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KPNA2 promotes cell proliferation and tumorigenicity
in epithelial ovarian carcinoma through upregulation
of c-Myc and downregulation of FOXO3a

L Huang1,2, H-Y Wang1, J-D Li1,3, J-H Wang4, Y Zhou1,3, R-Z Luo5, J-P Yun1,5, Y Zhang6, W-H Jia1,6 and M Zheng*,1,3

Karyopherin alpha 2 (KPNA2), a member of the karyopherin family, has a central role in nucleocytoplasmic transport and is
overexpressed in many cancers. Our previous study identified KPNA2 as significantly upregulated in epithelial ovarian
carcinoma (EOC), correlating with poor survival of patients. However, the precise mechanism of this effect remains unclear. The
aim of the present study was to examine the role of KPNA2 in the proliferation and tumorigenicity of EOC cells, and its clinical
significance in tumor progression. Real-time quantitative RT-PCR analysis revealed high expression levels of KPNA2 in 162 out
of 191 (84.8%) fresh EOC tissues, which was significantly correlated with International Federation of Gynecology and Obstetrics
(FIGO) stage, differentiation, histological type, recurrence, and prognosis of EOC patients. Our results showed that upregulation
of KPNA2 expression significantly increased the proliferation and tumorigenicity of EOC cells (EFO-21 and SK-OV3) in vitro and
in vivo, by promoting cell growth rate, foci formation, soft agar colony formation, and tumor formation in nude mice. By contrast,
knockdown of KPNA2 effectively suppressed the proliferation and tumorigenicity of these EOC cells in vitro and in vivo. Our
results also indicated that the molecular mechanisms of the effect of KPNA2 in EOC included promotion of G1/S cell cycle
transition through upregulation of c-Myc, enhanced transcriptional activity of c-Myc, activation of Akt activity, suppression of
FOXO3a activity, downregulation of cyclin-dependent kinase (CDK) inhibitor p21Cip1 and p27Kip1, and upregulation of CDK
regulator cyclin D1. Our results show that KPNA2 has an important role in promoting proliferation and tumorigenicity of EOC,
and may represent a novel prognostic biomarker and therapeutic target for this disease.
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Epithelial ovarian carcinoma (EOC) accounts for 90% of all
ovarian malignancies and is the most fatal gynecological
malignancy in women worldwide. The high mortality rate of
EOC is related to the delay in diagnosis, partly caused by the
late clinical manifestation of ovarian tumors. Therefore, early
detection is critical for improving the long-term survival of
patients with ovarian cancer.

Nucleocytoplasmic transport occurs through large nuclear
pore complexes in the nuclear membrane. Whereas some
factors are able to diffuse passively through the pores, the
transport of macromolecules larger than B40 kDa must
be mediated by shuttle proteins, such as karyopherins.1 A family
of karyopherin a heterodimers mediated the classical nuclear
import pathway, which recognize cargo proteins via their
nuclear localization signals (NLSs). Karyopherin alpha 2
(KPNA2) is one of seven known karyopherin a proteins2 that
have central roles in nucleocytoplasmic transport. The
KPNA2 protein (also known as importin a-1 or RAG cohort 1)
is B58 kDa and comprises 529 amino acids. Its domain
structure was defined between 1995 and 1996.3–6 The protein
comprises an N-terminal hydrophilic importin b-binding

domain; a central hydrophobic region consisting of 10
armadillo repeats, which binds to the NLS site of the cargo
protein; and a short acidic C terminus, which has no reported
function.

Elevated levels of KPNA2 have been reported in a variety of
malignancies, including melanoma,7 cervical cancer,8

esophageal cancer,9 lung cancer,10 ovarian cancer,11 pros-
tate cancer,12 brain cancer,13 liver cancer,14 and bladder
cancer.15 In addition, KPNA2 has been reported to be an
important factor in the tumorigenesis and progression of
breast cancer8,16–18 by influencing the transport of tumor-
suppressor BRCA1 proteins from the cytoplasm into the
nucleus. Interesting, high levels of KPNA2 were observed in
patient serum in lung cancer.10 This raises the possibility that
adverse KPNA2 levels could also be detected in blood
samples from other cancers; however, the molecular mechan-
isms underlying KPNA2 activity in cancer remain to be
established.

In our previous study, cDNA microarrays were used to
screen for tumor-specific genes in EOC, and KPNA2 was
observed to be upregulated in EOC tissues compared with
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paired normal human ovarian surface epithelial (HOSE)
tissues. Immunohistochemistry revealed that overexpression
of KPNA2 in EOC was correlated with poor prognosis;11

however, the precise mechanism underlying the correlation is
unknown.

