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ABSTRACT: The β-amyloid (Aβ) protein aggregation into toxic forms is one of the major factors in the Alzheimer’s disease (AD)
pathology. Screening compound libraries as inhibitors of Aβ-aggregation is a common strategy to discover novel molecules as
potential therapeutics in AD. In this regard, thioflavin T (ThT)-based fluorescence spectroscopy is a widely used in vitro method to
identify inhibitors of Aβ aggregation. However, conventional data processing of the ThT assay experimental results generally
provides only qualitative output and lacks inhibitor-specific quantitative data, which can offer a number of advantages such as
identification of critical inhibitor-specific parameters required to design superior inhibitors and reduce the need to conduct extensive
in vitro kinetic studies. Therefore, we carried out mathematical modeling based on logistic equation and power law (PL) model to
correlate the experimental results obtained from the ThT-based Aβ40 aggregation kinetics for small-molecule inhibitors curcumin,
orange G, and resveratrol and quantitatively fit the data in a logistic equation. This approach provides important inhibitor-specific
parameters such as lag time λ, inflection point τ, maximum slope vm, and apparent rate constant kapp, which are particularly useful in
comparing the effectiveness of potential Aβ40 aggregation inhibitors and can be applied in drug discovery campaigns to compare and
contrast Aβ40 inhibition data for large compound libraries.

■ INTRODUCTION

Amyloid proteins are implicated in a number of diseases
including Alzheimer’s disease (AD), Parkinson’s disease (PD),
prion disease, and so on.1,2 These diseases are characterized by
the misfolding and aggregation of proteins such as amyloid-β
(Aβ), α-synuclein and prion proteins into toxic β-sheet-rich
species.3−5 To develop potential therapeutics for these
diseases, preventing the misfolding and aggregation of amyloid
proteins is considered as an attractive strategy. Several studies
have reported the design of novel molecules capable of
inhibiting or minimizing amyloid protein aggregation.6−10

In AD, Aβ40 and Aβ42 peptides are known to undergo
misfolding and aggregation to form neurotoxic species.11,12

Consequently decreasing the accumulation of these neurotoxic
peptides is known to provide cognitive benefits in AD.13−16

Considering the potential therapeutic applications of Aβ
aggregation inhibitors, it is critical to understand the molecular
mechanisms of Aβ aggregation to develop novel therapies for
AD. In this regard, the kinetics of Aβ aggregation has been
studied experimentally using fluorescent probes such as

thioflavin T (ThT) and other dyes.17−20 These studies have
helped in understanding the molecular processes involved in
Aβ aggregation. In vitro experiments have shown that the Aβ
aggregation process exhibits a sigmoidal curve, where Aβ
monomer gets converted to higher-order aggregates including
dimers, trimers, oligomers, protofibrils, and fibrils.21−25 This
time-dependent transition of Aβ monomer into higher-order
aggregates is represented by the initial lag phase, subsequent
rapid growth phase, followed by the saturation phase to give
the sigmoidal curve. Studies have also demonstrated that in
vivo, Aβ undergoes sigmoidal growth kinetics.26 This evidence
suggests that investigating the Aβ-aggregation kinetics, by
applying the principles of mathematical modeling, and
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correlating the outcomes to the experimental inhibition of Aβ
aggregation, in the presence of Aβ aggregation inhibitors, can
be used as a powerful tool to (i) understand the complex
mechanisms of Aβ aggregation and (ii) to predict the
antiaggregation activity of potential inhibitors. In this context,
Michaels and co-workers have developed elegant chemical
reaction kinetics based on mathematical modeling, to under-
stand and study Aβ aggregation mechanisms using exper-
imental measurements based on growth kinetics.25 The
workflow includes (i) a differential rate law that provides the
rates of formation of various Aβ species as a function of time,
(ii) an integrated rate law that provides concentrations of Aβ
species as a function of time, and (iii) global curve fitting of the
experimental kinetic data obtained with the integrated rate
laws, to understand the mechanisms.23,24 Other models
proposed to study drug dosage response includes the probit,
Weibull, and the all-hit-multi-target (AHMT) models.1,2 For
example, Rial and co-workers used the Weibull distribution
model instead of the power law (PL) Model, to study the effect
of heavy metals on bacterial growth.27 Peppas and
Narasimhan28 described the importance of establishing
mathematical models in the drug-delivery/release processes,
where the models and their parameters can lead to an
advanced analysis of the system being modeled. In another
interesting study, a recent work used bivariate sigmoidal
equation, to model Aβ aggregation kinetics and their inhibition
by small molecules.29 Therefore, developing mathematical
modeling to study the inhibitory effects of known Aβ-
aggregation inhibitors can help in understanding the
mechanisms of aggregation and predict the inhibitory profiles
of unknown compound libraries, without the need to conduct
extensive experiments, which has the potential to reduce the
time and cost involved in compound screening during drug
discovery efforts. We used a bivariate mathematical model
using a logistic equation based on autocatalytic origin in
combination with a PL model for the compound concen-
tration, to describe the Aβ40 growth inhibition kinetics of
curcumin, orange G, and resveratrol (Figure 1).7,29 These

