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Caution About Truncation-By-Death in Clinical Trial Statistical
Analysis: A Lesson from Remdesivir

Yuhao Deng'; Xiao-Hua Zhou****

In an effort to combat coronavirus disease 2019
(COVID-19) caused by severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2), clinicians
across the globe have been working tirelessly to find
effective treatments. In 2020, inspiring drug trials have
focused on treating COVID-19 with the antiviral drug
remdesivir. Beigel et al. conducted a well-designed
multicenter randomized trial, where 541 patients were
assigned to receive remdesivir, and 522 patients were
assigned to receive placebo treatment (7). They
reported that those who received remdesivir had a
median recovery time of 11 days [95% confidence
interval (CI): 9-12], as compared with 15 days (95%
CI: 13-19) in those who received a placebo (P<0.001).

Another multicenter randomized trial was conducted
by Wang et al. at 10 hospitals in Hubei Province,
China (2). They reported that remdesivir use had a
positive but insignificant effect compared with
standard care in the time to clinical improvement
[hazard ratio (HR)=1.23, 95% CI: 0.87—-1.75]. Due to
early suspension of the trial because of adverse events,
this study was underpowered, and the findings were
deemed to be inconclusive (3). Discrepant findings
between these two studies show that a small sample size
may fail to achieve the predetermined power or make
an expected conclusion. Despite the small sample size,
the remdesivir studies for COVID-19 can still also
provide a lot of valuable information under more
careful statistical analysis.

First, we must be cautious whether remdesivir is
safer than placebo. Beigel et al. found serious adverse
events among 114 of the 541 (21.1%) patients in the
remdesivir group and 141 of the 522 (27%) patients in
the placebo group, while Wang et al. reported adverse
events in 102 of 155 (66%) remdesivir recipients
versus 50 of 78 (64%) placebo recipients. This
difference in adverse events may be attributable to
underlying medical diseases among patients included
in the studies. As Wang et al. described in their article,
the remdesivir group included more patients with
hypertension, diabetes, or coronary artery disease than
the placebo group, which led to an imbalance between
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the two treatment groups. Although this study was
randomized at baseline, randomization alone does not
guarantee balance between the treatment and placebo
groups. The consequence of clinical trials relying on
pure randomization has been discussed in some
statistics literature: the treatment effect estimate may
be far from the true value if the sample size is not large
enough (4-6). Thus, the causal effect of underlying
medical diseases on recovery rate or safety outcomes
may be confounded by the severity of underlying
diseases. By comparing these two studies, we have
reason to think that remdesivir has different effects on
populations with different baseline status.

Another topic related to treatment imbalance is the
statistical  analysis for the truncated-by-death
individuals. Beigel et al. reported that the Kaplan-
Meier estimates of mortality by 14 days were 7.1%
with remdesivir and 11.9% with placebo (HR for
death=0.70, 95% CI: 0.47-1.04). An analysis with
adjustment for baseline ordinal score as a stratification
variable showed a HR for death of 0.74, 95% CI:
0.50-1.10. Wang et al. also found insignificant
differences in mortality between the remdesivir group
and the placebo group. Similar with adverse events, the
possibility that death was associated with underlying
diseases cannot be excluded. If patients with
underlying diseases were more likely to develop adverse
events or die, then the treatment effect of remdesivir
versus placebo would have been underestimated (7).