In the present study, we found that expression of KPNA2
was significantly upregulated in human EOC cell lines and
tissues, leading to significant increases in the proliferation and
tumorigenicity of EOC cells in vitro and in vivo. By contrast,
knockdown of KPNA2 suppressed the proliferation and
tumorigenicity of EOC cells in vitro and in vivo. Furthermore,
we showed that KPNA2 promoted G1/S cell cycle transition,
through upregulation of c-Myc; enhanced transcriptional
activity of c-Myc and Akt activity, and suppression of
FOXO3a; downregulated cyclin-dependent kinase (CDK)
inhibitors p21Cip1 and p27Kip1; and upregulated CDK
regulator cyclin D1. Taken together, our findings indicated
that KPNA2 has an important role in the proliferation and

tumorigenicity of human EOC and suggests that KPNA2 may
be a potential target for human EOC treatment.

Results

KPNA2 is upregulated in EOC tissues and cell lines. Of
the 26 863 genes detected by the Affymetrix GeneChip
(Human Genome U133 Plus 2.0 Array) microarray, 19 genes
were found to be upregulated in EOC cells (fold change Z8),
including KPNA2 (fold change ¼ 10), compared with HOSE
tissues. The hierarchical cluster analysis of these genes is
shown in Figure1a. Results from real-time quantitative RT-PCR
(qRT-PCR) assays of KPNA2 expression in EOC and HOSE
samples were consistent with the gene expression patterns
for KPNA2 detected by the microarray experiments (Figure 1b).
Western blotting analysis revealed that expression of the
KPNA2 protein was markedly higher in all seven EOC cell
lines compared with HOSE samples (Figures 1c and d).
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Figure 1 KPNA2 is overexpressed in EOC cells and tissue samples; and KPNA2 upregulation is associated with poor prognosis. (a) Gene expression microarray analysis
showing that KPNA2 was upregulated (10-fold) compared with HOSE samples. (b) Real-time qRT-PCR analysis showing the average expression levels of KPNA2 in EOC
(n¼ 191) and HOSE (n¼ 10) tissue samples. Expression levels are normalized to b-actin mRNA. Error bars represent S.E. (c) Western blot analysis of KPNA2 protein
expression in two HOSE samples and seven EOC cell lines; b-actin was used as a loading control. (d) KPNA2 protein expression in two HOSE samples and seven EOC cell
lines was quantitated using ImageJ software (Wayne Rashband). (e) Kaplan–Meier analysis showing that the expression of KPNA2 was significantly associated with poor
overall survival in 191 EOC cases (P¼ 0.012, log-rank test). (f) Kaplan–Meier analysis showing that expression of KPNA2 was significantly associated with poor relapse-free
survival in 191 EOC cases (Po0.001, log-rank test)
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High levels of KPNA2 expression predict poor prognosis
for EOC patients. qRT-PCR assays detected high expres-
sion levels of KPNA2 in 191 EOC specimens versus 10
HOSE specimens: 3.52±0.23 (mean±S.E.) at 2�DDCt of
KPNA2 (Figure 1b).

We ranked patients according to their expression levels and
divided them into a high expression group (n¼ 95) or low
expression group (n¼ 96) using the median expression level
of KPNA2 as the cutoff point. Correlations between KPNA2
expression levels and clinicopathological characteristics of
the EOC patients are summarized in Table 1. High levels of
KPNA2 expression were detected in 66.3% (63/95) of stage

III/IV patients and in 33.7% (32/95) of stage I/II patients. High
levels of KPNA2 expression were significantly associated with
advanced clinical stage EOC, histological type, differentiation,
recurrence, and suboptimal cytoreductive surgery. The 5-year
overall survival rates and 5-year relapse-free survival rates of
patients expressing low levels of KPNA2 were significantly
higher than those of patients expressing high levels of KPNA2
(68.2% versus 52.3%, P¼ 0.012; 62.5% versus 38.9%,
Po0.001) (Figures 1e and f). Furthermore, multivariate
analysis indicated that a high level of KPNA2 expression
was an independent predictor of EOC in patients, and was
associated with a 1.832-fold increased risk of a poor
prognosis (Table 2).

KPNA2 is essential for EOC cell proliferation. On the
basis of these findings, we hypothesized that KPNA2 may
have a role in EOC pathogenesis and could, therefore, be a
novel therapeutic target. To identify the role of KPNA2 in the
progression of EOC, two cell lines were constructed (using
EFO-21 and SK-OV3 cell lines) to stably express the
KPNA2 cDNA (EFO-21/KPNA2 and SK-OV3/KPNA2) and
KPNA2 small-hairpin RNAs (shRNAs) (EFO-21/siKPNA2#1,
EFO-21/siKPNA2#2, SK-OV3/siKPNA2#1, and SK-OV3/
siKPNA2#2) (Figures 2a and b). The 3-(4,5-dimethylthiazol-
2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay sup-
ported our hypothesis by showing that downregulation of
KPNA2 expression significantly reduced the viability of both
EFO-21 and SK-OV3 EOC cell lines (Figures 2c and d).
This was further confirmed by colony formation assays
(Figures 2e–h), which showed that KPNA2 is overexpressed
in highly proliferative EOC cells.