small molecules are known to bind between the β-sheet
assembly parallel to the fiber axis and prevent Aβ40
fibrillogenesis.4,30 The Aβ40 growth kinetics was monitored
at various concentrations for the three inhibitors using the
ThT-based fluorescence studies. These investigations show
that mathematical modeling of Aβ40 aggregation kinetics can
be used as a valuable tool to study the mechanisms of small-
molecule inhibitors by calculating a number of parameters such
as lag time λ, inflection point τ, maximum slope vm, and

apparent rate constant kapp for compound libraries, which can
assist in (i) comparing the efficiency of Aβ40 aggregation
inhibitors, (ii) identifying promising leads for further
experimental analysis, and (iii) minimizing the need to
conduct extensive kinetic experiments.

■ MATERIALS AND METHODS

Thioflavin T-Based Aβ40 Kinetics Assay. The known
Aβ40 aggregation inhibitors curcumin, orange G, and
resveratrol were obtained from Sigma-Aldrich, Oakville,
Canada, and Cayman Chemical Company, Ann Arbor, and
were >95% pure. The Aβ40 peptide in the form of hexafluoro-
2-propanol (HFIP) film was obtained from rPeptide, Georgia,
and was >97% pure. The aggregation kinetics assay was carried
out using thioflavin T (ThT)-based fluorescence spectrosco-
py.17,19,31 The Aβ40 stock solution (1 mg/mL) was prepared
first by adding 1% NH4OH solution and was diluted further to
obtain 500 μM solution in phosphate buffer (pH 8.0).
Curcumin, orange G, and resveratrol stock solutions (10 000
μM) were prepared in DMSO, diluted in phosphate buffer (pH
8.0), and were sonicated for 30 min. The final DMSO
concentration per well was 1% v/v or lower. The ThT
fluorescent dye stock solution (15 μM) was prepared in 50
mM glycine buffer (pH 8.5), and the aggregation kinetics assay
was carried out using a Corning 384-well flat, clear-bottom
black plate with each well containing 44 μL of ThT, 20 μL of
phosphate buffer (pH 8.0), 8 μL of curcumin, orange G, or
resveratrol at different concentrations (1, 5, 10, and 25 μM),
and 8 μL of Aβ40 (5 μM). The microplate was incubated at 37
°C with a plate cover, under shaking, and the fluorescence
intensity was measured every 5 min using a SpectraMax M5
multimode plate reader (excitation = 440 nm and emission =
490 nm), over a period of 24 h. Appropriate control
experiments that contain Aβ40 and buffer alone, and
compounds alone, at different concentrations were kept to
monitor any interference in the fluorescence intensity
measurements. The percentage inhibition was calculated
using the equation 100% control − [(IFi − IFo)], where
100% control indicates no inhibitor and IFi and IFo are the
fluorescence intensities in the presence and absence of ThT,
respectively. These control readings assist in accounting for
potential interference by test compounds by ThT fluorescence
quenching.32 The results were expressed as percentage
inhibition of three separate experiments in triplicate measure-
ments (n = 3).

Mathematical Modeling. The aggregation of Aβ40
peptide alone or the control group and in the presence of
curcumin, orange G, and resveratrol was modeled using the
logistic equation, which is a differential equation based on the
known autocatalytic reaction.7 This model is given by eq 1.
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where X is the fluorescence intensity of the Aβ peptide, which
is an indirect measure of aggregation growth, kapp is the
apparent rate constant (also called as specific rate constant),
Xm is the fluorescence intensity corresponding to maximum
aggregation growth, and t is the time (Figure 1).29 Equation 1
can be integrated using the initial condition at time t = 0, X =
X0, where X0 is the fluorescence intensity corresponding to the
initial aggregation growth. An explicit form for the solution of