It is worth noting that handling the truncation-by-
death problem is different from censoring. That is to
say, the Kaplan-Meier approach, which is commonly
adopted in survival analysis with censoring, should be
used with great care if the target of a study is the time
to clinical improvement or recovery instead of
mortality. Censoring can be understood as a missing
data problem: the time to clinical improvement or
recovery does exist but is longer than the study period.
For example, if a patient recovered at Day 35 but the
study ended at Day 28, then the time to recovery was
censored. In the methodology, partial likelihood is
calculated for at-risk individuals at each time point.
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However, truncation-by-death is a completely different
issue. If a patient was truncated by death, then his/her
outcome (time to clinical improvement or recovery) is
undefined. In the classical survival analysis, every
individual would experience the failure event at some
day. But by definition, a patient that dies at Day 21,
for example, should not be treated as censored at any
day because he/she has lost the ability to experience the
failure event (referring to clinical improvement or
recovery here), and the failure event would never occur
no matter how long the follow-up is. To be brief,
treating death as censoring would confuse different
types of outcomes. Different statistical procedures
should be adopted in dealing with the truncation-by-
death problem.

In fact, comparing treatment effects is a question
about causal inference. Under the potential outcome
framework, each individual has two potential
outcomes: one under the treatment, the other under
the control. The treatment effect is the difference of
these two potential By principal
stratification, one can divide the whole population into
four strata (8):

(1) LL, always survivor, alive either if treated or
untreated.

(2) LD, protected, alive if treated but dead if
untreated.

(3) DL, harmed, dead if treated but alive if
untreated.

(4) DD, doomed, dead either if treated or untreated.

The fundamental problem in causal inference is that
one can only observe one of these two potential
outcomes, since a patient can cither be treated or
untreated, but not both. Thus, the observed alive
individuals at Day 28 come from mixed strata: LL and
LD for the treatment group and LL and DL for the
placebo group. However, the treatment effect is only
meaningful in the LL stratum, since the pair of
potential outcomes, clinical improvement, or recovery,
are only well defined in the LL stratum.

Since common clinical analyses considered death as
right censoring at the endpoint, we cannot conclude
whether  the
parameter. In order to identify the LL stratum, a
substitutional variable for survival is needed (9-10).
Since the information of baseline covariates and
COVID-19 is still insufficient, we do not know
whether a qualified substitutional variable exists or not.
Analysis  based on  observed
underestimate the true treatment effect due to the
positive correlation between the severity of underlying

outcomes.

estimates represent a meaningful

survivors  may
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diseases and death, so principal stratification or
adjustment for underlying diseases is
recommended for better statistical analysis.

To address the truncation-by-death problem, we use
generated simulation data (see Supplementary Material
for simulation details, available at weekly.chinacdc.cn)
that mimics the findings of Beigel et al. to show the
grave consequence of considering death as right
censoring. Suppose that 500 patients are enrolled into
the treatment group and 500 patients are enrolled into
the placebo group. The probability of possessing
underlying disease is 0.4 in the treatment group and
0.3 in the placebo group. The probability of death is
0.3 with underlying diseases and 0.1 with no
underlying diseases. Thus, by assuming that death is
independent of treatment course, the probability of
being alive is 0.82 in the treatment group and 0.84 in
the placebo group. Suppose the time to recovery (or
clinical ~ improvement) exponential
distribution with mean 11 days if receiving treatment
and 15 days if receiving placebo, so the true HR is
1.36. Recovery time of more than 30 days is
considered as right censored. We simulate for 500 runs
and use the Cox proportional hazard model to analyze
the data. The procedures and codes are listed in the
Appendix.

(1) If the dead individuals are regarded as right
censored at Day 30, the average estimated HR is 1.27
(s.e.=0.09, average P-value=0.012).

(2) If conditioning on the alive individuals, the
estimated HR is 1.37 (s.e.=0.10, average P-value
0.002).

(3) If conditioning on the alive subsample and
weighting the alive individuals by the survival
probability in each group, the estimated HR is 1.37
(s.e.=0.10, average P-value=0.001).

(4) If dividing the sample into 2 subsamples of
possessing underlying diseases and not possessing
underlying diseases, and regarding the dead individuals
as right censored at Day 30, the estimated HR is 1.27
(s.e.=0.13, average P-value=0.125) in the former
subsample and 1.33 (s.e.=0.11, average P-value=0.017)
in the latter subsample.

