments using nanoparticle research specifically for atherosclerosis.
Nanoparticles (NPs) are uniquely suited to combat atherosclerosis given their ability to encapsulate
various therapeutics such as nucleic acids, drugs, proteins, and even cells. Encapsulation serves
two purposes in the field of nanomedicine: firstly, it protects the in vivo environment from harmful
drugs or off-target effects by ensuring that drug release is controlled via material properties and/or
targeted to the affected area via surface properties. Secondly, encapsulation protects labile cargo from
degradation and/or other unwanted modifications. In addition, the high surface area to volume
ratio of nanoparticles makes them ideal for surface functionalization for the purpose of targeting
plaque components and/or evading the body’s immune system and clearance. The two most popular
moieties incorporated onto nanoparticles are targeting ligands (antibodies, peptides, aptamers, or
small molecules) specific for plaque components and PEGylation, which confers stealth and stability
in vivo.
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Many of the applications of NPs in atherosclerosis have focused on imaging (Figure 1). Ultrasound
imaging using contrast-enhancing agents such as gas-filled particles or microbubbles has been ongoing
for decades [20]. Though not quite using nanoparticles, ultrasound imaging has nevertheless inspired
numerous nano-scale imaging and treatment options, and has been used for atherosclerosis [21,22].
However, there have also been interesting less conventional uses of nanoparticles in modelling, sensing,
and elucidating the biology of plaque progression in atherosclerotic mice and hyperlipidemic rabbits.
NPs may even participate in the treatment of atherosclerosis, acting by virtue of their material-based
natural interactions with plaque components rather than by the delivery of therapeutics. Nanoparticles
vary in their molecular makeup, with inorganic components being more useful for studies involving
physical phenomena (imaging, photodynamic therapy, etc.) and organic materials being typically
chosen for their ability to interact with cargo (protection, encapsulation, controlled release, etc.) and
for their increased biocompatibility and biodegradability. However, NPs made of both materials
can be targeted to the plaque by fine tuning their size, shape, surface properties, and ligand coating.
Exploring these various phenomena can add exciting perspective to the numerous reviews discussing
experimental nanoparticle interventions for atherosclerosis, which have focused on imaging or drug
delivery [23–25]. Thus, this review article illustrates how nanoparticles are advancing the research
of atherosclerosis using animal models through the probing of fundamental biological interactions,
delivering therapeutics, and reporting back to researchers via imaging or sensing modalities as a
function of the materials chosen.
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Figure 1. Overall analysis of literature examples chosen for this review. Inset shows percentages of
delivered therapeutic in studies for burgeoning field of biotherapeutic delivery with high potential in
atherosclerosis research.

2. Influence of Material Properties on NPs Used for Atherosclerosis

In general, the application will guide the choice of material to use for nanoparticle-mediated
treatment with two types of interventions relative to atherosclerosis: (1) the delivery of therapeutics
and (2) the visualization of plaque and its processes.

2.1. Materials Used for Fabrication of Nanoparticles

2.1.1. Polymers

Polymers make up one of the most common groups of materials used to fabricate nanoparticles.
This is in part because of their diverse range of fine-tunable properties allowing researchers to
control their hydrophobicity, charge, degradability, and many more features. Accordingly, their
use in fabricating nanoparticles for atherosclerosis research has experienced an exponential increase
and they seem to be the material of choice for therapeutic delivery applications (Table 1). The main
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attractions for polymers are their typically lower toxicity than metals and the availability of chemically
active sites for the functionalization of fluorescent dyes and targeting moieties. They also have an
increased carrying capacity for cargo (drugs, proteins, nucleic acids, etc.) related to their biodegradable,
polar, charged, and somewhat hydrophobic properties responsible for polymer interaction with,
protection of, and controlled release of therapeutics (Figure 2). Some common examples include
poly(lactic-co-glycolic acid) (PLGA), polyethylenimine (PEI), poly(L-lysine) (PLL), poly(lactic acid)
(PLA), poly(aspartic acid) (PAA), chitosan, gelatin, alginate, and many others and are particularly
useful to complex with, protect, and deliver charged polar cargo such as proteins and DNA [26].
A polymer of the monomers lactic and glycolic acid, PLGA is widely used and approved by
the U.S. Food and Drug Administration (FDA) and European Medicine Agency (EMA) for some
applications [27]. PLGA is biodegradable via hydrolysis of the ester bonds linking monomers and
its rate of degradation can be tuned by the percentages of the two monomers. This naturally lends
itself to the controlled delivery of therapeutics, an advantageous strategy capable of recapitulating the
complex spatio-temporal patterns of signaling within the in vivo plaque environment.
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Figure 2. Analysis of Table 1 showing importance of the characteristics of certain materials used to
fabricate nanoparticles for atherosclerosis research.

There are also polymers whose function depends on their hydrophobicity and charge but are
not biodegradable. These underline the complex array of interactions possible between a nanocarrier
and its delivery cargo or imaging modality. This example is best illustrated with polymers formed via
stable covalent bonds such as the amide bonds in polyamidoamine (PAMAM) and polyethylenimine
(PEI) nanoparticles. These polymers are highly cationic and the long polymer chains render them
slightly hydrophobic as well. Their electrostatic binding to anionic plasmid DNA for example is
efficient to protect it from degradation, yet it is also desirable to release this DNA once inside the cells
so that it can be transcribed into protein. This is why cationic polymers with more biodegradable
ester bonds can have increased transfection efficiencies. Though non-viral gene delivery has yet to
break into the world of atherosclerosis, biodegradable polymers have high potential [28,29]. However,
biodegradability is less important to consider for therapeutics that only have to enter the cell cytoplasm
to act such as for RNA interference (RNAi) and even less important for those therapies that can be
released outside the cells, such as drugs acting on receptors or being internalized on their own. Thus,
the application is the most important factor to consider in choosing a material for NPs. However,
the fine-tunability of polymers make them adaptable for many functions within that space and will be
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discussed more in upcoming sections. For a more complete review of polymers within the context
of atherosclerosis, the reader is referred to Lewis et al. [30].