Figure 1. Typical response of the logistic equation and graphical
representation of the parameters (λ, τ, vm, and Xm).
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model as per eq 1 is given by eq 2, where X is obtained as a
function of kapp, Xm, and X0.
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A typical response curve for X vs t is shown in Figure 1. Some
of the important parameters that characterize Aβ40 aggrega-
tion are obtained by estimating the lag phase (λ), the
maximum slope (vm), and the corresponding time at the
inflection point (τ), also referred to as the half-maximal
fluorescence time point (t50). These parameters are very
important in assessing the performance of compounds
(curcumin, orange G, and resveratrol) with respect to the
inhibition of Aβ40 aggregation. The time corresponding to
inflection point, τ, can be obtained by equating the derivative
in eq 1 to zero, or it can also be obtained by substituting X =
Xm/2 in eq 2, as it represents the time required to obtain
semimaximum fibrillation growth. The corresponding expres-
sion for τ is given by eq 3.
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The slope at the inflection point, vm, was obtained by
evaluating the derivative dX/dt at time t = τ using eq 2, and
the lag time λ was obtained using the definition of slope (ΔX/
Δt). Using these definitions, eqs 4 and 5 were obtained for
calculating vm and λ in terms of known parameters (such as Xm,
τ, and kapp).

=v
X k

4m
m app

(4)

λ τ= −
k

2

app (5)

■ RESULTS AND DISCUSSION

Thioflavin T-Based Aβ40 Kinetics Assay. The aggrega-
tion kinetic studies for Aβ40 alone show the typical sigmoidal
curve with a short lag phase, followed by a rapid growth phase
and an elongation phase in a 24 h period (Figure 2a).22,31

Under our assay conditions, the saturation phase tends to see a
gradual decline in the ThT fluorescence intensity for the
growth kinetics of Aβ40 alone. Curcumin is a hydrophobic
polyphenol derived from the herb Curcuma longa and is known
to prevent Aβ aggregation.33 The results from the ThT
aggregation kinetics for Aβ40 in the presence of curcumin
clearly show its antiaggregation properties. At 1 μM, curcumin
did not show inhibition, and as its concentration was increased
to 5, 10, and 25 μM (Figure 2b), there was a concentration-
dependent decline in the fluorescence intensity and the Aβ40
aggregation inhibition percent ranged from 40 to 52% at 24 h
time point. Figure 2c shows the aggregation kinetics data for
orange G, which is a synthetic compound with known Aβ-
aggregation inhibition properties.30 Similar to curcumin, at a
lower concentration (1 μM), orange G did not show
inhibition; however, at increased concentrations, it exhibited
superior inhibition (63−86% range at 24 h time point)
compared to curcumin. The phenolic antioxidant resveratrol
(trans-3,4′,5-trihydroxystilbene), another natural compound
known to inhibit Aβ aggregation,34,35 exhibited antiaggregation
properties (38−75% inhibition of Aβ40 aggregation at 24 h
time point) at all of the tested concentrations as shown in
Figure 2d, although it was not as potent as orange G.

Figure 2. ThT fluorescence intensity vs time for (a) Aβ40 alone (5 μM), (b) curcumin, (c) orange G, and (d) resveratrol at concentrations 1, 5, 10,
and 25 μM in the presence of Aβ40 (5 μM) in phosphate buffer 37 °C at pH 8.0 (excitation = 440 nm; emission = 490 nm). The results are based
on three independent experiments (n = 3).
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Figure 3a−d shows the comparison of the anti-Aβ
aggregation properties of curcumin, orange G, and resveratrol
at 1, 5, 10, and 25 μM, respectively. It also shows that both

curcumin and orange G were able to extend the lag phase at 5
μM (Figure 3b), and as the concentration was increased to 10
and 25 μM, all of the three compounds were able to extend the

Figure 3. Comparison of the ThT fluorescence intensities of curcumin, orange G, and resveratrol at concentrations of (a) 1 μM, (b) 5 μM, (c) 10
μM, and (d) 25 μM in the presence of Aβ40 (5 μM) in phosphate buffer 37 °C at pH 8.0 (excitation = 440 nm; emission = 490 nm). The results
are based on three independent experiments (n = 3).