KPNA2 is essential for EOC cell tumorigenicity. Based
on the correlation between KPNA2 expression and the
clinical staging of EOC (Table 1), we carried out further
investigations to evaluate the effect of KPNA2 on the
tumorigenic activity of EOC cells in vitro and in vivo.
Downregulation of KPNA2 in EFO-21 and SK-OV3 cell lines
dramatically reduced both the number and size of colonies
on soft agar in an anchorage-independent growth assay
(Figures 3a–d). By contrast, expression of KPNA2 in EFO-21
and SK-OV3 cells increased proliferation and anchorage-
independent growth (Figures 3a–d). To determine whether
upregulation or downregulation of KPNA2 influenced the

Table 1 Correlations between KPNA2 expression and clinicopathological
features of patients with epithelial ovarian cancer

KPNA2 expression

Patient and tumor characteristics High (%) Low (%) P-value

Age, years
r45 30 (31.6) 33 (34.4)
445 65 (68.4) 63 (65.6) 0.681

Histological type
Serous 71 (74.7) 48 (50.0)
Mucinous 21 (22.1) 41 (42.7)
Others 3 (3.2) 7 (7.3) 0.002

FIGO stage
I/II 32 (33.7) 60 (62.5)
III/IV 63 (66.3) 36 (37.5) o0.001

Differentiation
Well 23 (24.2) 49 (51.0)
Moderate 26 (27.4) 29 (30.2)
Poor 46 (48.4) 18 (18.8) o0.001

Distant metastasis
Yes 7 (7.4) 4 (4.2)
No 88 (92.6) 91 (95.8) 0.351

Recurrence
Yes 46 (48.4) 26 (27.1)
No 49 (51.6) 70 (72.9) 0.002

Cytoreductive surgery
Optimal cytoreduction 66 (69.5) 87 (90.6)
Suboptimal cytoreduction 19 (30.5) 9 (9.4) 0.016

Bold P-values indicate significance (Po0.05)

Table 2 Univariate and multivariate analysis of factors associated with overall survival

Clinical variable Subset Hazard ratio (95% CI) P-value

Univariate analysis
Histology Others versus mucinous versus serious 0.672 (0.426–1.058) 0.086
FIGO stage III/IV versus I/II 3.905 (2.439–6.252) o0.001
Differentiation Poor versus moderate versus well 1.701 (1.326–2.181) o0.001
Cytoreductive surgery Suboptimal cytoreduction versus optimal cytoreduction 3.302 (2.032–5.364) o0.001
Expression of KPNA2 High versus low 2.404 (1.563–3.697) o0.001

Multivariate analysis
FIGO stage III/IV versus I/II 3.570 (1.984–6.424) o0.001
Cytoreductive surgery Suboptimal cytoreduction versus optimal cytoreduction 1.819 (1.096–3.018) 0.021
Expression of KPNA2 High versus low 1.832 (1.137–2.951) 0.013

Abbreviations: CI, confidence interval; FIGO, International Federation of Gynecology and Obstetrics.
Bold P-values indicate significance (Po0.05)
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tumorigenicity of EOC cells in vivo, nude mice were
inoculated subcutaneously with EFO-21/KPNA2 (KPNA2)
cells or EFO-21/siKPNA2#1 (siKPNA2) cells (Figure 3e). The
tumors that formed from EFO-21/siKPNA2#1 cells grew
more slowly than those from EFO-21/KPNA2 cells
(Figure 3f). This was consistent with our cell proliferation
results in vitro. Furthermore, the average volume of the
tumors induced by EFO-21/KPNA2 cells (279.3±38.0 mm3,
n¼ 4) were significantly larger than those induced by vector
control cells (112.8±12.4 mm3, n¼ 4, Po0.01), whereas
depletion of endogenous KPNA2 in EFO-21 cells significantly
inhibited tumor growth (average volume: 24.5±5.3 mm3

versus 108.8±20.8 mm3, n¼ 4, Po0.01) (Figure 3g).

KPNA2 expression in xenograft tumors was analyzed by
western blotting; the results showed that KPNA2 expression
was upregulated in tumors induced by EFO-21/KPNA2 cells,
but downregulated in tumors induced by EFO-21/siKP-
NA2#1cells (Figure 3h). This was consistent with our
immunohistochemical (IHC) analysis, which found that tumor
sections with high levels of KPNA2 also stained strongly for
Ki67, whereas those corresponding to low KPNA2 expres-
sion levels only showed marginal levels of Ki67 expression
(Figure 3i). Collectively, our results showed that KPNA2 is
overexpressed in highly proliferative EOC cells, indicating
that KPNA2 has an important role in enhancing the
tumorigenicity of EOC cells both in vitro and in vivo.