2.1.2. Lipids

Lipid nanoparticles have been around for decades and were some of the first examples of drug
delivery tools used by researchers. Typically made from amphiphilic materials, liposome-forming
lipids have a long hydrophobic tail of 10–20 carbon atoms sometimes with unsaturated bonds.
Emulsification of these lipids with hydrophobic drugs encapsulates them into self-assembled spheres
with the hydrophobic lipid tail in the core and typically charged hydrophilic polar head residing in
the outer aqueous environment. Thus, the charge and hydrophobic nature of lipids is important for
NP formation (Figure 2). Included in the emulsion are often ‘spacer lipids’ such as cholesterol, as in
cell membranes. These spheres can be unilamellar or multilamellar depending on post-formation
processing techniques. Although most often used to encapsulate hydrophobic imaging agents, drugs,
and proteins, there are examples of liposomes for gene delivery, typically by absorbing nucleic acids
onto the charged exterior [31]. Furthermore, there is a wide variety of lipids available with already
functionalized head groups for the covalent linking of targeting peptides and stealth groups such as
polyethylene glycol (PEG). The ratios of all these components are important and must be screened
as they often depend on cell type. For example, a targeting ligand density of 1–2.5 mol % of the total
lipids used to form particles was found optimal to target cancer cells in vitro and in vivo in a mouse
model of human gastric cancer [32].

Liposomes have found particular success for use in atherosclerosis imaging and therapeutic
delivery because of their lipid-like properties. The accumulation of low density lipoprotein (LDL)
is an initiating event for atherosclerosis inflammation. However, high density lipoprotein (HDL) is
athero-protective through an unknown mechanism of transporting lipids and cholesterol from foamy
macrophages into the liver for processing [33]. Liposomes have been used to mimic the structure and
function of HDL [34,35].

Table 1. Summary of common materials used to fabricate NPs used in atherosclerosis research studies
selected for this review.

Common NP Materials Drug Delivery Cell/Gene/Protein Delivery Imaging

PLA/PLGA [36,37] [38–41] [42]
Chitosan [43] [44] [45]

Hyaluronic Acid - - [46]
Liposomal Lipids a [47–50] [51] [52–54]

PLL [55] - -
Cyclodextrin [56,57] - -

PAA [43] - -
PEG b [58] [38,39,59,60] -

Sebacic Acid [58] - -
Polystyrene - [61] [62,63]
α-Elastin [37] - -

Polypyrrole - - [46]
Gold - [64] [65,66]

Synthetic Polymer 7C1 - [67–69] -
Perfluorocarbon - - [54,70]

PEI - [59,60,71] -
Silicon - [60] -

Gadolinium - [72] [52,53,73,74]
Iron Oxide - [75] [76–78]

a Typical liposomal lipids include cholesterol, 1,2-Distearoyl-sn-glycero-3-phosphoethanolamine (DSPE),
N-[1-(2,3-Dioleoyloxy)propyl]-N,N,N-trimethylammonium (DOTAP), phosphotidylcholine, and those similar. b PEG
in this table includes incorporation as a main functional component (i.e., co-polymer) rather than surface coating.
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2.2. Nanoparticles for Investigating Atherosclerosis

2.2.1. Polystyrene

Polystyrene (PS) is a model biomaterial in terms of its widespread use. It is biocompatible as it
is the culture substrate of choice for a wide array of cells. This use has translated to its selection as a
nanoparticle material that is stable, relatively inert, and cheap to work with. It can be used to optimize
many fine-tunable parameters such as the coating density of targeting ligands onto nanoparticles,
helping to isolate the effect of the coating independent of material effects. PS nanoparticles are often
commercially made with monodisperse diameters and are available with the chemical functional group
of choice already present for linking targeting and imaging moieties. However, even the relatively
hydrophobic nature of PS allows for direct adsorption of proteins without the need for chemical
functionalization. For example, Pacheco et al. adsorbed specific amounts of Fc receptor ligands onto
PS spheres ranging in size from 0.5–2 µm to study the effects of NP size and ligand density on uptake
by macrophages [79].

Ligand-coated PS NPs are also internalized by endothelial cells, a process depending in part
on the diameter of nanoparticles and density of surface ligands [80]. Chacko et al. described how
functionalizing polystyrene NPs with a diameter around 180 nm with antibodies specific for different
domains of the platelet endothelial cell adhesion molecule receptor PECAM-1 (CD31) enhances
NP uptake in vitro in human umbilical vein endothelial cells (HUVECs) and in vivo in female
C57BL/6 mice [81]. They found that binding of a first antibody, added in solution, induces a
conformational change in PECAM-1 and that this change unveils a high-affinity domain for the
second antibody, coated on NPs, increasing uptake. This process is highly sequence specific as binding
of the two antibodies in the reverse order does not show similar success. Nevertheless, the strategy
of functionalizing multivalent ligands to NPs typically synergistically enhances their binding to and
uptake by endothelial cells, even when targeting different receptors with the same NP [22,63,69].
Thus, polystyrene NPs can be made with discrete diameters and functionalized either physically
(adsorption) or chemically (cross-linking) with targeting ligands and fluorescent moieties. However,
they offer little in terms of cargo carrying capacity (Figure 2), an important application of nanoparticles.
In addition, PS NPs are not used in the clinic due to their inability to biodegrade within the body
among other reasons. Still, they are a useful tool to survey in vitro and experimental in vivo binding
dynamics and biodistribution [82].

2.2.2. Metallic and Inorganic Materials

One of, if not the most widely used applications of metallic and inorganic material nanoparticles
for atherosclerosis is for imaging. Magnetic resonance imaging (MRI) is the classical modality due
to the wide availability of both MRI machines and magnetic nanoparticles, typically ultrasmall
superparamagnetic nanoparticles of iron oxide (USPIOs) or gadolinium (Gd)-based materials.
Studies involving positron emission tomography (PET), computer tomography (CT), ultrasound,
and fluorescent/infrared imaging are becoming more common, sometimes in combination with MRI,
with potential applications dictated by the choice of NP material.

An advantage of inorganic NPs for imaging is their often smaller size (tens of nm) relative to
organic-based NPs, allowing for increased passive uptake. Such a strategy was utilized by Palekar et al.
in trying to establish a correlation between the uptake of perfluorocarbon (PFC) NPs as a result of the
damaged endothelium and the risk of thrombosis [54]. By incorporating this PFC, the authors were
able to do MRI imaging in both the hydrogen and fluorine channels, leading to increased perspectives
for detection. Furthermore 3D 2-photon microscopy on en face aortic segments revealed the depth of
penetration of the NPs into the plaques of ApoE−/− mice. The accumulation of nano-sized particles
via the enhanced permeabilization and retention (EPR) effect is often cited in NP use for various
cancers and could be the reason non-targeted imaging NPs have had success already in atherosclerosis.
However, researchers are moving toward more specific targeting of plaque components. One recent
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example of this is an in-depth study by Qiao et al., who used up-converting gadolinium NPs targeted
to the plaques of ApoE−/− mice [83]. Coated with an osteopontin antibody, these MRI-detectable NPs
localize to macrophages within the plaque. The specific targeting of plaque macrophages has been
difficult because they are not very different than macrophages present throughout the body. However,
the authors identified osteopontin as a secreted marker of macrophages, particularly foamy cells within
the plaque. The nanoformulation was able to resolve small distances live in vivo via up-conversion
luminescence imaging in an arterial cuff model capable of recapitulating low and oscillatory shear
stresses in the vessel.