Figure 4. Comparison of fluorescence intensity (X) and time obtained from the fitted model and the experimental data for (a) Aβ40 alone, (b)
Aβ40 and curcumin at 10 μM, (c) Aβ40 and orange G at 10 μM, and (d) Aβ40 and resveratrol at 10 μM.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.1c00610
ACS Omega 2021, 6, 8680−8686

8683

https://pubs.acs.org/doi/10.1021/acsomega.1c00610?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c00610?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c00610?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c00610?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c00610?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c00610?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c00610?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c00610?fig=fig4&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.1c00610?rel=cite-as&ref=PDF&jav=VoR


lag phase duration (Figure 3c,d). This study also shows that
orange G is a very effective inhibitor of Aβ40 aggregation at
higher concentrations compared to curcumin or resveratrol.
Mathematical Modeling. To quantitatively assess the

obtained results, the Aβ40 growth kinetics experimental data
for the control and in the presence of different concentrations
of Aβ40 aggregation inhibitors curcumin, orange G, and
resveratrol were modeled using the kinetics equation that
describes the fluorescence intensity as a measure of Aβ
fibrillogenesis during the experimental run period. The
mathematical modeling was based on the assumptions that
compounds screened (i) are not promoters of Aβ40
aggregation; (ii) exhibit noncovalent binding; and (iii) are
small molecules. The fluorescence intensities obtained from
these experiments were fitted with the logistic equation
described earlier (eq 1). The parameters kapp and Xm were
estimated using a nonlinear least-squares fit where the ordinary
differential equation (ODE) with the corresponding initial
condition (X = X0 at t = 0) was also solved simultaneously. A
program in MATLAB (Version R2020b) with a built-in
function lsqcurvefit.m was used for the curve fitting and
ode45.m was used for solving the ODE. In all simulations, the
initial condition in ODE described in eq 1 was modified such
that at t = 0, X = 0. This was done so that the parameters such
as Xm can be compared across the different concentration
range for the inhibitors used in this study. The logistic
equation fits well for all scenarios considered in this study such
as different inhibitors, at different concentrations. The degree
of goodness of fit was quantified using the correlation
coefficient R2. The R2 value in all of the scenarios considered
was observed to be >0.95, which shows that the experimental
results are in good agreement with the proposed logistic
model. In all of the mathematical simulations, the apparent rate
constant kapp was estimated using Xm and X0 from the
experimental results. Other important parameters such as τ, vm,
and λ, which are functions of kapp, Xm, and X0 were calculated
using eqs 3−5, respectively.
As an example, Figure 4a−d shows the comparison of the

experimental results with the model fitted using eq 1 for Aβ40
alone and in the presence of inhibitors curcumin, orange G,
and resveratrol at 10 μM. The corresponding parameters such

as kapp, τ, vm, and λ obtained from estimation and calculation
based on eqs 3−5 are shown in Figure 4. Further, the effect of
inhibitor concentration (C) on the parameters Xm, kapp, and λ
for all of the inhibitors was modeled using a power law (PL)
model as shown in eq 6. The logistic equation in combination
with the PL model forms a comprehensive bivariate model that
can be used to predict the effect of varying concentrations of
different inhibitors on Aβ40 aggregation.
Tables 1 and 2 shows the summary of parameters obtained

from the mathematical simulations for different inhibitors at
different concentrations. From this, it is apparent that the kapp
and Xm values decreased with an increase in the compound
concentration for all of the three inhibitors. Interestingly, the
lag time λ, which is an important compound-specific
parameter, increased with increasing concentration of
curcumin, while that was not the case for resveratrol, which
exhibited reductions in lag time with increasing concentrations
(5, 10, and 25 μM respectively). This highlights the value of
using mathematical simulations to understand the inhibition
mechanisms of Aβ aggregation inhibitors by calculating their
lag time λ, which is not always possible by conventional data
processing for ThT-based aggregation kinetics. Furthermore,
analysis of vm data for Aβ40 alone and in the presence of
inhibitors clearly shows that effective Aβ40 aggregation
inhibitors show a reduction in vm values, which was directly
dependent on the inhibitor concentration (Tables 1 and 2).
Among the different parameters obtained from the modeling

of the experimental data, the fluorescence intensity corre-
sponding to maximum aggregation growth (Xm) is of greater
importance, as it can be used to calculate the effectiveness of
aggregation inhibitors. The IC50 value is defined as the
concentration of the inhibitor (curcumin, orange G, and
resveratrol) that reduces the maximum fluorescence intensity
of Aβ40 alone by 50%. A plot of Xm versus concentration
shows that the obtained data can be conveniently modeled
using a PL model described by the following equation.

=X k Ck
m 1

2 (6)

where C is the compound concentration in μM, and k1 and k2
are the corresponding constants.