Figure 2 KPNA2 is essential for EOC cell proliferation. Western blotting analysis of KPNA2 overexpression and KPNA2 knockdown in (a) EFO-21 and (b) SK-OV3 cell
lines with two specific shRNAs; b-actin was used as a loading control. MTT assays of KPNA2 overexpression and KPNA2 knockdown in (c) EFO-21 and (d) SK-OV3 cell lines.
Each bar represents the mean (± S.D.) of three independent experiments. (e–h) Representative micrographs (left panel) and quantifications (right panel) of the following
crystal violet-stained cell lines: EFO-21-vector, EFO-21-KPNA2, EFO-21-si-scramble, EFO-21-siKPNA2 #1, EFO-21-siKPNA28 #2; and SK-OV3-vector, SK-OV3-KPNA2,
SK-OV3-si-vector, SK-OV3-siKPNA2 #1, SK-OV3-siKPNA2 #2, *Po0.05
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KPNA2 promotes proliferation and tumorigenicity of EOC
L Huang et al

5

Cell Death and Disease



Depletion of KPNA2 induces G1/S cell cycle arrest in
EOC cells. The mechanism underlying the promotion
of cellular proliferation by KPNA2 was investigated by a
5-bromo-20-deoxyuridine (BrdU) incorporation assay.

As shown in Figures 4a–d, downregulation of KPNA2 in
EFO-21 and SK-OV3 cell lines significantly decreased
the percentage of BrdU-positive cells, significantly increased
the percentage of cells at G0/G1 phase and decreased the

Figure 4 Depletion of KPNA2 induces G1/S arrest of EOC cells (BrdU incorporation assay). (a and b) Representative micrographs (top panel), and (c and d) quantification
(middle panel) of BrdU-incorporating cells in KPNA2-overexpressing and two KPNA2 shRNA(s)-infected cell lines, relative to the control. The cells were fixed, subjected to
BrdU staining, and visualized under a fluorescence microscope. Data were obtained from three independent experiments and showed similar results. Red, BrdU; blue, DAPI.
(e and f) Flow cytometry analysis of the indicated EOC cells transfected with the KPNA2 overexpression construct or KPNA2 shRNA(s). The proportion of S-phase cells as
significantly reduced in KPNA2 shRNA(s)-transfected cell lines (Po0.05) compared with the control group; in contrast, the proportion of S-phase cells in the line transfected
with the KPNA2 construct clearly increased (Po0.05) *Po0.05
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percentage of cells at S phase of the cell cycle (Figures 4e
and f). These results suggested that silencing of KPNA2
induced G1/S-phase arrest in EOC cells. Further investiga-
tions by real-time qRT-PCR and western blotting analyses
revealed that the expressions of CDK inhibitors, p21Cip1 and
p27Kip1, were dramatically upregulated, whereas expression
of the CDK regulator cyclin D1 was downregulated in
KPNA2-knockdown cells at both the mRNA (Figures 5a
and b) and protein levels compared with control cells
(Figures 5c–f). This finding further supported our supposition
that KPNA2 is involved in the regulation of EOC cell
proliferation.

Upregulation of KPNA2 enhances c-Myc transcriptional
activity and suppresses FOXO3a activity. To further
investigate the molecular mechanism mediating the cell
cycle arrest effect of downregulating KPNA2, the levels of
cell cycle-related proteins c-Myc, AKT, and FOXO3a were
examined, because the above identified altered cell cycle
genes (p21Cip1, p27Kip1, and cyclin D1) are known down-
stream targets of c-Myc and FOXO3a.19,20 As shown in
Figures 6a and b, a c-Myc reporter assay showed that
KPNA2 upregulation significantly increased c-Myc transcrip-
tional transactivating activity in both EFO-21 and SK-OV3
cell lines. By contrast, downregulation of KPNA2 attenuated
c-Myc transcriptional transactivating activity. Furthermore,
western blotting analysis showed that c-Myc, phosphorylated
AKT, and phosphorylated FOXO3a significantly increased in
KPNA2-overexpressing EOC cells and were reduced in
KPNA2-knockdown EOC cells, compared with control cells
(Figures 6c–f). These results suggest that the effect of
KPNA2 on cell proliferation and tumorigenicity may be
effected through upregulation of c-Myc transcriptional activity
and activation of Akt.

Knockdown of KPNA2 causes subcellular redistribution
of c-Myc in EOC cells. There are some recent reports21,22

that KPNA2 can interact with c-Myc; therefore, we were
interested in determining whether KPNA2 mediates nuclear
translocation of c-Myc. To examine the effect of KPNA2 on
the subcellular distribution of c-Myc in EOC cells, we further
upregulated the expression of c-Myc in KPNA2-overexpres-
sing and -knockdown EOC cells. We confirmed this regula-
tion by subcellular fractionation, followed by western blotting
analysis. We further examined the expression of c-Myc in
KPNA2-overexpressing and -knockdown EOC cells by
subcellular fractionation, followed by western blotting
analysis. Fractionation efficacy was validated by the detec-
tion of GAPDH and lamin B in the cytosolic and nuclear
fractions, respectively. The protein level of c-Myc was
normalized to that of the two marker proteins. We found that
c-Myc was increased in the cytoplasmic fraction in
KPNA2-knockdown EOC cells and reduced in KPNA2-
overexpressing EOC cells, compared with control cells
(Figures 7a–c). To confirm the role of c-Myc in KPNA2-
mediated cell proliferation and tumorigenicity, we further
analyzed the transcriptional activity of c-Myc in KPNA2-
knockdown and -overexpressing EOC cells via transfection
with a c-Myc-luciferase reporter plasmid. As expected, the
luciferase activity from the c-Myc reporter was dramatically

reduced in KPNA2-silenced cells and increased in KPNA2-
overexpressing EOC cells compared with control cells
(Figure 7d), suggesting that c-Myc has an important role in
the cell proliferative and tumorigenic effect of KPNA2.