Interest is on the rise in targeting the plaque specifically. Many studies have identified
possible targets that are overexpressed or disproportionately expressed at the plaque. In addition,
advances in chemistry, nanotechnology, and biological knowledge have allowed for the development
of specific probes to illuminate some of the processes that drive plaque progression. These are
summarized in Table 2.
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Table 2. A non-exhaustive list of targets recently identified through various NP-mediated targeting of atherosclerosis, mainly for imaging purposes.

Process Target Targeting Moiety Vehicle In Vivo Study Reference

Apoptosis

Phosphatidyl serine Annexin V
SPION Hyperlipidemic Rabbit [84]

USPIO ApoE−/− mice [85]

Peptide R826 USPIO ApoE−/− mice [86]

Membrane Potential (∆Ψm) Triphenyl phosphonium (TPP) cation HDL-inspired polymer-lipid hybrid NP Rat [87]

Angiogenesis αVβ3 Peptidomimetic antagonist PFC-lipid NPs Hyperlipidemic Rabbit [88]

Calcification Ca2+ Succinate derivatives IONP ApoE−/− mice [89]

Citrate coating VSOP Hyperlipidemic Rabbit [90]

Leukocyte infiltration C-C chemokine receptors 64Cu-labelled vMIP-II PMMA/PEG core-shell NPs ApoE−/− mice [91]

Macrophage activity

CD44 or Stablin-2 Hyaluronic Acid (HA) Hydrophobically modified HA NPs ApoE−/− mice [92]

CD36 Specific oxidized phospholipids Gd-entrapped carbon cage within liposome ApoE−/− mice [93]

p32 Lyp-1 peptide HSP-1 self-assembled cage Arterial ligation surgery
in mice [94]

Scavenger receptor SRA-1 Inherent ability of polymers PEGylated aliphatic mucic acid derivatives Rats [95]

Mannose receptor Mannose Hydrophobically modified glycol chitosan NPs ApoE−/− mice [96]

Unknown Inherent ability of protein cage Human recombinant protein cage FVB mice [97]

Fibrous cap formation Collagen EP-3533 peptide PEGylated HDL-like NPs Reversa mice [98]

Elastic lamina damage Elastin Antibody PLA NPs ApoE−/− mice [42]

Endothelial inflammation

E-selectin/VCAM-1 Antibodies Commercial polystyrene NPs ApoE−/− mice [62]

P-Selectin/VCAM-1 Synthetic polymer targeting P-selectin
(PAA-sLex) and VCAM-1 antibody PFC-filled lipid microbubbles NA [22]

P-selectin Antibody PEGylated dextran/IONP ApoE−/− mice [99]

VCAM-1

Nano antibody fragment 18F-labelled antibody ApoE−/− mice [100]

Peptide R832 USPIO ApoE−/− mice [86]

Peptide VHPKQHR PFC core w/lipid surfactant ApoE−/− mice [70]

Antibody PFC-filled ultrasound microbubbles NA [101]

General inflammation
IL-4 receptor IL-4 analogous peptide Hydrophobically modified glycol chitosan NPs Ldlr−/− [45]

MRP8/14 (calprotectin) Antibody Gadolinium-loaded liposomes ApoE−/− mice [102]

Thrombosis
Platelets RGD Peptide IONP-loaded PLGA-chitosan core-shell NPs Sprague-Dawley rats [103]

Thrombin PPACK (Thrombin inhibitor) PFC core with phospholipid surfactant ApoE−/− mice [104]
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2.3. Therapeutic Strategies Reliant on Nanoparticle Material Properties

There are a few interesting and recent examples of nanoparticles that exert their therapeutic
potential by virtue of just their material properties (i.e., there is no delivered therapeutic). Many studies
have devised strategies to interfere with the uptake of low density lipoprotein (LDL) by macrophages.
As described above, this is a key event in the progression of atherosclerosis. Macrophages take up
oxidized LDL via scavenger receptor-A (SR-A) and scavenger receptor B (CD36). Petersen et al.
developed amphiphilic nanoparticles with hydrophobic cores composed of mucic acid and polystyrene
as well as amphiphilic core-shell NPs consisting of mucic acid-functionalized PEG and polystyrene
in vitro in human monocyte-derived macrophages [105]. The lipid-like hydrophobic core-containing
NPs act at two different levels to prevent the uptake of lipids. First, they directly compete with
the uptake of oxidized LDL via scavenger receptors SR-A and CD36. Secondly, NP uptake led to a
decrease in the surface and gene expression of one or both of these receptors for 48h after incubation
with the nanoparticles in vitro (Figure 3A). Though the authors did not check how this impacted the
formation of foam cells specifically, the processes diminished by NPs (LDL uptake and scavenger
receptor expression) are what give rise to foam cells in vivo. The authors further pointed out that
the result is similar to the effects of α-tocopherol, though the pathways for this molecule are not well
known. Still these are relatively safe materials (although polystyrene could be substituted for a more
biodegradable polymer in the future) and represent an interesting strategy to deal with a major issue
in atherosclerosis. Other attempts for this strategy have been documented as well [106,107]. However,
longer term studies should be performed with this strategy and in vivo to ensure that NP uptake is
not mimicking the effects of LDL uptake, just substituting one molecule for another.

Lipid transport primarily occurs in macrophages and other professional phagocytic cells,
however, vascular smooth muscle cells (VSMCs) also contribute significantly to lipid accumulation
in plaques [13]. A recent study actually targeted VSMCs with copper sulfate (CuS) nanoparticles
that acted as a photothermal switch inducing autophagy [108]. Coating the NPs with an antibody
against TRPV1, a cation channel, allowed the CuS NPs to specifically accumulate in VSMCs expressing
TRPV1 in vitro. Upon irradiation with NIR light, a local increase in temperature was seen due to
the NP materials. The heat-activated channel allowed an influx of calcium ions, which activates
autophagy, a mechanism by which modified LDL is converted back into free cholesterol for efflux
from the cell. Injection of the NPs in vivo in ApoE−/− mice followed by irradiation greatly reduced
plaque formation as evidenced by Oil Red O staining (Figure 3B). This simple yet highly effective
strategy demonstrated precise in vivo targeting and control of a cellular process that is important in
the progression of atherosclerosis, namely the processing of lipids.