Table 1. Mathematical Modeling Parameters for Aβ40 Aggregation Inhibition by Curcumin

Concentration of curcumin in μM

Parameters Aβ40 peptide alone 1 5 10 25

R2 0.99 0.94 1.00 0.99 0.99
kapp (min−1) 0.0253 0.0205 0.0167 0.0150 0.0126
Xm (AU) 1836.71 1791.76 561.75 544.41 375.98τ
τ (min) 218.73 234.47 284.22 327.00 350.80
vm (AU/min) 11.5967 9.1777 2.3444 2.0388 1.1839
λ (min) 139.54 136.85 164.41 193.49 192.01

Table 2. Mathematical Modeling Parameters for Aβ40 Aggregation Inhibition by Orange G and Resveratrol

Concentration of orange G in μM Concentration of resveratrol in μM

Parameters 1 5 10 25 1 5 10 25

R2 0.98 0.99 0.98 0.98 0.98 0.99 0.99 0.99
kapp (min−1) 0.0254 0.0194 0.0169 0.0125 0.022 0.0274 0.0176 0.0214
Xm (AU) 1623.76 713.46 250.93 68.30 1353.34 1076.15 527.60 357.32
τ (min) 218.53 274.39 255.00 302.37 246.95 237.95 245.28 218.46
vm (AU/min) 10.3021 3.4550 1.0591 0.2142 7.4581 7.3816 2.3226 1.9114
λ (min) 139.72 171.14 136.54 142.90 156.22 165.05 131.70 124.99
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As an example, the PL model versus experimental fitting for
Xm and concentration C for orange G was solved using eq 6 as
shown in Figure 5. The values of k1 and k2 were obtained for

different concentrations of curcumin, orange G, and resveratrol
using eq 6, as shown in Table 3. It clearly shows that the PL

model is adequate to represent the relationship between Xm
and the inhibitor concentration. This also shows the
application of eq 6 in calculating the IC50 values of inhibitors,
which is challenging for nonlinear outputs such as Aβ growth
kinetics by conventional data processing. The calculated IC50
values for curcumin, orange G, and resveratrol (Table 3) show
that orange G is a better inhibitor of Aβ40 aggregation (IC50 =
2.6 μM) compared to others (curcumin IC50 = 3.1 μM;
resveratrol IC50 = 3.4 μM). Furthermore, if we compare the
performances of these three inhibitors at lower concentrations,
at 5 μM, curcumin demonstrates better inhibition than orange
G and resveratrol based on Xm and lag time (λ) with lower
values (Tables 1 and 2). The lag time λ in minutes is a strong
function of kapp. This is in agreement with the smaller kapp
values observed for curcumin compared to kapp values obtained
for orange G and resveratrol (Tables 1 and 2) and
demonstrates that apparent rate constant kapp is another
important parameter, which can be calculated by mathematical
simulation that together with lag time λ can be analyzed to
design better Aβ40 aggregation inhibitors.

■ CONCLUSIONS
The antiaggregation properties of curcumin, orange G, and
resveratrol toward Aβ40 aggregation were investigated by the
ThT-based fluorescence aggregation kinetic study. These
experiments showed that all of the three compounds exhibited
significant inhibitory effects in reducing the Aβ40 fibrillo-
genesis in a concentration-dependent manner with orange G,
exhibiting superior inhibition at higher concentrations
compared to curcumin and resveratrol. The experimental
data obtained were correlated by calculating a number of
compound-related parameters by mathematical modeling using
the bivariate model by combining the logistic equation and

autocatalytic model. The mathematical modeling was used to
estimate compound-specific parameters such as lag time (λ),
maximum slope (vm), and the corresponding time at the
inflection point (τ), which were correlated with the
experimentally obtained fluorescence intensity (Xm) as a
function of time. Interestingly, the bivariate model was able
to highlight subtle differences in the antiaggregation properties
of compounds, which is difficult to identify by conventional
data processing. Parameters derived from the modeling such as
lag time (λ) and kapp values further showed that curcumin was
more effective at lower concentration compared to orange G
and resveratrol. Furthermore, the PL model provides a
simplified eq 6, to calculate IC50 values, which is not
adequately addressed in the literature, for nonlinear outputs
such as Aβ aggregation kinetics. The PL model is able to
provide precise IC50 values using the experimental data, which
assists in distinguishing better inhibitors from the aggregation
inhibition screen. These studies demonstrate the application of
bivariate modeling in correlating the experimental data to
analyze the antiaggregation properties of inhibitors and have
direct application in drug discovery campaigns36 to identify
and design novel Aβ aggregation inhibitors.
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