Discussion

We report the characterization of KPNA2 as a candidate
oncogene in EOC. The pivotal finding of our study was the
detection of KPNA2 upregulation in 84.8% (162/191) of
primary EOC tumors that were significantly associated with
poor prognosis in EOC patients. This led us to propose that
KPNA2 might have an important role in EOC development
and progression. This was supported by our findings: knock-
down of endogenous KPNA2 inhibited the proliferation and
tumorigenicity of EOC cells in vitro and in vivo, and silencing of
KPNA2 with RNAi resulted in inhibition of c-Myc transactivity
and Akt kinase activity, and suppression of FOXO3a activity,
leading to upregulation of CDK inhibitors p21Cip1 and
p27Kip1 and downregulation of CDK regulator cyclin D1.
These findings provided strong evidence that upregulation of
KPNA2 has an important role in promoting cell proliferation
and tumorigenicity, and imply that KPNA2 may function as
an oncogenic protein in the development and progression
of EOC.

Nucleocytoplasmic transport mechanisms have been the
target of numerous studies because of their role in key cellular
processes, such as gene expression, cell cycle progression,
and signal transduction. Increasing evidence suggests that
these mechanisms contribute to malignant cell transforma-
tion, thereby highlighting the potential of these proteins as
therapeutic targets.23 KPNA2 is an adaptor protein that
mediates the import of signaling factors into the nucleus
and the export of response molecules to the cytoplasm.24

Although the potential oncogenic functions of KPNA2 have
been implicated in a variety of malignancies, the precise
mechanism remains unclear.7,9–15 In the present study, we
provided evidence that knockdown of KPNA2 downregulates
c-Myc and decreases the transcriptional activity of c-Myc in
both EFO-21 and SK-OV3 cell lines. A plausible mechanism
by which KPNA2 could affect carcinogenesis is through the
translocation of cancer-associated cargo proteins. It has
previously been demonstrated that KPNA2 interacts with a
variety of proteins that are associated with cancer, including
checkpoint kinase 2;25 NBS1, thought to be involved in DNA
repair and meiotic recombination;26 and the tumor-suppressor
p53.27 KPNA2 has also been implicated in the translocation of
transcription factors, including E2F1,26 c-Myc,22 PLAG1,28

and LOT1.29 Previous reports identified a potential molecular
link between KPNA2 and c-Myc, involving TGF-b1 and IFN-g.
Expression of KPNA2 was specifically regulated by TGF-b1
and IFN-g: TGF-b1 induced reversible growth arrest at the G1
phase of the cell cycle,30–32 while IFN-g induced irreversible
growth arrest in cultured keratinocytes and promoted aberrant
terminal differentiation.33 In addition, KPNA2 is a target of
c-Myc; the expression and nuclear localization of c-Myc is
rapidly downregulated when keratinocytes are treated with
TGF-b1.34,35 In addition, the transcription factor c-Myc down-
regulates p21Cip1 and p27Kip1, and upregulates cyclin D1 at
the transcriptional level.19,20 The results of the present study
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are consistent with these reports. We found that c-Myc was
reduced in the nuclear fraction in KPNA2-knockdown EOC
cells and increased in KPNA2-overexpressing EOC cells,

which led us to hypothesize that KPNA2 transports c-Myc into
the nucleus where it accumulates, thereby inhibiting tran-
scription of p21Cip1 and p27Kip1, and inducing G1/S-phase