Foam cells of macrophage or VSMC origin are characterized by the ingestion of lipids that
render them vulnerable to apoptosis and necrosis. In conditions of defective efferocytosis, excessive
extracellular cholesterol may lead to the formation of crystal structures, which can activate complex
inflammation pathways [14]. In a recent interesting approach to attenuate inflammation, Zimmer et al.
delivered cyclodextrin to the plaques of ApoE−/− mice in an attempt to increase cholesterol solubility
and removal from the plaque through classical pathways [109]. Though this strategy involved free
cyclodextrin oligosaccharides, it could be reimagined to encapsulate cyclodextrin as a therapeutic
within a nanoparticle or use it as a component to fabricate the nanoparticle itself as cyclodextrin is
widely used to formulate NPs [56,110].
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Figure 3. Nanoparticle strategies arising from material properties. (A) Core-shell formulations
of PEG, polystyrene, and mucic acid of varying compositions modulate physical properties.
Increasing hydrophobic cores mimic modified LDL and can compete with its uptake via
scavenger receptors, ultimately reducing macrophage lipid uptake. (*) indicates statistical
significance from oxLDL control (p ≤ 0.05). Reproduced (adapted) with permission from [105];
(B) CuS nanoparticles act as infrared thermotransducers to control cationic channels important for
atherosclerosis processes. Upon irradiation, CuS NPs targeted to TRPV1 heat up and trigger the
cation channel to open, allowing a flood of calcium and activation of autophagy processes, preventing
atherosclerosis in the aortic root as well as in the entire aorta. Reproduced (adapted) from [108].
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3. Nanoparticle-Mediated Delivery of Therapeutics in Atherosclerosis

3.1. Delivery of Biotherapeutics

Nanocarriers are increasingly being incorporated into imaging and drug delivery in cardiovascular
disease [111,112]. Moreover, there is a burgeoning area of therapeutic delivery including nucleic acids,
proteins, and more recently cells (Figure 4) that could be deemed biotherapeutic delivery. Nanoparticles
can bring the promises of non-invasive and safe gene therapy, cellular repopulation, and protein
delivery to fruition for atherosclerosis. Many significant challenges remain to delivering these
biotherapeutics; each cargo comes with its own unique set of design criteria and constraints. However,
these strategies hold the most promise for novel effective treatments as evidenced by extensive plaque
regression and reduction in typical inflammatory markers after treatment in animal models (Table 3).
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Figure 4. Recent examples of nanoparticle biotherapeutics and their targets in preventing atherosclerosis.
Insights and techniques gained from siRNA studies has led to the delivery of larger and more complex
molecules even up to cells.

3.1.1. RNA Delivery

Kheirolomoom et al. devised a liposome formulation encapsulating anti-micro RNA 712 (miR-712)
for targeted delivery to the plaques of ApoE−/− mice. The encapsulation allowed for potent in vivo
downregulation of miR-712, whose main target is matrix metalloproteinase (MMP) activity, at a dose
80% lower than if given freely without lipid NP encapsulation [51]. MMPs are enzymes produced by
immune and other cells to degrade extracellular matrix (ECM) components. Typically, after an
inflammatory reaction has occurred, the pro-healing remodeling response requires MMPs [113].
However, in the case of atherosclerosis, a thick and stable fibrous cap over the plaque prevents
rupture and subsequent thrombosis, so MMP activity is associated with vulnerable plaques. To target
the plaque, the authors made use of the validated VHPK peptide [114], which targets endothelial
VCAM-1 and helps to increase not only binding of the NPs to endothelial cells but also their
internalization. Nanoparticle-mediated delivery of anti-miR-712 greatly reduced atheroma formation
associated with a stable collagen cap (Figure 5A).

In another interesting work, miRNA-146a and -181b were packaged into PEG-PEI NPs that
were then loaded into a multistage silicon microporous vessel conjugated with E-selectin targeting
aptamers [60]. These specific miRNAs are downregulated in the atherosclerotic inflammatory condition,
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prompting their selection as therapeutics. The miRNA delivery in male ApoE−/− mice led to a decrease
in the expression of chemokines CCL2, 5, 8, and 9 as well as CXCL9. These are well known downstream
products of the inflammatory NF-κB signaling pathway, which these miRNAs are reported to inhibit.
The authors reported decreased monocyte adhesion to the endothelium and fewer pro-inflammatory
immune cells populating and perpetuating inflammation at the plaque site as evidenced by reduced
expression of monocyte lineage marker CD68 (Figure 5B). Hence, miRNAs are attractive options for
therapeutics and new information is continuously bringing to light their role in atherosclerosis [115].

Table 3. Overview of highlights in NP-mediated targeted delivery of biotherapeutics recently used to
attenuate atherosclerosis.

Biotherapeutic Delivered
(Target) NP Targeting Moiety NP Material Result Reference

siRNA (ICAM-1) in vivo phage display-identified
peptide targeting NMHC IIA

B-PEI crosslinked with
added disulfide bonds and
conjugated to peptide via
heterobifunctional PEG

NPs target athero-prone regions
and lead to ICAM-1 knock-down [59]

siRNA (ICAM-2) None, but preferentially
accumulates in pulmonary ECs

Hydrophobically modified
(C13) PEI formed into
liposome-like NPs with PEG
incorporated

Significant in vitro and in vivo
mRNA silencing in endothelial
cells for a variety of vascular
pathologies, particularly Lewis
Lung Carcinoma (LLC).

[67]

Ac2-26 peptide from
Annexin A1 (N-formyl

peptide receptor FPR2/ALX)
Collagen IV-binding peptide PLGA bioconjugated to PEG

and peptide

NPs target athero-prone regions
and reduce lesion size, oxidative
stress, increase collagen, and
enhance athero-protective effects.

[38]

Interleukin-10
(IL-10 receptor) Collagen IV-binding peptide

PLGA-PLA copolymer with
PEG coating and
bioconjugated peptide

NPs target athero-prone regions
and reduce lesion size, cap
thickness, neutrophil infiltration,
and immune cell responses to
inflammatory stimuli.

[39]

Anti-miRNA (miR-712,
known association

with MMPs)
VCAM-1 targeting peptide

Liposomes formed from
cationic lipids, PEG-lipids,
and peptide-PEG-lipids

Specific targeting of ECs in vivo
under oscillatory/low shear stress
leading to decreased plaque size,
increased cap size, and decreased
destructive enzymatic activity.

[51]

MiRNA (miR-146a and
miR-181b) E-selectin targeting peptide

PEG-g-PEI:miRNA NPs
encapsulated within silicon
microparticles

Improved relaxation of vascular
endothelium ex vivo, reduced
chemotactic ligand
expression/monocyte adhesion in
addition to lesion/collagen area
and macrophage, while increasing
SMC migration.