(5) If dividing the sample into 2 subsamples of
possessing underlying diseases and not possessing
underlying diseases and conditioning on the alive
individuals, the estimated HR is 1.38 (s.e.=0.19,
average P-value=0.099) in the former subsample and
1.38 (s.e.=0.13, average P-value=0.013) in the latter
subsample.

One can see that regarding death as right censoring

baseline

follows an
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would underestimate the treatment effect, even if
stratifying the severity of underlying diseases. The
second and third approaches yield similar estimates and
are close to the true value, because the survival
probability is similar in the two groups. The fourth
and fifth approaches have larger standard errors and P-
values due to the decline of sample size by dividing the
observed sample.

At the very least, to make the assumption of
truncation-by-death at random (ie., death s
independent of treatment) more convincing, baseline
covariates such as disease severity (baseline score) and
underlying diseases should be adjusted if the imbalance
in enrollment is obvious, as Beigel and his colleagues
did in their work. Furthermore, a better experimental
design at the design phase would allow for a more
hassle-free analysis at the analysis phase. It is true that
randomization for recruitment is a commonly adopted
approach to eliminate the effects of confounding. Still,
there are some approaches to improve the
randomization at the design phase that can minimize
the impact of confounding and treatment imbalance if
a few critical covariates exist. For example,
rerandomization can be used to balance the covariates
between the treatment and placebo groups (11). By
iteratively trying to randomize the assignment, only the
assignment that satisfies some criterion (for example,
the distance of covariates between the treatment and
the placebo groups is lower than a threshold) can enter
into the experiment. It is encouraging that statistical
inference under rerandomization is still valid with a
little adjustment (72). Therefore, in future clinical
studies, we suggest that greater attention should be
given to the design phase, so that problems that may
occur in the analysis phase can be avoided.
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We conduct a simulation study to show truncation-by-death is different from censoring. The simulation is
conducted using R statistical software (version 3.6.1; The R Foundation for Statistical Computing, Vienna,
Austria). The following R code lists the procedure of model fit in each iteration.

(1) Generate the recovery time with right censoring of treatment group and placebo group.

nl=500

n0=500

tl=round(rexp(n1,1/11),0)

t0=round(rexp(n0,1/15),0)

t1[t1>30]=30

t0[t0>30]=30

cl=as.numeric(t1<30)

c0=as.numeric(t0<30)

(2) Consider two strata: with and without underlying medical diseases. Generate the survival status.

sl=rbinom(n1,1,0.4)

s0=rbinom(n0,1,0.3)

d1=-(slxrbinom(n1,1,0.3)+(1-s1)xrbinom(n1,1,0.1))

d0=1-(sOxrbinom(n0,1,0.3)+(1-s0)xrbinom(n0,1,0.1))

(3) The observed recovery time T, observability R, underlying diseases S, survival status D, treatment X.

T1=t1xd1+30x(1-d1)

T0=t0xd0+30x(1-d0)

R1=apply(rbind(cl,cl),2,min)

RO=apply(rbind(c0,c0),2,min)

X=c(rep(1,n1),rep(0,n0))

R=c(R1,R0)

T=c(T1,T0)

S=c(s1,s0)

D=c(d1,d0)

W=1/c(rep(0.82,n1),rep(0.84,n0))

(4) Fitting the Cox proportional hazard model.

library(survival)

res.cox1<-coxph(Surv(T,R)~X)

res.cox2<-coxph(Surv(T,R)-X, subset=(D==1))

res.cox3<—coxph(Surv(T,R)-X, weights=W, subset=(D==1))

res.cox41<-coxph(Surv(T,R)~-X, subset=(S==1))

res.cox42<-coxph(Surv(T,R)-X, subset=(5==0))

res.cox5 1 <—coxph(Surv(T,R)~X, subset=(D==1&S==1))

res.cox52<-coxph(Surv(T,R)~X, subset=(D==1&S==0))
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