KPNA2 Ki67 P21 P27

KPNA2 Ki67 P21 P27

Con
tro

l

KPNA2

Scr
am

ble

siK
PNA2#

1

siK
PNA2#

2
0

3

6

9

12

15

R
el

at
iv

e 
E

xp
re

ss
io

n

Con
tro

l

KPNA2

Scr
am

ble

siK
PNA2#

1

siK
PNA2#

2
0

3

6

9

12

15

18

R
el

at
iv

e 
E

xp
re

ss
io

n
Con

tro
l

KPNA2

Scr
am

ble

siK
PNA2#

1

siK
PNA2#

2
0

3

6

9

R
el

at
iv

e 
E

xp
re

ss
io

n

Con
tro

l

KPNA2

Scr
am

ble

siK
PNA2#

1

siK
PNA2#

2
0

10

20

30

40
40
80

R
el

at
iv

e 
E

xp
re

ss
io

n

Con
tro

l

KPNA2

Scr
am

ble

siK
PNA2#

1

siK
PNA2#

2
0

10

20

30

40
70

140

R
el

at
iv

e 
E

xp
re

ss
io

n

Con
tro

l

KPNA2

Scr
am

ble

siK
PNA2#

1

siK
PNA2#

2
0
3
6
9

12
15
18
21
24
27

R
el

at
iv

e 
E

xp
re

ss
io

n

Con
tro

l

KPNA2

Scr
am

ble

siK
PNA2#

1

siK
PNA2#

2
0
3
6
9

12
15
18
21
24
27

R
el

at
iv

e 
E

xp
re

ss
io

n

Con
tro

l

KPNA2

Scr
am

ble

siK
PNA2#

1

siK
PNA2#

2
0

3

6

9

12

15

18

R
el

at
iv

e 
E

xp
re

ss
io

n
Con

tro
l

KPNA2

Scr
am

ble

siK
PNA2#

1

siK
PNA2#

2
0

1

2

3

4

5

R
el

at
iv

e 
E

xp
re

ss
io

n

Con
tro

l

KPNA2

Scr
am

ble

siK
PNA2#

1

siK
PNA2#

2
0
2
4
6
8

10
12
14
16
18

R
el

at
iv

e 
E

xp
re

ss
io

n

KPNA2 Ki67 p21 p27

KPNA2 Ki67 p21 p27

R
el

at
iv

e 
E

xp
re

ss
io

n

R
el

at
iv

e 
E

xp
re

ss
io

n

R
el

at
iv

e 
E

xp
re

ss
io

n

R
el

at
iv

e 
E

xp
re

ss
io

n

R
el

at
iv

e 
E

xp
re

ss
io

n

R
el

at
iv

e 
E

xp
re

ss
io

n

R
el

at
iv

e 
E

xp
re

ss
io

n

R
el

at
iv

e 
E

xp
re

ss
io

n

R
el

at
iv

e 
E

xp
re

ss
io

n

R
el

at
iv

e 
E

xp
re

ss
io

n

S
K

-O
V

3
E

F
O

-2
1

E
F

O
-2

1
S

K
-O

V
3

Cyclin D1

Cyclin D1

Cyclin D1

Cyclin D1

EFO-21 SK-OV3

Figure 5 Depletion of KPNA2 induces G1/S arrest of EOC cells (by real-time qRT-PCR analysis). (a and b) Relative mRNA expression of KPNA2, cyclin D1, ki-67,
p21Cip1, and p27Kip1 in the indicated EOC cells was determined by real-time qRT-PCR. Expression levels were normalized to b-actin. (c and d) Western blotting analysis of
KPNA2, cyclin D1, ki-67, p21Cip1, and p27Kip1 proteins (top) in the indicated EOC cells. (e and f) Expression levels were quantitated using ImageJ software (Wayne
Rashband; bottom); b-actin was used as a loading control. Error bars represent the S.D. of three independent experiments

KPNA2 promotes proliferation and tumorigenicity of EOC
L Huang et al

8

Cell Death and Disease



arrest. However, further studies are needed to establish what
role KPNA2 has in the translocation and regulation of the
critical transcriptional factor c-Myc.

FOXO3a is a critical tumor suppressor that transcriptionally
regulates multiple proteins, including p21Cip1, p27Kip1, and
cyclin D1.36,37 There is considerable evidence that Akt kinase,
which acts upstream of FOXO3a, has important roles in cell
cycle control.38 In the current study, we found that KPNA2
knockdown decreased the level of phosphorylated Akt and
phosphorylated FOXO3a, indicating that downregulation of
KPNA2 may arrest EOC cells at the G1 phase through the
Akt/FOXO3a pathway. A study by Brysk et al.33 reported that
the MRE11–RAD50–NBS1 complex serves as a sensor and a
mediator in cell cycle checkpoint signaling. NBS1 functions
as a tumor suppressor by preserving genome integrity in the
nucleus, and may also have an oncogenic role in the

cytoplasm associated with the PI3-kinase/Akt-activation path-
way. Experimental evidence has demonstrated that NBS1 is
translocated into the nucleus by importin KPNA2, which
mediates NBS1 subcellular localization and its functions in
tumorigenesis, as part of the MRE11–RAD50–NBS1
complex.33 However, we did not find changes in NBS1
expression or location in KPNA2-knockdown and -overex-
pressing EOC cells. We speculate that KPNA2 may contribute
to other mechanisms in Akt activation, which require further
investigation.

In summary, we have clearly shown that KPNA2 is
overexpressed in EOC, and that its upregulation is associated
with poor prognosis. Furthermore, knockdown of KPNA2
inhibited the proliferation and tumorigenicity of EOC cells by
inhibiting c-Myc transactivation activity and by enhancing
FOXO3a activity, revealing a new mode of action in the
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molecular mechanisms underlying tumorigenesis of EOC.
Our characterization of the oncogenic functions and mechan-
isms of KPNA2 will not only increase our understanding of
EOC development and progression but also presents a novel
therapeutic target for EOC treatment.