[60]

Short interfering RNA (siRNA) is another type of RNA interference strategy used to regulate
protein expression that shows great promise in translation to the clinic. Using a lipid-like nanoparticle
formulated from low molecular weight PEI, PEG, and epoxide-terminated hydrophobic polymers [116],
Dahlman et al. targeted the endothelium for the delivery of siRNA that downregulated the
endothelial cell receptors VE-cadherin and ICAM-2 [67]. Though not specifically targeted to endothelial
biomarkers, one hydrophobic polymer nanoparticle formulation was able to accumulate preferentially
in the endothelium of C57BL/6 mice. This was reportedly one of many formulations tested in an
initial high-throughput in vitro screen in HeLa, murine endothelioma, and pooled human dermal
microvascular endothelial cells for RNA knockdown efficiency. The formulation derived from a
copolymerization of PEI600 and an epoxide-functionalized C13 chain. Epoxide ring opening links the
hydrophobic chain to PEI amine groups, thus it is not necessarily a co-polymer but rather a long
chain cationic lipid. This is confirmed by the multilamellar vesicle (MLV) arrangement of lipids,
PEG, and siRNA. The authors reported high efficiency of protein knockdown with the nanoparticle
vehicle allowing for measurable therapeutic interventions with as little siRNA as 2 nM. The siRNA
decreased infiltration of immune cells into the plaques. One thing to note was this formulation was
used in the healthy endothelium of mice, which is significantly different than the damaged and
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activated endothelial cells lining plaques. It will be interesting to see if this success translates to the
athero-prone endothelium.Materials 2018, 11, x FOR PEER REVIEW  14 of 29 
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Figure 5. Targeted delivery of biotherapeutics from various nanoparticle formulations. (A) Surgical
models of atherosclerosis lead to disturbed blood flow in ligated artery (LCA) vs. non-surgery
control normal flow (RCA) resulting in overexpression of VCAM-1 used by targeted lipoparticles
delivering miRNA. Targeted liposomes (VHPK-CCL anti-miR-712) resulted in decreased plaque size,
collagen content, and other markers of inflammation (* p < 0.05). Reprinted (adapted) with
permission from [51]; (B) PEI-mediated delivery of athero-protective miRNA encapsulated in silica
microparticles targeting E-selectin reduced overall macrophage content within plaques, marking a
reduced inflammatory response. Reprinted (adapted) from [60]; (C) Collagen-IV targeted PLGA NPs
encapsulating anti-inflammatory cytokine IL-10 also localized to the plaque and reduced necrotic
core size and generation of ROS. Reprinted (adapted) with permission from Kamaly, N. et al.
Targeted Interleukin-10 Nanotherapeutics Developed with a Microfluidic Chip Enhance Resolution of
Inflammation in Advanced Atherosclerosis. ACS Nano 2016, 10, 5280–5292. Copyright 2016 American
Chemical Society.

Using a similar nanoparticle formulation, but focusing more on specific targeting, Chung et
al. used in vivo phage display technology to identify peptides that bind activated endothelial
cells under oscillatory, or disturbed, flow conditions [59]. Using a partial carotid artery ligation
surgery in male C57BL/6 mice, the authors identified peptides that localize more specifically to
the ligated artery experiencing oscillatory flow than the non-ligated control. This ensured that the
targeting peptides purified through multiple phage pannings of the ligated artery would target only
endothelium experiencing disturbed flow. By conjugating these peptides to a PEG-g-PEI copolymer
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nanoparticle encapsulating siRNA against ICAM-1, they reduced ICAM-1 mRNA expression by a third
in vivo. As with many nanoparticle-based strategies, there was accumulation in the spleen and kidney.
The authors have also shown a likely target of the discovered peptides to be non-muscle myosin heavy
chain IIA (NMHCIIA), which is upregulated in the case of disturbed flow. The protein is known for
its binding to and regulation of actin in cell migration and adhesion [117] and thus has implications
for the cytoskeletal organization of ECs. Morphological changes in endothelial cells arise from their
adaptation and remodeling in response to mechanical stimuli such as cyclic stretch and shear stress
within the blood vessels [118,119].

3.1.2. Plasmid DNA (pDNA) Delivery

DNA-based gene therapy is one of the few newcomers to atherosclerosis research and has the
potential to increase the expression of proteins involved in anti-inflammatory, lipid processing, or other
pathways involved in plaque progression. pDNA offers many advantages to delivering proteins.
DNA plasmids are easier and cheaper to work with than proteins and if delivered properly can ensure
that the protein is produced endogenously where it often needs to be transiently expressed at low doses
(pg/mL). DNA delivery held enormous promise at its inception but has faced significant challenges
moving past experimental treatments in animal models. There are unique challenges to the delivery
of DNA, mainly its need to cross both the cellular and nuclear membrane. Of course, viruses can be
counted on to properly perform this task with high efficiency, but there is still apprehension limiting
their widespread use including a low cargo carrying capacity, safety concerns, and the possibility
for mutation and oncogenesis. Two recent investigations into viral mediated gene therapy in vivo
were successful after pre-suppressing the immune system to the virus [120,121], a strategy that could
hamper translation of this therapy. However, viruses have been useful to identify potential therapeutic
proteins involved in atherosclerosis [122]. For these reasons, researchers have been turning to synthetic
and natural polymer-derived nanoparticles for gene delivery [123] and applying insight gained from
siRNA delivery to DNA [124].

In an older but interesting strategy immunizing male New Zealand white rabbits on a high
cholesterol diet against atherosclerosis, Yuan et al. used chitosan nanoparticles to deliver DNA
encoding cholesterylester transfer protein (CETP), which is responsible for transferring lipids
between lipoproteins [44]. Chitosan is a natural cationic polysaccharide derived from chitin,
present in shellfish, with primary amine groups. It is biodegradable, biocompatible, and even has
purported anti-inflammatory properties [125], making it a desirable candidate for biotherapeutic
delivery [126]. The authors took advantage of the cationic and mucoadhesive properties of chitosan
to craft a nanoparticle vaccine to be delivered intranasally. Vaccinated rabbits mounted an effective
immune response against CETP and helped lower its activity for 21 weeks, reducing plaque formation.
This initial promising study highlighted the potential of DNA delivery for atherosclerosis, but there is
much work to be done with non-viral pDNA gene therapy before reaching the success observed with
RNAi-based interventions.