Materials and Methods
Cell culture. Ovarian cancer cell lines (OVSAHO, OV56, OV90, COV644,
CaO3, COVAR4, SKOV3, and EFO21) were grown in DMEM medium (Invitrogen,
Carlsbad, CA, USA) supplemented with 10% fetal bovine serum (HyClone, Logan,
UT, USA) and 1% penicillin–streptomycin. Cells were maintained at 37 1C in a
humidified atmosphere of 5% CO2.

Plasmids. A KPNA2 expression construct was generated by subcloning the
PCR-amplified full-length human KPNA2 cDNA into the pMSCV plasmid. For
depletion of KPNA2, two human shRNAs sequences were cloned into the pSuper-
retro-puro plasmid to generate pSuper-retro-KPNA2-RNAi(s) (Langri, GangZhou,
China) with the following sequences: RNAi#1, 50-ATTTACAGTGCCCTGGTTG-30;
RNAi#2, 50-TTAACGAAGCC TTATACAC-30. Stable cell lines expressing KPNA2
or KPNA2 shRNAs were selected for 10 days with 0.5 mg/ml puromycin. A c-Myc
expression construct was generated by subcloning the PCR-amplified full-length
human c-Myc cDNA into the pMSCV plasmid. Transfection of plasmids was
carried out using Lipofectamine 2000 reagent (Invitrogen), according to the
manufacturer’s instructions.

Patients and tissue specimens. Snap-frozen tissues were obtained from
191 EOC patients between January 2001 and October 2007, and preserved at
� 80 1C. All patients had undergone oophorosalpingectomy, or surgical
debulking, before chemotherapy at the Cancer Center, Sun Yat-Sen University,
Guangzhou, PR China. EOC tissues were dissected from the resected tumors;
HOSE specimens were obtained from the ovarian surface epithelium of the
normal-appearing ovary removed from patients, where only one ovary had been
classed as EOC (stage IA), based on the principles of surgical management of
cancer. This was confirmed by histopathological review. EOC patients were staged
according to the FIGO 1994 classification guidelines. An experienced pathologist
performed the grading and histopathological subtyping of specimens, based on
World Health Organization (WHO) criteria. Clinical information of the samples is
summarized in Table 1. The Ethical Committee of the Cancer Center, Sun
Yat-Sen University, approved this study.

RNA extraction and real-time qRT-PCR. Total RNA from cultured cells
and fresh frozen EOC tissues was extracted using Trizol reagent (Invitrogen),
according to the manufacturer’s instructions. Reverse transcriptase reactions using
MMLV reverse transcriptase reagents (Promega Corporation, Madison, WI, USA)
were performed following the manufacturer’s protocol. Real-time qRT-PCR
was performed using Platinum SYBR Green qPCR SuperMix-UDG reagents
(Invitrogen) in an Applied Biosystems PRISM 7900HT, according to the
manufacturer’s protocol. The following primers were selected: KPNA2, forward
50-ATTGCAGGTGATGGCTCAGT-30 and reverse 50-CTGCTCAACAGCATC
TATCG-30; b-actin, forward 50-TGGCACCCAGCACAATGAA-30 and reverse
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50-CTAAGTCATAGTCCGCCTAGAAGCA-30; cyclinD1, forward 50-TCTGTGCCA
CAGATGTGAAG-30 and reverse 50-AGCGTGTGAGGCGGTAGTAG-30; Ki67,
forward 50-CATCAAGGAACAGCCTCAAC-30 and reverse 50-GTTGACTTCGGCT
GATAGAC-30; p21, forward 50-GATGTGCCTATGGTCCTAGT-30 and reverse
50-CATCGTCAACACCCTGTCTT-30; and p27, forward 50-GCGGCAGAAGAT
TCTTCTTCG-30 and reverse 50-TGCTCCACAGTGCCAGCATT-30. ABI PRISM
Cycler software (ABI, Foster City, CA, USA) was used to calculate the threshold
cycle number (Ct) value for b-actin and KPNA2 during the log phase of each
cycle. KPNA2 levels were normalized to the expression level of b-actin (DCt¼
CtKPNA2�Ctb-actin). These values were compared with values obtained from a
testis sample, which served as a positive control, according to the formula:
2�DDCt, where DDCt¼DCtunknown�DCtpositive control. To minimize experimental
variability, each sample was analyzed in triplicate and the mean expression level
was calculated.

Western blotting. The western blotting analysis was performed according
to standard methods, as previously described,39 using anti-KPNA2 (Abcam,
Cambridge, UK), anti- total Akt, anti-p-Akt, anti-total FOXO3a, anti-p-FOXO3a
(Ser253), anti-ki67, anti-p21Cip1, anti-p27Kip1, anti-cyclinD1, and anti-c-Myc
antibodies (Cell Signaling Technology, Danvers, MA, USA). The polyvinylidene
fluoride membranes were stripped and re-blotted with an anti-b-actin monoclonal
antibody (Sigma, St. Louis, MO, USA) as a loading control.