More in vitro characterization of the transfection capabilities and cytotoxicity of cationic polymers
must be performed in cells relevant for atherosclerosis. Self-assembled PEI end-capped amphiphilic
copolymers made of lactic acid and 2,5-morpholinedione were capable of condensing and delivering
DNA to HUVECs [71]. The authors reported little to no cytotoxicity, a common concern with
polymer materials, and a biodegradation rate better than that of polylactic acid, a prototypical
cationic biopolymer. They claimed the depsipeptide (amide and ester bond donors) bonds within
the polymer helped to prolong release of pDNA and contributed to its overall biocompatibility.
As mentioned previously, the inclusion of ester bonds in cationic polymers seems to be a key feature
allowing for DNA plasmid delivery. Besides the intelligent design of biodegradable gene delivery
polymers, a high expression and non-immunogenic plasmid construct known as minicircle DNA
(mcDNA) has outperformed traditional therapeutic pDNA in non-viral carriers [127,128], implying
that low transgene expression is not as much a concern anymore for non-viral methods.
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3.1.3. Protein Delivery

Until the potential of pDNA gene therapy is fully realized, studies delivering the protein itself can
offer unique insights into the bioactivity and dosing regimens required for robust in vivo responses.
Some early evidence of success comes from Muro et al. who delivered acid sphingomyelinase (ASM) as
a treatment for lysosomal storage disease. Though not specifically for atherosclerosis processes,
they used fluorescently labeled polystyrene beads with a diameter of 200–300 nm coated with
recombinant ASM and an ICAM-1 antibody. The NPs specifically bound to and were taken up
by two types of ICAM-1 expressing cells, HUVECs and fibroblasts from patients with Niemann-Pick
disease (NPD), and reduced the uptake of lipids [61].

Recently, more advanced and fine-tunable nanoparticles have been devised for the controlled
release of targeted protein therapeutics at the site of the plaque. Kamaly et al. utilized a three-channel
microfluidic device to fabricate PLGA-PLA copolymer nanoparticles coated with PEG and a collagen
IV-binding peptide for targeting [39]. These NPs were able to encapsulate interleukin-10 (IL-10),
the potent anti-inflammatory cytokine, for therapeutic delivery to the plaque. The biodegradable NPs
were capable of reducing plaque development, necrotic core size, and lowering reactive oxygen species
(ROS) in an atherosclerosis mouse model (ldlr−/− on a high fat diet) (Figure 5C). This study adds
to the research underlining IL-10 as important in curbing the immune response [129] particularly in
atherosclerosis [122,130]. The same collagen-binding peptide was used to target NPs delivering an
inflammation resolving peptide mimic of the protein Annexin A1 [38] to ldlr−/− mice on a high fat diet.
Targeted delivery of the peptide, known as Ac2–26, increased collagen deposition and established
a thick fibrous cap, among other markers indicating a stable plaque. These studies highlight the
high therapeutic potential of targeted anti-inflammatory or pro-healing nanoparticle therapeutics in
resolving inflammation, a key step absent in atherosclerosis [131]. Being that there are few viable
options for anti-inflammatory therapy in clinical trials thus far, the most promising is a non-targeted
antibody against the pro-inflammatory IL-1β [132], there is room for targeted nanotherapies to address
non-resolving inflammation in atherosclerosis in the future.

3.1.4. Cell Delivery

Alternatively, Adamo et al. investigated the delivery of cells as therapeutics. By introducing
biodegradable PLA-based magnetic nanoparticles in vitro into rat aortic endothelial cells, the authors
were able to load ECs with nanomagnets [75]. The treatment was intended for mechanical injury
following stent implantation that can often leave the endothelium damaged but this work could be
applicable for atherosclerosis. The complex shear stress profile around plaques coupled with the
body’s immune response has complicated targeting plaques [133]. Fifteen minutes of magnetic field
was capable of holding the cells in place to withstand the forces of blood flow, allowing the cells
to attach and repopulate the damaged area in male Lewis rats. This early study shows potential in
targeting cells themselves to the plaques using nanoparticles.

3.2. Delivery of Drugs

Nanoparticle encapsulation of drugs has many benefits including protecting molecules from
degradation, solubilizing hydrophobic or pH-sensitive drugs, ensuring molecules are locally
concentrated where they are needed, reducing off-target effects, and lowering the overall dose
required for activity. These possibilities greatly increase the potential for small molecule treatments in
atherosclerosis, especially at a time when an estimated 70% of cardiovascular clinical events cannot
be prevented with available drugs [134]. Thus far, the majority of small molecule interventions in
atherosclerosis have been limited to lipid-lowering statins, the clinical gold standard for treatment.
However, through the unique properties conferred by nanoparticles, a wider range of molecules are
becoming suitable candidates such as anti-inflammatory steroids [49,135]. One advantage driving these
strategies forward is the increased fine-tunability of therapeutic delivery enabled by nanoparticles and
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their unique material properties. These are typically lipid or polymer-based formulations that do not
require inorganic regions such as in most NPs used for imaging. Natural and synthetic polymers can be
designer-functionalized through a wide range of chemistries to produce the ideal formulations capable
of immune cell evasion (an increasing standard for in vivo studies), targeting, and even more complex
stimuli-responsive results (pH, shear stress, etc.) as discussed earlier. A brief discussion of exciting
breakthroughs in NP-mediated drug delivery will follow but more extensive reviews dedicated to this
topic can be found [24,112].

One prominent example of NP-mediated drug delivery is for methotrexate, which is typically used
as a chemotherapeutic for cancer at higher doses but is widely used as a suppressor of inflammation
at lower doses (10–25 mg/week) [136]. This naturally lends itself to nanoparticle-encapsulated
delivery. Bulgarelli et al. packaged methotrexate within a lipid nanoemulsion resembling low density
lipoprotein (LDL) in New Zealand rabbits. The rabbits were fed a high cholesterol diet for 60 days and
received NPs for the last 30 days [47]. The authors reported a decrease in the number of characteristic
pro-inflammatory proteins (TNF-α, MCP-1, MMP-9, etc.) within the intimal blood vessel layer along
with an upregulation of IL-10, further distinguishing this approach as an anti-inflammatory treatment.
The NP-encapsulated methotrexate treatment was as effective as that given in a commercial solution
but can potentially avoid toxic side effects sometimes seen with low-dose methotrexate [136].

Similarly, encapsulating prostacycline (PGI2), an inhibitor of platelet aggregation, within novel
nucleoside-liposomes allowed Oumzil et al. to lower the dosage of this powerful molecule [50].
The authors encapsulated both PGI2 and an iron oxide MRI contrast agent for simultaneous therapy
and in vivo tracking within solid lipid nanoparticles (SLN), making this a hybrid organic/inorganic
theranostic formulation (Figure 6A). Such solid lipid nanoparticles showed successful inhibition
of clotting in human blood from healthy volunteers and better magnetic relaxivity properties as
compared to commercial MRI contrast agent Feridex®, a superparamagnetic iron oxide (SPIO) colloidal
formulation [137]. The in vitro/ex vivo NP therapy inhibited platelet aggregation when platelet-rich
plasma (PRP) was incubated with clotting agonists adenosine 5′-diphosphate (ADP) and thrombin
receptor-activating peptide-6 (TRAP-6).

Dou et al. also encapsulated a potent anti-inflammatory drug typically used in
post-transplantation therapy in a novel acetalated β-cyclodextrin formulation [56]. By varying
the degree of acetalation, the authors exhibited control over the release of rapamycin (Figure 6B).
These rapamycin-releasing NPs led to a significant decrease in aortic lesions in atherosclerotic mice.
The authors also noted other typical markers of atherosclerosis that were reduced (MMP-9, macrophage
content, plaque area, and necrotic core) while markers of plaque stability were increased (smooth
muscle cell infiltration, collagen deposition, and relative lumen area).

Red blood cells (RBCs), an integral component of blood responsible for the transportation
of oxygen to all tissues, could be an important delivery tool to shuttle therapeutics to the
site of growing plaque. Chen et al. absorbed nanoparticles, formulated between heparin and
thiol-functionalized PLL [55], onto red blood cells isolated from female BALB/c mice. The added
thiol groups enabled spontaneous cross-linking via the formation of disulfide bonds without the
need for other reactants. Instead of incorporating PEG, the authors reasoned that ‘hitching a ride’ on
long-circulating RBCs could impart on the absorbed particles a significantly increased bioavailability.
Furthermore, at the elevated shear stress level of 10 Pa typical around stenosed vessels, the authors
noted an increased release of the nanoparticles from the cell surface as compared to a pressure of 1 Pa,
typical in non-occluded vessels. Biodegradation of the polymers resulted in free heparin available,
a well-known anti-coagulant. Furthermore, macrophage uptake of RBC-absorbed NPs was reduced
in vitro, suggesting that incorporating NPs onto cells could possibly help to evade recognition by the
immune system (Figure 6C); especially as concerns begin to rise about the immunogenicity of PEG
coatings [138].

Thus, as we learn more about the molecular biology of atherosclerosis, we can ‘smart design’
NP properties based on their materials to exploit certain stimuli in the disease of interest, such as
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the relationships between oscillatory flow, increased plaque formation, and uptake of shear stress
responsive nanoparticles.
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Figure 6. Recent nanoparticle formulations enhancing drug delivery properties in atherosclerosis.
(A) Solid lipid nanoparticles (SLN) are typically formed by lipids in various phases, however,
the novel use of nucleolipids allows for added fine-tunability and stability, leading to the ability
to encapsulate active principal ingredients (API) such as the platelet inhibitor prostacyclin (PGI2)
and imaging modalities (MRI contrast agents). Reprinted (adapted) with permission from Oumzil,
K. et al. Solid Lipid Nanoparticles for Image-Guided Therapy of Atherosclerosis. Bioconjug Chem
2016, 27, 569–575. Copyright 2016 American Chemical Society. (B) hydrophobic pockets within
β-cyclodextrin (BCD) molecules allow for the encapsulation of potent drugs, such as rapamycin (RAP).
The low toxicity and wide range of functionalization possibilities make BCD a promising tool for
many studies. Reproduced (adapted) with permission from [56]. (C) Disulfide-linked Poly(l-lysine)
(PLL) and heparin, a well-known natural anti-coagulant, form cationic nanoparticles that can adhere
to red blood cells and ‘hitch a ride’ to the site of thrombus formation, releasing heparin as the
particles degrade. Reproduced (adapted) with permission from [55].

4. Other Promising Approaches for Atherosclerosis Using Nanoparticles

4.1. Nanoparticles as Sensors and Detectors of Atherosclerosis Progression

The detection of vulnerable plaques has become a sought-after goal for quite some time in
atherosclerosis research, especially using noninvasive or radiation-free techniques. Nanoparticles have
been used for sensing and/or detecting various aspects of atherosclerosis progression and as above,
many of these responses are direct results of the material chosen to fabricate the nanoparticle.
The simplest process to quantify seems to be the uptake of lipids by professional phagocytes. This is
the ongoing process associated with plaque growth and necrotic core enlargement. Ankri et al.
used gold nanorods to visualize phagocytes [139]. Gold nanorod uptake by macrophages, derived from
human monocytes, increases the absorption coefficient of the tissue and decreases the amount
of reflected light. Thus, the signal from diffusion reflectance (DR) imaging between healthy and
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balloon-injured rat arteries was significant. The increased uptake of nanorods within the injured artery
was directly verified by ex vivo imaging via computer tomography. A similar method was used by de
Oliveira et al., only substituting the pure gold nanoparticles for aminolevulinic acid-functionalized
gold NPs. This agent becomes fluorescent through a biosynthetic pathway, providing an increased
level for detection [140].

Fluorescence molecular tomography (FMT) represents an alternative technology to detect plaques
at risk of rupture. Nahrendorf et al. coated polymer nanoparticles with enzyme-digestible probes that
became fluorescent after enzymatic activity [141]. The authors were able to pinpoint vulnerable plaques
in ApoE−/− mice that showed increased activity of MMPs in a whole mouse imaged non-invasively.
To increase resolution, however, they included CT imaging capabilities as well. This study could
be useful in providing a framework for the non-invasive imaging and quantification of vulnerable
plaques as well as in monitoring the success of a treatment, as the authors show can be done after
administering atorvastatin. These exciting results raise the potential for smart-designed nanoparticles
in the simultaneous diagnosis and tracking of treatments in atherosclerosis.

4.2. Nanoparticle-Assisted Modelling of Atherosclerosis Progression

The advancements made in imaging, sensing, and detection of plaques and the blood flow
patterns contributing to atherosclerosis have also allowed for gains to be made in the field of modelling.
Gitsioudis et al. combined high resolution MRI imaging with computed tomography angiography
(CTA) to image complex flow patterns in the vessels and differentiate between low and high shear
stresses in thoracic arteries of hyperlipidemic rabbits [76]. The dynamic data they received from
these imaging methods was used to create 3D models of fluid flow within the arteries, which the
authors then used to predict atherosclerosis progression and general vascular inflammation based on
low endothelial shear stresses. Models could be used in conjunction with other methods mentioned
above to track plaque development over time [142]. Especially if done non-invasively, data could be
generated for each patient so that truly personalized medicine approaches can be investigated.