Subcellular fractionation. KPNA2-knockdown and -overexpressing
SK-OV3 cells transfected with pMSCV-c-Myc plasmid were subjected to subcellular
fractionation using the cytoplasmic and nuclear protein extraction kit P0028
(Beyotime Biotechnology, Shang Hai, China), according to the manufacturer’s
instructions. The efficacy of fractionation was determined via western blotting
using anti-GAPDH antibodies (Sigma) as the cytosolic control and anti-Lamin B
antibodies (Cell Signaling Technology) as the nuclear control protein. The
experiment was performed in triplicate.

MTT assays. Cells (2000 cells/well) were seeded in 96-well plates and
stained at specified time points with 100 ml sterile MTT dye (0.5 mg/ml, Sigma)
for 4 h at 37 1C. The culture medium was removed and 150 ml of dimethyl
sulfoxide (Sigma) was added. The absorbance was measured at 570 nm, with
655 nm as the reference wavelength. All experiments were performed in
triplicate.

Anchorage-independent growth ability assay. Cells (500 cells/plate)
were trypsinized and suspended in 2 ml complete medium plus 0.3% agar
(Sigma). The agar–cell mixture was plated on top of a bottom layer with 1%
complete medium agar mixture. After 10 days, viable colonies that contained more
than 50 cells or were larger than 0.1 mm in diameter were counted. Colony sizes
were measured using an ocular micrometer. The experiment was performed in
triplicate for each cell line.

Colony formation assays. Cells were plated on 6-well (500 cells/plate)
plates and cultured for 10 days. The colonies were fixed with 10% formaldehyde
for 5 min and then stained with 1.0% crystal violet for 30 s. Colonies larger than
0.1 mm diameter were scored. The experiment was performed in triplicate for each
cell line.

BrdU labeling and immunofluorescence. Cells were grown on
coverslips (Fisher, Pittsburgh, PA, USA) and incubated with BrdU for 1 h and
stained with anti-BrdU antibody (Upstate, Temecula, CA, USA), according to
the manufacturer’s instructions. Gray level images were acquired under a laser
scanning microscope (Axioskop 2 plus, Carl Zeiss Co. Ltd., Jena, Germany).

Flow cytometry cell cycle analysis. Cultured cells were harvested by
trypsinization, washed in ice-cold PBS, and fixed in 75% ice-cold ethanol. Cell
cycle analysis was performed by flow cytometry. Briefly, the fixed cells were
centrifuged at 1000 r.p.m. and washed twice with ice-cold PBS. RNase A (20 mg/ml,
final concentration) and propidium iodide staining solution (50 mg/ml, final
concentration) were then added and the cells were incubated at 37 1C for 30 min
in the dark. Cell cycle analysis (50 000 cells per sample) was carried out in a flow
cytometer (FACSCalibur; BD Biosciences, Lexington, KY, USA). ModFit LT 3.1
trial cell cycle analysis software (Beckman Coulter Inc., Brea, CA, USA) was used
to determine the percentage of cells at each phase of the cell cycle.

Luciferase assay. Briefly, 50 000 cells per plate were seeded in 6-well
plates in triplicate, and allowed to settle for 12 h. EOC cells were transfected with
100 ng c-Myc-responsive 4� E-box reporter-luciferase plasmid or 100 ng
control-luciferase plasmid, plus 10 ng pRL-TK renilla plasmid using Lipofectamine
2000 reagent (Invitrogen). Media were replaced at 6 h, and the luciferase and the
renilla signals were measured 48 h after transfection using the Dual Luciferase
Reporter Assay Kit (Promega Corporation), according to the manufacturer’s
protocol.

Animal experiments. Eight female BALB/c-nu mice (4–5 weeks of age,
18–20 g) were purchased from the Center of Experimental Animals of Guangzhou
University of Chinese Medicine. The mice were housed in barrier facilities on a
12-h light/dark cycle. Animal experiments were carried out in compliance with the
Welfare of Experimental Animals guidelines at Sun Yat-Sen University. Cells
(2� 106 EFO-21/vector versus 2� 106 EFO-21/KPNA2; and 2� 106 EFO-21/
Scramble versus 2� 106 EFO-21/siKPNA2 #1) were suspended in RPMI 1640
medium and injected subcutaneously into the left and right flanks of mice
(n¼ 4, respectively). The resulting tumors were examined every 3 days for
30 days. Tumor size was measured using calipers, and tumor volumes were
calculated (V¼ 0.5� L�W2). The mice were killed and the tumors were excised,
fixed in 10% formalin, and embedded in paraffin blocks for IHC study.

Statistical analysis. The w2 test was used for correlation analysis between
clinicopathological features of patients with EOC and KPNA2 expression profiles.
Survival curves were plotted by the Kaplan–Meier method and compared using the
log-rank test. Survival data were evaluated by univariate and multivariate Cox
regression analyses. Student’s t-test (two-tailed) was used to evaluate significant
differences between pairs of experimental data where appropriate. SPSS version
16.0 statistical software package (SPSS Inc., Chicago, IL, USA) was used for the
statistical analyses. Statistical significance was set at Po0.05.
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