Modelling can also uncover the physics governing nanoparticle uptake and this information
is directly applicable to future strategies. For example, the size of nanoparticles, which varies
considerably depending upon the material (tens of nm for inorganic materials to hundreds of nm or
even microns for polymers), can significantly influence NP dynamics within the vessels [143] as well
as NP uptake by cells once particles arrive at the target site. Gonzalez-Rodriguez et al. probed these
interactions in a computational model developed to show how nanoparticles coated with an ICAM-1
antibody would be taken up by endothelial cells [80]. ICAM-1 is activated by inflammation in the
plaque and then differentially expressed by endothelial cells lining the plaque (20- to 100-fold increase
over quiescent endothelial cells). Thus, it is a good marker and target for the inflamed endothelium
and indeed appears often in Table 2.

Internalization time for NPs ranged between 2 and 3 s for NPs with diameters of 50 to roughly
220 nm according to the authors. The time increases for smaller NPs as they are probably taken up by
a different mechanism than CAM-mediated endocytosis. Similarly, particles larger than 220 nm saw
increased internalization times due to the difficulty of cell membrane deformation and the physical
accommodations that the cell had to make to take in large particles. However, the model predicts that
NPs up to around 1 µm may enter endothelial cells through some type of membrane wrapping [80].
The internalization time is also dependent on bond formation time between the NP ligand and cell
receptor, which could also direct investigators to vary surface ligand density as a strategy for increased
uptake as mentioned in previous sections. This study explores some fundamental boundary conditions
that must be met for successful NP-mediated therapeutic targeting.

The integration of these modelling and sensor approaches could culminate in one of the latest
trends in in vitro cell culture technology; recapitulating complex cell-cell and cell-material interactions
using microfluidics. The so-called disease-on-a-chip model may still be far off for atherosclerosis,
but complex processes especially those involving flow and shear stress, can be successfully modelled.
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Zheng et al. developed a culture platform for endothelial cells wherein they could vary both fluid
shear stress and cyclic stretch, as is often experienced by ECs stimulated by underlying vascular
muscle tissue, to have a more physiological or pathological environment using a microfluidic chip [118].
The device gives vascular endothelial cells a much-needed upgrade in in vitro culture conditions that
more resemble their natural in vivo environment. The potential applications begin with probing the
endothelium for more physiologically relevant answers and extends right through to evaluating new
drugs and experimental nanomedicines. The authors report that platinum nanoparticles (PtNPs),
which are capable of reducing ROS, showed similar effects on their chip as in vivo. These PtNPs have
shown promising experimental results, yet their clinical safety and applicability remains unknown,
making them an ideal candidate for chip-based experiments.

5. Conclusions and Perspectives for Future Work

Many types of nanoparticles have made their way into all areas of research into atherosclerosis
including its pathology, sensing, therapeutic delivery strategies, imaging, and development of more
physiologically relevant models. From a bioengineering perspective, the convergence of advancements
in both atherosclerosis pathology and nanoparticle materials research provides a unique nano-sized
window through which we can see the future of diagnosis and treatment. In fact, the gamut of
advanced nanoparticle formulations available today is so wide that researchers seem to be able to
therapeutically intervene in atherosclerosis at every stage of disease progression (Figure 7). With the
advances in materials that allow for fine tuning of NP properties, tracking, reporting, and sensing,
it will not be long before nanoparticles become standard tools to uncover the underlying events in
atherosclerosis progression. At the same time, researchers have found and continue to find new and
interesting therapeutics to encapsulate within NPs for delivery, each with its own unique set of design
criteria and constraints. Furthermore, NPs can be evaluated on smaller and smaller microfluidic
models as we approach true disease-on-a-chip models.

The delivery of biotherapeutics seems uniquely suited to addressing the underlying inflammation
at the heart of atherosclerosis. The aforementioned strategies involving the delivery of RNAi, which led
to an increased deposition of collagen and stable fibrous cap, were promising. Furthermore, the delivery
of biotherapeutics has the potential to extend into the exciting areas of gene editing, whole genome,
and personalized medicine strategies in the context of atherosclerosis. However, there are still relatively
few studies and more work needs to be done to corroborate these findings in more and larger
animal models.

The translational potential of NP-mediated strategies remains unknown as regulatory agencies
must adapt novel methods of evaluation for these complex technologies. What seems necessary for
new strategies to succeed is interdisciplinary cooperation between research fields. It is no longer
enough to design and synthesize novel NPs and evaluate their efficacy/safety in one cell type in
a petri dish. They must be tested in vivo or in as close to an in vivo environment as possible on
microchips or in silico. The importance of screening NP materials for toxicity during experiments
in vitro and in vivo should not be overlooked as well. Targeting the endothelium in a safe and effective
way is the ultimate goal for NP-mediated therapies [133], but it may induce added damage, which can
accelerate atherosclerosis lesion formation [144].

There is no shortage of constraints in using nanotechnology for any purpose in biology. However,
researchers continue to identify novel targets for imaging, diagnosing, and treating atherosclerosis
using nanoparticles. With the recent combination of therapeutics delivered directly and specifically to
the vulnerable plaque, a targeted NP-based theranostic treatment based on NP-elucidated pathologies
is becoming more possible.
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Figure 7. Summary of selected nanoparticle strategies capable of intervening at any stage
of atherosclerosis. I—Lipid Accumulation NPs passively accumulate as well as lipids because of
their size and surface functional chemistries and can even be made to mimic LDL. In addition, they can
carry imaging contrast agents, drugs to lower cholesterol levels, and even nucleic acids to genetically
regulate expression of cholesterol ester transfer proteins (CETPs). II—Non-resolving inflammation
(A) NPs can target inflammatory recruitment receptors with conjugated moieties (peptides, aptamers,
antibodies) and enter the plaque to deliver therapeutic nucleic acids, drugs, and/or imaging agents.
(B) They can also interfere with macrophage uptake of oxLDL to form foam cells via competitive
interaction with scavenger receptors. (C) Passive accumulation in the spleen allows for therapeutic
delivery to the progenitor cells and macrophages that would normally egress to populate the plaque.
III—Plaque cap destabilization NPs targeting damaged and exposed components of the fibrous
cap (collagen/elastin) can deliver therapeutics and/or imaging agents as in panel II. These can
lower destructive activity of cytokines and enzymes secreted by macrophages and help to stabilize
the cap by inducing an anti-inflammatory environment (T regulatory and helper cells and M2
macrophages) through localized immunomodulation or pro-healing enzymes such as tissue inhibitor
of metalloproteinases (TIMPs). IV—Thrombosis NPs can target receptors expressed on platelets as well
as on activated endothelial cells such as P-selectin. These can deliver anti-thrombogenic drugs locally
or be used to image thrombus formation via contrast agents. Advanced cholesterol crystals can also be
dissolved in an attempt to decrease the dangerous lipids resident in the plaque.
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